Citation: Yaoyu Liu, Yuchen Wang, Biying Liu, Mahmoud Amer, Kai Yan. Cobalt-Vanadium Layered Double Hydroxides Nanosheets as High-Performance Electrocatalysts for Urea Oxidation Reaction[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220502. doi: 10.3866/PKU.WHXB202205028 shu

Cobalt-Vanadium Layered Double Hydroxides Nanosheets as High-Performance Electrocatalysts for Urea Oxidation Reaction

  • Corresponding author: Yuchen Wang, wangych235@mail.sysu.edu.cn Kai Yan, yank9@mail.sysu.edu.cn
  • Received Date: 12 May 2022
    Revised Date: 6 June 2022
    Accepted Date: 9 June 2022
    Available Online: 6 July 2022

    Fund Project: the National Natural Science Foundation of China 22078374the National Key R & D Program of China 2020YFC1807600the Key-Area Research and Development Program of Guangdong Province 2019B110209003the Guangdong Basic and Applied Basic Research Foundation 2019B1515120058the Scientific and Technological Planning Project of Guangzhou 202206010145

  • Hydrogen is considered as a desirable clean energy source for supporting human life in the future. Electrochemical water splitting is a promising method for generating carbon-free hydrogen. However, the relatively high overpotential of anodic oxygen evolution reaction (OER) is the main obstacle hindering the widespread popularity of water electrocatalysis technology. Recently, urea oxidation reaction (UOR) has gained significant attention as a potential alternative to OER for hydrogen production since the equilibrium potential of UOR is 0.86 V lower than that of OER. Transition metal-based layered double hydroxides (TM-LDHs) have been explored as promising UOR electrocatalysts, with the advantages of diversified metal species, stable two-dimensional layered structure and exchangeability of interlayer anions. To date, most studies have focused on TM-LDHs of late transition metals (e.g., Ni, Co, and Fe). In this work, by combining early and late transition metals, CoV-LDHs nanosheets were fabricated via a simple one-step coprecipitation method as high-performance UOR electrocatalysts. Additionally, cobalt hydroxide (Co(OH)2), with a similar lamellar structure, was synthesized via the same method. When compared with Co(OH)2, CoV-LDHs nanosheets exhibited better UOR performance owing to the following advantages: 1) The nanosheet structure of the as-fabricated CoV-LDHs electrocatalyst exposed a high number of active sites for the electrocatalytic conversion of urea. 2) The introduction of V enhanced the wettability of the CoV-LDHs electrocatalyst; thus, increasing its intrinsic electrocatalytic kinetics. 3) The d-electron compensation effect between Co (3d74s2) and V (3d34s2) was conducive to promoting the adsorption of urea. Therefore, the CoV-LDHs electrocatalyst exhibited a low electrochemical potential (1.52 V vs. the reversible hydrogen electrode, RHE) to achieve a current density of 10 mA∙cm−2 in 1 mol∙L−1 of potassium hydroxide containing 0.33 mol∙L−1 urea, which was 70 mV less than that of Co(OH)2. The Tafel slope value of the CoV-LDHs electrocatalyst (99.9 mV∙dec−1) was lower than that of Co(OH)2 (115.9 mV∙dec−1), indicating faster UOR kinetics over the CoV-LDHs electrocatalyst. Furthermore, the CoV-LDHs electrocatalyst displayed high stability, with a negligible potential increase after a 10-h chronopotentiometry test by maintaining the current density of 10 mA∙cm−2. In conclusion, the present work not only shows that the d-electron compensation effect between early and late transition metals could adjust the local electronic structure of TM-LDHs to improve the UOR efficiency, but also provides a feasible route to design dedicated nanostructured TM-LDHs as high-performance UOR electrocatalysts.
  • 加载中
    1. [1]

      Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140. doi: 10.1038/s41563-020-0788-3  doi: 10.1038/s41563-020-0788-3

    2. [2]

      Rausch, B.; Symes Mark, D.; Chisholm, G.; Cronin, L. Science 2014, 345, 1326. doi: 10.1126/science.1257443  doi: 10.1126/science.1257443

    3. [3]

      He, Y.; Wang, T. L.; Zhang, M.; Wang, T. W.; Wu, L. F.; Zeng, L. Y.; Wang, X. P.; Boubeche, M.; Wang, S.; Yan, K.; et al. Small 2021, 17, 2006153. doi: 10.1002/smll.202006153  doi: 10.1002/smll.202006153

    4. [4]

      Yu, J.; Yu, F.; Yuen, M.-F.; Wang, C. J. Mater. Chem. A 2021, 9, 9389. doi: 10.1039/D0TA11910E  doi: 10.1039/D0TA11910E

    5. [5]

      Xu, B. Y.; Zhang, Y.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Acta Phys. -Chim. Sin. 2021, 37, 2009074.  doi: 10.3866/PKU.WHXB202009074

    6. [6]

