Citation: Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 220405. doi: 10.3866/PKU.WHXB202204059 shu

Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk

  • Corresponding author: Zunfeng Liu, liuzunfeng@nankai.edu.cn Yongsheng Chen, yschen99@nankai.edu.cn
  • Received Date: 30 April 2022
    Revised Date: 13 June 2022
    Accepted Date: 15 June 2022
    Available Online: 22 June 2022

    Fund Project: the National Natural Science Foundation of China 52090034the National Natural Science Foundation of China 51973093the National Natural Science Foundation of China 51773094the National Key Research and Development Program of China 2019YFE0119600Frontiers Science Center for New Organic Matter, Nankai University 63181206

  • Natural spider silk is composed of spun spidroin protein containing beta-sheet crosslinking sites drawn from an S-shaped spinning duct. It exhibits an excellent combination of strength (1150 ± 200 MPa) and toughness (165 ± 30 MJ·m−3) that originates from its hierarchical structure, including crosslinking sites, highly aligned nano-aggregates, and a sheath-core structure. In this work, we prepared a hydrogel fiber that contains crosslinking sites, highly aligned nano-aggregates, and a sheath-core structure, by draw-spinning a bulk hydrogel composed of polyacrylic acid crosslinked with vinyl-functionalized silica nanoparticles (SNVs). The core-sheath structure was prepared by the water-evaporation-controlled self-assembly of the polyacrylic hydrogel, while nanometer-sized aggregates were formed by the self-assembly of polyacrylic acid chains. The addition of a tiny amount of graphene oxide (GO: 0.01%), a 2D nanomaterial, enhanced the mechanical properties of the fiber (breaking strength: 560 MPa; fracture toughness: 200 MJ·m−3; damping capacity: 94%). In addition, we investigated the factors responsible for the mechanical properties of the gel fibers, including fiber diameter, drying time in air, relative air humidity, and stretching speed. A higher breaking strength and a lower fracture strain was obtained by decreasing the fiber diameter, increasing the drying time, or increasing the stretching speed, while a lower fracture strain and higher breaking strength were obtained by increasing the relative air humidity. Polarized optical and SEM images revealed that the GO-seeded material is better aligned and contains smaller nano-aggregates, with GO seeding found to play a key role in the formation of nano-aggregates and polymer-chain alignment. The prepared fiber exhibited excellent mechanical properties compared to gel fibers prepared by other methods (e.g., electro-, wet, dry, and microfluidic spinning, as well as templating, and 3D printing, etc.). Repeated mechanical testing involving stretch-release cycles to 70% strain at 20% relative humidity revealed that the fibers have an energy-damping capacity of 93.6%, which exceeds that of natural spider silk and many types of artificial fiber. The relaxed stretched fiber recovered its initial length when exposed to 80% relative humidity, while the fiber recovered its initial mechanical properties when stored for 2 h at room temperature. A yarn composed of three hundred of the prepared gel fibers was shown to lift a 3 kg object without breaking; the prepared fiber was also shown to absorb dynamic energy and lower the impact force of a falling object.
  • 加载中
    1. [1]

      Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D. L.; Buehler, M. J. Nat. Commun. 2017, 8, 1. doi: 10.1038/s41467-017-00613-5  doi: 10.1038/s41467-017-00613-5

    2. [2]

      Omenetto, F. G.; Kaplan, D. L. Science 2010, 329, 528. doi: 10.1126/science.1188936  doi: 10.1126/science.1188936

    3. [3]

      Vollrath, F.; Knight, D. P. Nature 2001, 410, 541. doi: 10.1038/35069000  doi: 10.1038/35069000

    4. [4]

      Rising, A.; Johansson, J. Nat. Chem. Biol. 2015, 11, 309. doi: 10.1038/nchembio.1789  doi: 10.1038/nchembio.1789

    5. [5]

      Yarger, J. L.; Cherry, B. R.; Van Der Vaart, A. Nat. Rev. Mater. 2018, 3, 1. doi: 10.1038/natrevmats.2018.8  doi: 10.1038/natrevmats.2018.8

    6. [6]

      Yoshioka, T.; Tsubota, T.; Tashiro, K.; Jouraku, A.; Kameda, T. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-09350-3  doi: 10.1038/s41467-019-09350-3

    7. [7]

