Citation: Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 220405. doi: 10.3866/PKU.WHXB202204058 shu

MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field

  • Corresponding author: Qinghong Zhang, zhangqh@dhu.edu.cn Hongzhi Wang, wanghz@dhu.edu.cn
  • Received Date: 30 April 2022
    Revised Date: 27 May 2022
    Accepted Date: 30 May 2022
    Available Online: 7 June 2022

    Fund Project: the DHU Distinguished Young Professor Program, China LZB2019002

  • Technological advances such as electronic information and the Internet of Things have increased the daily use and demand for wearable electronic devices and intelligent fabrics. This has led to an unprecedented development of functional fibers, the properties of which are largely determined by their basic building blocks. Transitional metal carbon/nitrogen compounds (MXenes) are an emerging class of two-dimensional materials that have been widely used in many wearable devices owing to their high electrical conductivity, excellent processability, tunable surface properties, and outstanding mechanical strength. In this paper, we summarize the various synthetic methods for MXenes materials. Moreover, we also compare the characteristics of the different preparation techniques and elaborate the mechanical, electrical, optical, and chemical stability properties of the materials. This paper primarily focuses on the surface terminal groups of MXenes and the effect they have on different properties. At present, various methods have been developed for the preparation of MXenes-functionalized fibers, including pasting MXenes on the surface of matrix fibers by coating and producing solid fibers from a slurry containing MXenes by wet spinning or electrospinning. Among them, wet spinning has been the most widely adopted method, and is very promising for the large-scale production of MXenes-functionalized fibers. This paper also summarizes the properties of functional fibers obtained by various preparation methods. Furthermore, functional fibers prepared by different processes have been applied several fields, including flexible energy storage devices, wearable sensors, wires for electrical signal transmission and conversion, and integration of multifunctional intelligent fabrics. Great progress has been made in the research of supercapacitors and sensors with MXenes-functionalized fibers as electrodes which are anticipated to be integrated into intelligent textiles. This paper summarizes the potential applications of MXenes-functionalized fibers and reports on the challenges that must be addressed before practical applications can be realized. Firstly, a fluorine-free preparation of MXenes materials must be achieved whilst improving yields. Secondly, tunability of the functional groups on the surface of MXenes materials must be attained. Lastly, an improvement to the long-term chemical stability of MXenes in the environment should be accomplished. While efficiently obtaining high-quality MXenes materials, it is equally important to develop new MXenes-functionalized fiber preparation techniques. Furthermore, the potential applications of MXenes-functionalized fibers could be broadened by developing new fiber weaving processes. We finally summarize the potential applications of intelligent fabrics based on MXenes-functionalized fibers. Whilst challenges remain, MXenes are an emerging family of two-dimensional materials with many attractive properties and many potential applications worth exploring.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Wang, G.; Hou, C.; Long, H.; Yang, L.; Wang, Y. Acta Phys. -Chim. Sin. 2019, 35, 1319.  doi: 10.3866/PKU.WHXB201903010

    3. [3]

      Lin, Y.; Williams, T. V.; Connell, J. W. J. Phys. Chem. Lett. 2010, 1, 277. doi: 10.1021/JZ9002108  doi: 10.1021/JZ9002108

    4. [4]

      Zhou, K.; Mao, N.; Wang, H.; Peng, Y.; Zhang, H. Angew. Chem. Int. Ed. 2011, 50, 10839. doi: 10.1002/anie.201105364  doi: 10.1002/anie.201105364

    5. [5]

      Li, L.; Yu, Y.; Ye, G.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.; Zhang, Y. Nat. Nanotech. 2014, 9, 372. doi: 10.1038/nnano.2014.35  doi: 10.1038/nnano.2014.35

    6. [6]

      Yan, S.; Li, Z.; Zou, Z. Langmuir 2009, 25, 10397. doi: 10.1021/la900923z  doi: 10.1021/la900923z