      Zhu, B. J.; Liang, Z. B.; Zou, R. Q. Small 2020, 16, 1906133. doi: 10.1002/smll.201906133  doi: 10.1002/smll.201906133

    7. [7]

      Hu, S. A.; Tan, Y.; Feng, C. Q.; Wu, H. M.; Zhang, J. J.; Mei, H. J. Power Sources 2020, 453, 227872. doi: 10.1016/j.jpowsour.2020.227872  doi: 10.1016/j.jpowsour.2020.227872

    8. [8]

      Xie, J. F.; Qu, H. C.; Lei, F. G.; Peng, X.; Liu, W. W.; Gao, L.; Hao, P.; Cui, G. W.; Tang, B. J. Mater. Chem. A 2018, 6, 16121. doi: 10.1039/C8TA05054F  doi: 10.1039/C8TA05054F

    9. [9]

      Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Appl. Catal. B: Environ. 2020, 272, 118959. doi: 10.1016/j.apcatb.2020.118959  doi: 10.1016/j.apcatb.2020.118959

    10. [10]

      Wang, K. L.; Hou, M. M.; Huang, W.; Cao, Q. H.; Zhao, Y. J.; Sun, X. J.; Ding, R.; Lin, W. W.; Liu, E. H.; Gao, P. J. Colloid Interf. Sci. 2022, 615, 309. doi: 10.1016/j.jcis.2022.01.151  doi: 10.1016/j.jcis.2022.01.151

    11. [11]

      Wang, Z. L.; Liu, W. J.; Bao, J.; Song, Y. J.; She, X. J.; Hua, Y. J.; Lv, G. A.; Yuan, J. J.; Li, H. M.; Xu, H. Chem. Eng. J. 2022, 430, 133100. doi: 10.1016/j.cej.2021.133100  doi: 10.1016/j.cej.2021.133100

    12. [12]

      Sun, H. C.; Zhang, W.; Li, J. G.; Li, Z. S.; Ao, X.; Xue, K. H.; Ostrikov, K. K.; Tang, J.; Wang, C. D. Appl. Catal. B: Environ. 2021, 284, 119740. doi: 10.1016/j.apcatb.2020.119740  doi: 10.1016/j.apcatb.2020.119740

    13. [13]

      Zhang, R.; Wei, Z. H.; Ye, G. Y.; Chen, G. J.; Miao, J. J.; Zhou, X. H.; Zhu, X. W.; Cao, X. Q.; Sun, X. N. Adv. Energy Mater. 2021, 11, 2101758. doi: 10.1002/aenm.202101758  doi: 10.1002/aenm.202101758

    14. [14]

      Cao, Q. H.; Yuan, Y. H.; Wang, K. L.; Huang, W.; Zhao, Y. J.; Sun, X. J.; Ding, R.; Lin, W. W.; Liu, E. H.; Gao, P. J. Colloid Interf. Sci. 2022, 618, 411. doi: 10.1016/j.jcis.2022.03.054  doi: 10.1016/j.jcis.2022.03.054

    15. [15]

      Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q.; et al. Angew. Chem. Int. Ed. 2021, 60, 22740. doi: 10.1002/anie.202110355  doi: 10.1002/anie.202110355

    16. [16]

      Jakšić, M. M. J. Mol. Catal. 1986, 38, 161. doi: 10.1016/0304-5102(86)87056-0  doi: 10.1016/0304-5102(86)87056-0

    17. [17]

      Zhou, L.; Zhang, C.; Zhang, Y. Q.; Li, Z. H.; Shao, M. F. Adv. Funct. Mater. 2021, 31, 2009743. doi: 10.1002/adfm.202009743  doi: 10.1002/adfm.202009743

    18. [18]

      Gong, W. Z.; Wang, M. J.; An, Y.; Wang, J. L.; Zhou, L. X.; Xia, Y.; Wang, C. J.; Dong, K.; Pan, C.; Zhou, R. F. J. Energy Storage 2021, 38, 102579. doi: 10.1016/j.est.2021.102579  doi: 10.1016/j.est.2021.102579

    19. [19]

      Lee, S. C.; Kim, M.; Park, J.-H.; Kim, E. S.; Liu, S. D.; Chung, K. Y.; Seong, C. J. J. Power Sources 2021, 486, 229341. doi: 10.1016/j.jpowsour.2020.229341  doi: 10.1016/j.jpowsour.2020.229341

    20. [20]

      Wang, Y. C.; Chen, Z.; Zhang, M.; Liu, Y. Y.; Luo, H. X.; Yan, K. Green Energy Environ. 2022, 7, 1053. doi: 10.1016/j.gee.2021.01.019  doi: 10.1016/j.gee.2021.01.019

    21. [21]

      Eisa, T.; Park, S.-G.; Mohamed, H. O.; Abdelkareem, M. A.; Lee, J.; Yang, E.; Castaño, P.; Chae, K.-J. Energy 2021, 228, 120584. doi: 10.1016/j.energy.2021.120584  doi: 10.1016/j.energy.2021.120584