      Du, N.; Yang, Z.; Liu, X. Y.; Li, Y.; Xu, H. Y. Adv. Funct. Mater. 2011, 21, 772. doi: 10.1002/adfm.201001397  doi: 10.1002/adfm.201001397

    8. [8]

      Eisoldt, L.; Smith, A.; Scheibel, T. Mater. Today 2011, 14, 80. doi: 10.1016/S1369-7021(11)70057-8  doi: 10.1016/S1369-7021(11)70057-8

    9. [9]

      Lefèvre, T.; Auger, M. Int. Mater. Rev. 2016, 61, 127. doi: 10.1080/09506608.2016.1148894  doi: 10.1080/09506608.2016.1148894

    10. [10]

      Lin, T.-Y.; Masunaga, H.; Sato, R.; Malay, A. D.; Toyooka, K.; Hikima, T.; Numata, K. Biomacromolecules 2017, 18, 1350. doi: 10.1021/acs.biomac.7b00086  doi: 10.1021/acs.biomac.7b00086

    11. [11]

      Yazawa, K.; Malay, A. D.; Masunaga, H.; Numata, K. Macromol. Bioscience 2019, 19, 1800220. doi: 10.1002/mabi.201800220  doi: 10.1002/mabi.201800220

    12. [12]

      Gao, H.-L.; Zhao, R.; Cui, C.; Zhu, Y.-B.; Chen, S.-M.; Pan, Z.; Meng, Y.-F.; Wen, S.-M.; Liu, C.; Wu, H.-A. Natl. Sci. Rev. 2020, 7, 73. doi: 10.1093/nsr/nwz077  doi: 10.1093/nsr/nwz077

    13. [13]

      Mittal, N.; Jansson, R.; Widhe, M.; Benselfelt, T.; Håkansson, K. M.; Lundell, F.; Hedhammar, M.; Söderberg, L. D. ACS Nano 2017, 11, 5148. doi: 10.1021/acsnano.7b02305  doi: 10.1021/acsnano.7b02305

    14. [14]

      Mohammadi, P.; Aranko, A. S.; Landowski, C. P.; Ikkala, O.; Jaudzems, K.; Wagermaier, W.; Linder, M. B. Sci. Adv. 2019, 5, eaaw2541. doi: 10.1126/sciadv.aaw2541  doi: 10.1126/sciadv.aaw2541

    15. [15]

      Yu, Y.; He, Y.; Mu, Z.; Zhao, Y.; Kong, K.; Liu, Z.; Tang, R. Adv. Funct. Mater. 2020, 30, 1908556. doi: 10.1002/adfm.201908556  doi: 10.1002/adfm.201908556

    16. [16]

      Dou, Y.; Wang, Z.-P.; He, W.; Jia, T.; Liu, Z.; Sun, P.; Wen, K.; Gao, E.; Zhou, X.; Hu, X. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-09234-6  doi: 10.1038/s41467-019-09234-6

    17. [17]

      Wu, Y.; Shah, D. U.; Liu, C.; Yu, Z.; Liu, J.; Ren, X.; Rowland, M. J.; Abell, C.; Ramage, M. H.; Scherman, O. A. Proc. Nat. Acad. Sci. U. S. A. 2017, 114, 8163. doi: 10.1073/pnas.1705380114  doi: 10.1073/pnas.1705380114

    18. [18]

      Deptula, A.; Wade, M.; Rogers, S. A.; Espinosa‐Marzal, R. M. Adv. Funct. Mater. 2022, 32, 2111414. doi: 10.1002/adfm.202111414  doi: 10.1002/adfm.202111414

    19. [19]

      Heidebrecht, A.; Eisoldt, L.; Diehl, J.; Schmidt, A.; Geffers, M.; Lang, G.; Scheibel, T. Adv. Mater. 2015, 27, 2189. doi: 10.1002/adma.201404234  doi: 10.1002/adma.201404234

    20. [20]

      Li, J.; Zhu, Y.; Yu, H.; Dai, B.; Jun, Y.-S.; Zhang, F. ACS Nano 2021, 15, 11843. doi: 10.1021/acsnano.1c02944  doi: 10.1021/acsnano.1c02944

    21. [21]

      Li, Y.; Li, J.; Sun, J.; He, H.; Li, B.; Ma, C.; Liu, K.; Zhang, H. Angew. Chem. Int. Ed. 2020, 132, 8225. doi: 10.1002/anie.202102158  doi: 10.1002/anie.202102158

    22. [22]