    7. [7]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124. doi: 10.1021/cr200434v  doi: 10.1021/cr200434v

    8. [8]

      Vogt, P.; Padova, P. D.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Lay, G. L. Phys. Rev. Lett. 2012, 108, 155501. doi: 10.1103/PHYSREVLETT.108.155501  doi: 10.1103/PHYSREVLETT.108.155501

    9. [9]

      Naguib, M; Kurtoglu, M; Presser, V; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306  doi: 10.1002/adma.201102306

    10. [10]

      Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. Science 2021, 372, eabf1581. doi: 10.1126/science.abf1581  doi: 10.1126/science.abf1581

    11. [11]

      Wang, Y.; Guo, T.; Tian, Z.; Bibi, K.; Zhang, Y.; Alshareef, H. Adv. Mater. 2022, 34, 2108560. doi: 10.1002/adma.202108560  doi: 10.1002/adma.202108560

    12. [12]

      Zhao, Y.; Zhang, X.; Han, X.; Hou, C.; Wang, H.; Qi, J.; Li, Y.; Zhang, Q. Chem. Eng. J. 2021, 417, 127912. doi: 10.1016/j.cej.2020.127912  doi: 10.1016/j.cej.2020.127912

    13. [13]

      Wang, C.; Zheng, Z.; Feng, Y.; Huan, Y.; Cao, F.; Guo, Z. Nano Energy 2020, 74, 104817. doi: 10.1016/j.nanoen.2020.104817  doi: 10.1016/j.nanoen.2020.104817

    14. [14]

      Zhou, B.; Zhang, Z.; Li, Y.; Han, G.; Feng, Y.; Wang, B.; Zhang, D.; Ma, J.; Liu, C. ACS Appl. Mater. Interfaces 2020, 12, 4895. doi: 10.1021/acsami.9b19768  doi: 10.1021/acsami.9b19768

    15. [15]

      Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. ACS Sens. 2019, 4, 1603. doi: 10.1021/acssensors.9b00303  doi: 10.1021/acssensors.9b00303

    16. [16]

      Sun, Y.; Meng, X.; Dall'Agnese, Y.; Dall'Agnese, C.; Duan, S.; Gao, Y.; Chen, G.; Wang, X. Nano-Micro Lett. 2019, 11, 79. doi: 10.1007/s40820-019-0309-6  doi: 10.1007/s40820-019-0309-6

    17. [17]

      Cheng, L.; Liu G. P.; Jin W. Q. Acta Phys. -Chim. Sin. 2019, 35, 1090.  doi: 10.3866/PKU.WHXB201810059

    18. [18]

      Driscoll, N.; Richardson A. G.; Maleski, K.; Anasori, B.; Adewole, O.; Lelyukh, P.; Escobedo, L.; Cullen, D. K.; Lucas, T. H.; Gogotsi, Y.; Vitale, F. ACS Nano 2018, 12, 10419. doi: 10.1021/acsnano.8b06014  doi: 10.1021/acsnano.8b06014

    19. [19]

      Ding, L.; Li, L.; Liu, Y.; Wu, Yi.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H. Nat. Sustain. 2020, 3, 296. doi: 10.1038/s41893-020-0474-0  doi: 10.1038/s41893-020-0474-0

    20. [20]

      Levitt, A.; Zhang, J.; Dion, G.; Gogotsi, Y.; Razal, J. M. Adv. Funct. Mater. 2020, 30, 2000739. doi: 10.1002/adfm.202000739  doi: 10.1002/adfm.202000739

    21. [21]

      Qin, S.; Usman, K. A. S.; Hegh, D.; Seyedin, S.; Gogotsi, Y.; Zhang, J.; Razal, J. M. ACS Appl. Mater. Interfaces 2021, 13, 36655. doi: 10.1021/acsami.1c08985  doi: 10.1021/acsami.1c08985

    22. [22]

      Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J. M. Adv. Funct. Mater. 2020, 30, 1910504. doi: 10.1002/adfm.201910504  doi: 10.1002/adfm.201910504

    23. [23]

      Liu, R.; Li, J.; Li, M.; Zhang, Q.; Shi, G.; Li, Y.; Hou, C.; Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 46446. doi: 10.1021/acsami.0c11715  doi: 10.1021/acsami.0c11715

    24. [24]

      Eom, W.; Shin, H.; Ambade, R. B.; Lee, S. H.; Lee, K. H.; Kang, D. J.; Han, T. H. Nat. Commun. 2020, 11, 2825. doi: 10.1038/s41467-020-16671-1  doi: 10.1038/s41467-020-16671-1

    25. [25]

      Persson, I.; Halim, J.; Hansen, T. W.; Wagner, J. B.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persso, P. O. Å. Adv. Funct. Mater. 2020, 30, 1909005. doi: 10.1002/adfm.201909005  doi: 10.1002/adfm.201909005

    26. [26]

      Zheng, W.; Sun, Z.; Zhang, P.; Tian, W.; Wang, Y.; Zhang, Y. Materials Reports 2017, 31, 1.  doi: 10.11896/j.issn.1005-023X.2017.09.001

    27. [27]

      Naguib, M; Mashtalir, O; Carle, J; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2012, 6, 1322. doi: 10.1021/nn204153h  doi: 10.1021/nn204153h

    28. [28]

      Sang, X.; Xie, Y.; Lin, M.; Alhabeb, M.; Aken, K. L. V.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. ACS Nano 2016, 10, 9193. doi: 10.1021/acsnano.6b05240  doi: 10.1021/acsnano.6b05240

    29. [29]

      Pei, Y.; Zhang X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. ACS Nano 2021, 15, 3, 3996. doi: 10.1021/acsnano.1c00248  doi: 10.1021/acsnano.1c00248

    30. [30]

      Levitt, A. S.; Alhabeb, M.; Hatter C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. J. Mater. Chem. A 2019, 7, 269. doi: 10.1039/c8ta09810g  doi: 10.1039/c8ta09810g

    31. [31]

      Cao, J; Sun, Z; Li, J; Zhu, Y.; Yuan, Z.; Zhang, Y.; Li, D.; Wang, L.; Han, W. ACS Nano 2021, 15, 3423. doi: 10.1021/acsnano.0c10491  doi: 10.1021/acsnano.0c10491

    32. [32]

      Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.; Gogotsi, Y.; Barsoum, M. W. Nature 2014, 516, 78. doi: 10.1038/nature13970  doi: 10.1038/nature13970

    33. [33]

      Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Adv. Electron. Mater. 2016, 2, 1600255. doi: 10.1002/aelm.201600255  doi: 10.1002/aelm.201600255

    34. [34]

      Alhabeb, M; Maleski, K; Anasori, B; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Chem. Mater. 2017, 29, 7633. doi: 10.1021/acs.chemmater.7b02847  doi: 10.1021/acs.chemmater.7b02847

    35. [35]

      Kan, D. First principles study of MXene based bifunctional single atom electrocatalysts. Ph. D. Dissertation, Jilin University, Changchun, 2021

    36. [36]

      Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2015, 9, 9507. doi: 10.1021/acsnano.5b03591  doi: 10.1021/acsnano.5b03591

    37. [37]

      Yang, J.; Naguib, M.; Ghidiu, M.; Pan, L.; Gu, J.; Nanda, J.; Halim, J.; Gogotsi, Y.; Barsoum, M. W. J. Am. Ceram. Soc. 2016, 99, 660. doi: 10.1111/jace.13922  doi: 10.1111/jace.13922

    38. [38]

      Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W. Adv. Funct. Mater. 2016, 26, 3118. doi: 10.1002/adfm.201505328  doi: 10.1002/adfm.201505328