    22. [22]

      Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Energy Environ. Sci. 2018, 11, 1736. doi: 10.1039/C8EE00611C  doi: 10.1039/C8EE00611C

    23. [23]

      Huang, G. Q.; Zhao, L.; Yuan, S. S.; Li, N.; Jing, S. B. Int. J. Hydrogen Energy 2022, 47, 14767. doi: 10.1016/j.ijhydene.2022.02.223  doi: 10.1016/j.ijhydene.2022.02.223

    24. [24]

      Wang, Z. P.; Chen, L.; Xu, S. D.; Zhang, D.; Zhou, X. X.; Wu, X.; Xie, X. M.; Qiu, X. Y. Compos. Commun. 2021, 27, 100780. doi: 10.1016/j.coco.2021.100780  doi: 10.1016/j.coco.2021.100780

    25. [25]

      He, D. Y.; Cao, L. Y.; Huang, J. F.; Kajiyoshi, K.; Wu, J. P.; Wang, C. C.; Liu, Q. Q.; Yang, D.; Feng, L. L. J. Energy Chem. 2020, 47, 263. doi: 10.1016/j.jechem.2020.02.010  doi: 10.1016/j.jechem.2020.02.010

    26. [26]

      Li, C. F.; Xie, L. J.; Zhao, J. W.; Gu, L. F.; Wu, J. Q.; Li, G. R. Appl. Catal. B: Environ. 2022, 306, 121097. doi: 10.1016/j.apcatb.2022.121097  doi: 10.1016/j.apcatb.2022.121097

    27. [27]

      Zhang, B. J.; Pan, C. T.; Liu, H. J.; Wu, X. S.; Jiang, H. L.; Yang, L.; Qi, Z. M.; Li, G.; Shan, L.; Lin, Y. X.; et al. Chem. Eng. J. 2022, 439, 135768. doi: 10.1016/j.cej.2022.135768  doi: 10.1016/j.cej.2022.135768

    28. [28]

      Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H.; et al. Nat. Energy 2021, 6, 904. doi: 10.1038/s41560-021-00899-2  doi: 10.1038/s41560-021-00899-2

    29. [29]

      Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y.-C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 7297. doi: 10.1002/anie.202015773  doi: 10.1002/anie.202015773

    30. [30]

      Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C.-L.; Huang, Y.-C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C.; et al. Chem 2020, 6, 2974. doi: 10.1016/j.chempr.2020.07.022  doi: 10.1016/j.chempr.2020.07.022

    31. [31]

      Ji, Z. J.; Song, Y. J.; Zhao, S. H.; Li, Y.; Liu, J.; Hu, W. P. ACS Catal. 2022, 12, 569. doi: 10.1021/acscatal.1c05190  doi: 10.1021/acscatal.1c05190

    32. [32]

      Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Adv. Mater. 2019, 31, 1901174. doi: 10.1002/adma.201901174  doi: 10.1002/adma.201901174

    33. [33]

      Li, S. D.; Fan, J. C.; Li, S. Y.; Ma, Y.; Wu, J. H.; Jin, H. G.; Chao, Z. S.; Pan, D.; Guo, Z. H. J. Nanostruct. Chem. 2021, 11, 735. doi: 10.1007/s40097-021-00441-6  doi: 10.1007/s40097-021-00441-6

    34. [34]

      Ge, J. H.; Liu, Z. F.; Guan, M. H.; Kuang, J.; Xiao, Y. H.; Yang, Y.; Tsang, C. H.; Lu, X. Y.; Yang, C. Z. J. Colloid Interf. Sci. 2022, 620, 442. doi: 10.1016/j.jcis.2022.03.152  doi: 10.1016/j.jcis.2022.03.152

    35. [35]

      Wei, S.; Wang, X. X.; Wang, J. M.; Sun, X. P.; Cui, L.; Yang, W. R.; Zheng, Y. W.; Liu, J. Q. Electrochim. Acta 2017, 246, 776. doi: 10.1016/j.electacta.2017.06.068  doi: 10.1016/j.electacta.2017.06.068

    36. [36]

      Hu, Q.; Zhu, B.; Li, G. M.; Liu, X. F.; Yang, H. P.; Sewell, C. D.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Nano Energy 2019, 66, 104194. doi: 10.1016/j.nanoen.2019.104194  doi: 10.1016/j.nanoen.2019.104194

  • 加载中
    1. [1]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    2. [2]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    3. [3]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    4. [4]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    5. [5]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    6. [6]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    7. [7]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    8. [8]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    9. [9]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    10. [10]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    11. [11]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    12. [12]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    13. [13]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    14. [14]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    15. [15]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    16. [16]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    17. [17]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    18. [18]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    19. [19]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    20. [20]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

Metrics
  • PDF Downloads(20)
  • Abstract views(1258)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return