      Kabir, M. H.; Ahmed, K.; Gong, J.; Furukawa, H. The Effect of Cross-Linker Concentration in the Physical Properties of Shape Memory Gel. In: Proceedings of SPIE, 2015, 9432, 94320Q. Conference on Behavior and Mechanics of Multifunctional Materials and Composites, San Diego, CA, MAR 09–11, 2015. doi: 10.1117/12.2084181

    23. [23]

      Andersson, M.; Jia, Q.; Abella, A.; Lee, X.-Y.; Landreh, M.; Purhonen, P.; Hebert, H.; Tenje, M.; Robinson, C. V.; Meng, Q. Nat. Chem. Biol. 2017, 13, 262. doi: 10.1038/NCHEMBIO.2269  doi: 10.1038/NCHEMBIO.2269

    24. [24]

      Wei, P.; Hou, K.; Chen, T.; Chen, G.; Mugaanire, I. T.; Zhu, M. Mater. Horiz. 2020, 7, 811. doi: 10.1039/C9MH01390C  doi: 10.1039/C9MH01390C

    25. [25]

      Jin, Y.; Zhang, Y.; Hang, Y.; Shao, H.; Hu, X. J. Mater. Res. 2013, 28, 2897. doi: 10.1557/jmr.2013.276  doi: 10.1557/jmr.2013.276

    26. [26]

      Sun, M.; Zhang, Y.; Zhao, Y.; Shao, H.; Hu, X. J. Mater. Chem. 2012, 22, 18372. doi: 10.1039/C2JM32576D  doi: 10.1039/C2JM32576D

    27. [27]

      Yue, X.; Zhang, F.; Wu, H.; Ming, J.; Fan, Z.; Zuo, B. Mater. Lett. 2014, 128, 175. doi: 10.1016/j.matlet.2014.04.116  doi: 10.1016/j.matlet.2014.04.116

    28. [28]

      Liao, X.; Dulle, M.; e Silva, J. M. d. S.; Wehrspohn, R. B.; Agarwal, S.; Förster, S.; Hou, H.; Smith, P.; Greiner, A. Science 2019, 366, 1376. doi: 10.1126/science.aay903  doi: 10.1126/science.aay903

    29. [29]

      Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Chem. Rev. 2019, 119, 5298. doi: 10.1021/acs.chemrev.8b00593  doi: 10.1021/acs.chemrev.8b00593

    30. [30]

      Kang, E.; Choi, Y. Y.; Chae, S. K.; Moon, J. H.; Chang, J. Y.; Lee, S. H. Adv. Mater. 2012, 24, 4271. doi: 10.1002/adma.201201232  doi: 10.1002/adma.201201232

    31. [31]

      Mittal, N.; Benselfelt, T.; Ansari, F.; Gordeyeva, K.; Roth, S. V.; Wågberg, L.; Söderberg, L. D. Angew. Chem. Int. Ed. 2019, 131, 18735. doi: 10.1002/ange.201910603  doi: 10.1002/ange.201910603

    32. [32]

      Tamayol, A.; Akbari, M.; Zilberman, Y.; Comotto, M.; Lesha, E.; Serex, L.; Bagherifard, S.; Chen, Y.; Fu, G.; Ameri, S. K. Adv. Healthc. Mater. 2016, 5, 711. doi: 10.1002/adhm.201670027  doi: 10.1002/adhm.201670027

    33. [33]

      Huang, H. M.; Li, Z.; Wang, C. Solid State Phenomena 2007, 121, 579. doi: 10.4028/www.scientific.net/SSP.121-123.579  doi: 10.4028/www.scientific.net/SSP.121-123.579

    34. [34]

      Lu, H.; Zhang, L.; Xing, W.; Wang, H.; Xu, N. Macromol. Chem. Phys. 2005, 94, 322. doi: 10.1039/C9TA14082D  doi: 10.1039/C9TA14082D

    35. [35]

      Hou, K.; Hu, Z.; Mugaanire, I. T.; Li, C.; Chen, G.; Zhu, M. Polymer 2019, 183, 121903. doi: 10.1016/j.polymer.2019.121903  doi: 10.1016/j.polymer.2019.121903

    36. [36]

      Hou, K.; Wang, H.; Lin, Y.; Chen, S.; Yang, S.; Cheng, Y.; Hsiao, B. S.; Zhu, M. Macromol. Rapid Commun. 2016, 37, 1795. doi: 10.1002/marc.201600430  doi: 10.1002/marc.201600430