    39. [39]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138  doi: 10.1002/adma.201304138

    40. [40]

      Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P. L.; Zhao, M.; Shenoy, V. B.; Barsouma, M. W.; Gogotsi. Y. Nanoscale 2016, 8, 11385. doi: 10.1039/C6NR02253G  doi: 10.1039/C6NR02253G

    41. [41]

      Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. J. Am. Chem. Soc. 2019, 141, 4730. doi: 10.1021/jacs.9b00574  doi: 10.1021/jacs.9b00574

    42. [42]

      Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894. doi: 10.1038/s41563-020-0657-0  doi: 10.1038/s41563-020-0657-0

    43. [43]

      Li, X. Study on Environmental Instability of Two-dimensional Crystal MXene (Ti3C2Tx). Ph. D. Dissertation, Shandong University, Jinan, 2021

    44. [44]

      Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Angew. Chem. Int. Ed. 2018, 57, 6115. doi: 10.1002/anie.201800887  doi: 10.1002/anie.201800887

    45. [45]

      Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. Angew. Chem. Int. Ed. 2018, 57, 15491. doi: 10.1002/anie.201809662  doi: 10.1002/anie.201809662

    46. [46]

      Wang, C.; Shou, H.; Chen, S.; Wei, S.; Lin, Y.; Zhang, P.; Liu, Z.; Zhu, K.; Guo, X.; Wu, X.; et al. Adv. Mater. 2021, 33, 2101015. doi: 10.1002/adma.202101015  doi: 10.1002/adma.202101015

    47. [47]

      Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.; Cheng, H.; Ren, W. Nat. Mater. 2015, 14, 1135. doi: 10.1038/nmat4374  doi: 10.1038/nmat4374

    48. [48]

      Wang, Z.; Kochat, V.; Pandey, P.; Kashyap, S.; Chattopadhy, S.; Samanta, A.; Sarkar, S.; Manimunda, P.; Zhang, X.; Asif, S.; et al. Adv. Mater. 2017, 29, 1700364. doi: 10.1002/adma.201700364  doi: 10.1002/adma.201700364

    49. [49]

      Qi, Y.; Meng, C.; Xu, X.; Deng, B.; Han, N.; Liu, M.; Hong, M.; Ning, Y.; Liu, K.; Zhao, J.; et al. J. Am. Chem. Soc. 2017, 139, 48, 17574. doi: 10.1021/jacs.7b09755  doi: 10.1021/jacs.7b09755

    50. [50]

      Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W. MRS Commun. 2012, 2, 133. doi: 10.1557/mrc.2012.25  doi: 10.1557/mrc.2012.25

    51. [51]

      Borysiuk, V. N.; Mochalin, V. N.; Gogotsi, Y. Nanotechnology 2015, 26, 265705. doi: 10.1088/0957-4484/26/26/265705  doi: 10.1088/0957-4484/26/26/265705

    52. [52]

      Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Sci. Adv. 2018, 4, eaat0491. doi: 10.1126/sciadv.aat0491  doi: 10.1126/sciadv.aat0491

    53. [53]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98  doi: 10.1038/natrevmats.2016.98

    54. [54]

      Miranda, A.; Halim, J.; Barsoum, M. W.; Lorke. A. Appl. Phys. Lett. 2016, 108, 033102. doi: 10.1063/1.4939971  doi: 10.1063/1.4939971

    55. [55]

      Tang, Q.; Zhou, Z.; Shen, P. J. Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r  doi: 10.1021/ja308463r

    56. [56]

      Lai, S.; Jeon, J.; Jang, S.; Xu, J.; Choi, Y. J.; Park, J.; Hwang, E.; Lee, S. Nanoscale 2015, 7, 19390. doi: 10.1039/C5NR06513E  doi: 10.1039/C5NR06513E

    57. [57]

      Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q. Mater. Lett. 2015, 160, 537. doi: 10.1016/j.matlet.2015.08.046  doi: 10.1016/j.matlet.2015.08.046