    37. [37]

      Song, J.; Chen, S.; Sun, L.; Guo, Y.; Zhang, L.; Wang, S.; Xuan, H.; Guan, Q.; You, Z. Adv. Mater. 2020, 32, 1906994. doi: 10.1002/adma.201906994  doi: 10.1002/adma.201906994

    38. [38]

      Chen, G.; Wang, G.; Tan, X.; Hou, K.; Meng, Q.; Zhao, P.; Wang, S.; Zhang, J.; Zhou, Z.; Chen, T. Natl. Sci. Rev. 2021, 8, nwaa209. doi: 10.1093/nsr/nwaa209  doi: 10.1093/nsr/nwaa209

    39. [39]

      Duan, X.; Yu, J.; Zhu, Y.; Zheng, Z.; Liao, Q.; Xiao, Y.; Li, Y.; He, Z.; Zhao, Y.; Wang, H. ACS Nano 2020, 14, 14929. doi: 10.1021/acsnano.0c04382  doi: 10.1021/acsnano.0c04382

    40. [40]

      Ju, M., Wu, B., Sun, S., Wu, P. Adv. Funct. Mater. 2020, 30, 1910387. doi: 10.1002/adfm.201910387  doi: 10.1002/adfm.201910387

    41. [41]

      Wu, L.; Li, L.; Fan, M.; Tang, P.; Yang, S.; Pan, L.; Wang, H.; Bin, Y. Composites Part A: Appl. Sci. Manufacturing 2020, 138, 106050. doi: 10.1016/j.compositesa.2020.106050  doi: 10.1016/j.compositesa.2020.106050

    42. [42]

      Bettahar, F.; Bekkar, F.; Pérez-Álvarez, L.; Ferahi, M. I.; Meghabar, R., Vilas-Vilela, J. L.; Ruiz-Rubio, L. Polymer 2021, 13, 972. doi: 10.3390/polym13060972  doi: 10.3390/polym13060972

    43. [43]

      Yang, Y.; Wang, C.; Wiener, C. G.; Hao, J.; Shatas, S.; Weiss, R., Vogt, B. D. ACS Appl. Mater. Interfaces 2016, 8, 22774. doi: 10.1021/acsami.6b08255  doi: 10.1021/acsami.6b08255

    44. [44]

      Chen, T.; Wei, P.; Chen, G.; Liu, H.; Mugaanire, I. T.; Hou, K.; Zhu, M. J. Mater. Chem. A 2021, 9, 12265. doi: 10.1039/d1ta02422a  doi: 10.1039/d1ta02422a

    45. [45]

      An, Y.; Gao, L.; Wang, T. ACS Appl. Nano Mater. 2020, 3, 5079. doi: 10.1021/acsanm.0c00351  doi: 10.1021/acsanm.0c00351

    46. [46]

      Chu, C. K.; Joseph, A. J.; Limjoco, M. D.; Yang, J.; Bose, S.; Thapa, L. S.; Langer, R.; Anderson, D. G. J. Am. Chem. Soc. 2020, 142, 19715. doi: 10.1021/jacs.0c09691  doi: 10.1021/jacs.0c09691

    47. [47]

      Zhao, X.; Chen, F.; Li, Y.; Lu, H.; Zhang, N.; Ma, M. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-018-05904-z  doi: 10.1038/s41467-018-05904-z

    48. [48]

      Naficy, S.; Le, T. Y. L.; Oveissi, F.; Lee, A.; Hung, J. C.; Wise, S. G.; Winlaw, D. S.; Dehghani, F. Adv. Mater. Interfaces 2020, 7, 1901770. doi: 10.1002/admi.201901770  doi: 10.1002/admi.201901770

    49. [49]

      Peng, L., Liu, Y., Huang, J., Li, J., Gong, J., Ma, J. Eur. Poly. J. 2018, 103, 335. doi: 10.1016/j.eurpolymj.2018.04.019  doi: 10.1016/j.eurpolymj.2018.04.019

    50. [50]

      Zhou, M.; Gong, J.; Ma, J. e-Polymers 2019, 19, 215. doi: 10.1515/epoly-2019-0022  doi: 10.1515/epoly-2019-0022

  • 加载中
    1. [1]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    5. [5]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(12)
  • Abstract views(438)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return