    58. [58]

      Zeraati, A. S.; Mirkhani, S. A.; Sun, P.; Naguib, M.; Braun, P. V.; Sundararaj, U. Nanoscale 2021, 13, 3572. doi: 10.1039/d0nr06671k  doi: 10.1039/d0nr06671k

    59. [59]

      Xu, D.; Li, Z.; Li, L.; Wang, J. Adv. Funct. Mater. 2020, 30, 2000712. doi: 10.1002/adfm.202000712  doi: 10.1002/adfm.202000712

    60. [60]

      Berdiyorov, G. R. AIP Adv. 2016, 6, 055105. doi: 10.1063/1.4948799  doi: 10.1063/1.4948799

    61. [61]

      Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Angew. Chem. Int. Ed. 2016, 55, 14569. doi: 10.1002/anie.201606643  doi: 10.1002/anie.201606643

    62. [62]

      Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Am. Chem. Soc. 2011, 133, 6825. doi: 10.1021/ja2010175  doi: 10.1021/ja2010175

    63. [63]

      Hantanasirisakul, K.; Zhao, M.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Adv. Electron. Mater. 2016, 2, 1600050. doi: 10.1002/aelm.201600050  doi: 10.1002/aelm.201600050

    64. [64]

      Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Adv. Funct. Mater. 2016, 26, 4162. doi: 10.1002/adfm.201600357  doi: 10.1002/adfm.201600357

    65. [65]

      Natu, V.; Sokol, M.; Verger, L.; Barsoum, M. W. J. Phys. Chem. C 2018, 122, 27745. doi: 10.1021/acs.jpcc.8b08860  doi: 10.1021/acs.jpcc.8b08860

    66. [66]

      Naguib, M.; Mashtalir, O.; Lukatskaya, M.; Dyatkin, B.; Zhang, C.; Presser, V.; Gogotsi, Y.; Barsoum, M. W. Chem. Commun. 2014, 50, 7420. doi: 10.1039/c4cc01646g  doi: 10.1039/c4cc01646g

    67. [67]

      Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Chem. Mater. 2017, 29, 1632. doi: 10.1021/acs.chemmater.6b04830  doi: 10.1021/acs.chemmater.6b04830

    68. [68]

      Zhu, Y.; Pang, Z.; Ge M. New Chem. Mater. 2020, 48, 102.  doi: 10.19817/j.cnki.issn1006-3536.2020.01.023

    69. [69]

      Uzun, S.; Seyedin, S.; Stoltzfus, A. L.; Levitt, A. S.; Alhabeb, M.; Anayee, M.; Strobel, C. J.; Razal, J. M.; Dion, G.; Gogotsi, Y. Adv. Funct. Mater. 2019, 29, 1905015. doi: 10.1002/adfm.201905015  doi: 10.1002/adfm.201905015

    70. [70]

      Levitt, A.; Hegh, D.; Phillips, P.; Uzun, S.; Anayee, M.; Razal, J. M.; Gogotsi, Y.; Dion, G. Mater. Today 2020, 34, 17. doi: 10.1016/j.mattod.2020.02.005  doi: 10.1016/j.mattod.2020.02.005

    71. [71]

      Pu, J.; Zhao, X.; Zha, X.; Bai, L.; Ke, K.; Bao, R.; Liu, Z.; Yang, M.; Yang, W. J. Mater. Chem. A 2019, 7, 15913. doi: 10.1039/c9ta04352g  doi: 10.1039/c9ta04352g

    72. [72]

      Hu, M.; Li, Z.; Li, G.; Hu, T.; Zhang, C.; Wang, X. Adv. Mater. Technol. 2017, 2, 1700143. doi: 10.1002/admt.201700143  doi: 10.1002/admt.201700143

    73. [73]

      Shi, B.; Li, L.; Chen, A.; Liu, X.; Shen, G. Nano‑Micro Lett. 2022, 14, 34. doi: 10.1007/s40820-021-00757-6  doi: 10.1007/s40820-021-00757-6

    74. [74]

      Zhang, J.; Seyedin, S.; Gu, Z.; Yang, W.; Wang, X.; Razal, J. M. Nanoscale 2017, 9, 18604. doi: 10.1039/c7nr06619h  doi: 10.1039/c7nr06619h

    75. [75]

      Yuan, X.; Jiang, J.; Wei, H.; Yuan, C.; Wang, M.; Zhang, D.; Liu, L.; Huang, Y.; Gao, G.; Jiang, Z. Compos. Sci. Technol. 2021, 201, 108496. doi: 10.1016/j.compscitech.2020.108496  doi: 10.1016/j.compscitech.2020.108496

    76. [76]

      Ericson, L. M.; Fan, H.; Peng, H. Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y.; Booker, R.; Vavro, J.; Guthy, C.; et al. Science 2004, 305, 1447. doi: 10.1126/science.1101398  doi: 10.1126/science.1101398

    77. [77]

      Li, S.; Li, Y.; Shao, Y.; Wang, H. Adv. Fiber Mater. 2022, 4, 129. doi: 10.1007/s42765-021-00111-w  doi: 10.1007/s42765-021-00111-w

    78. [78]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    79. [79]

      Xia, Z.; Shao, Y. Acta Phys. -Chim. Sin. 2022, 38, 2103046.  doi: 10.3866/PKU.WHXB202103046

    80. [80]

      Seyedin, S.; Zhang, J.; Usman, K. A. S.; Qin, S.; Glushenkov, A. M.; Yanza, E. R. S.; Jones, R. T.; Razal, J. M. Global Challenges 2019, 3, 1900037. doi: 10.1002/gch2.201900037  doi: 10.1002/gch2.201900037

    81. [81]

      Cheng, B.; Wu, P. ACS Nano 2021, 15, 8676. doi: 10.1021/acsnano.1c00749  doi: 10.1021/acsnano.1c00749

    82. [82]

      Zhang, J.; Seyedin, S.; Qin, S.; Wang, Z.; Moradi, S.; Yang, F.; Lynch, P. A.; Yang, W.; Liu, J.; Wang, X.; Razal, J. M. Small 2019, 15, 1804732. doi: 10.1002/smll.201804732  doi: 10.1002/smll.201804732

    83. [83]

      Lee, S. H.; Eom, W.; Shin, H. Ambade, R. B.; Bang, J. H.; Kim, H. W.; Han, T. H. ACS Appl. Mater. Interfaces 2020, 12, 10434. doi: 10.1021/acsami.9b21765  doi: 10.1021/acsami.9b21765

    84. [84]

      Yang, Q.; Xu, Z.; Fang, B.; Huang, T.; Cai, S.; Chen, H.; Liu, Y.; Gopalsamy, K.; Gao, W.; Gao, C. J. Mater. Chem. A 2017, 5, 22113. doi: 10.1039/c7ta07999k  doi: 10.1039/c7ta07999k

    85. [85]

      Shin, H.; Eom, W.; Lee, K. H.; Jeong, W.; Kang, D. J.; Han, T. H. ACS Nano 2021, 15, 3320. doi: 10.1021/acsnano.0c10255  doi: 10.1021/acsnano.0c10255

    86. [86]

      Zhang, J.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W.; et al. ACS Cent. Sci. 2020, 6, 254. doi: 10.1021/acscentsci.9b01217  doi: 10.1021/acscentsci.9b01217

    87. [87]

      Hwang H.; Byun, S.; Yuk, S.; Kim, S.; Song, S. H.; Lee, D. Appl. Surf. Sci. 2021, 556, 149710. doi: 10.1016/j.apsusc.2021.149710  doi: 10.1016/j.apsusc.2021.149710

    88. [88]

      Seo, D.; Kim, M.; Song, J. K.; Kim, E.; Koo, J.; Kim, K. C.; Han, H.; Lee, Y.; Ahn, C. W. ChemElectroChem 2022, 9, e202101344. doi: 10.1002/celc.202101344  doi: 10.1002/celc.202101344

    89. [89]

      Mayerberger, E. A.; Urbanek, O.; McDaniel, R. M.; Street, R. M.; Barsoum, M. W.; Schauer, C. L. J. Appl. Polym. Sci. 2017, 134, 45295. doi: 10.1002/APP.45295  doi: 10.1002/APP.45295

    90. [90]

      Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Nano-Micro Lett. 2021, 13, 57. doi: 10.1007/s40820-020-00580-5  doi: 10.1007/s40820-020-00580-5

    91. [91]

      Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. Nanoscale 2019, 11, 9949. doi: 10.1039/c9nr00488b  doi: 10.1039/c9nr00488b

    92. [92]

      Jia, Z.; Li, Z.; Ma, S.; Zhang, W.; Chen, Y.; Luo, Y.; Jia, D.; Zhong, B.; Razal, J. M.; Wang, X.; et al. J. Colloid Interface Sci. 2021, 584, 1. doi: 10.1016/j.jcis.2020.09.035  doi: 10.1016/j.jcis.2020.09.035

    93. [93]

      Levitt, A.; Seyedin, S.; Zhang, J.; Wang, X.; Razal, J. M.; Dion, G.; Gogotsi, Y. Small 2020, 16, 2002158. doi: 10.1002/smll.202002158  doi: 10.1002/smll.202002158

    94. [94]

      Xin, M.; Li, J.; Ma, Z.; Pan, L.; Shi, Y. Front. Chem. 2020, 8, 297. doi: 10.3389/fchem.2020.00297  doi: 10.3389/fchem.2020.00297

    95. [95]

      Lan, L.; Jiang, C.; Yao, Y.; Ping, J.; Ying, Y. Nano Energy 2021, 84, 105954. doi: 10.1016/j.nanoen.2021.105954  doi: 10.1016/j.nanoen.2021.105954

    96. [96]

      Wu, G.; Yang, Z.; Zhang, Z.; Ji, B.; Hou, C.; Li, Y.; Jia, W.; Zhang, Q.; Wang, H. Electrochim. Acta 2021, 395, 139141. doi: 10.1016/j.electacta.2021.139141  doi: 10.1016/j.electacta.2021.139141

    97. [97]

      Deng, C.; Zhao, S.; Su, E.; Li, Y.; Wu, F. Adv. Mater. Technol. 2021, 6, 2100574. doi: 10.1002/admt.202100574  doi: 10.1002/admt.202100574

    98. [98]

      Salauddin, M.; Rana, S. M. S.; Rahman, M. T.; Sharifuzzaman, M.; Maharjan, P.; Bhatta, T.; Cho, H.; Lee, S. H.; Park, C.; Shrestha, K.; et al. Adv. Funct. Mater. 2022, 32, 2107143. doi: 10.1002/adfm.202107143  doi: 10.1002/adfm.202107143

    99. [99]

      Ghosh, R.; Singh, A.; Santra, S.; Ray, S. K.; Chandra, A.; Guha, P. K. Sensors Actuat. B Chem. 2014, 205, 67. doi: 10.1016/j.snb.2014.08.044  doi: 10.1016/j.snb.2014.08.044

    100. [100]

      Tang, Y.; Xu, Y.; Yang, J.; Song, Y.; Yin, F.; Yuan, W. Sens. Actuators B-Chem. 2021, 346, 130500. doi: 10.1016/j.snb.2021.130500  doi: 10.1016/j.snb.2021.130500

    101. [101]

      Römer, F. M.; Wiedwald, U.; Strusch, T.; Halim, J.; Mayerberger, E.; Barsoumb, M. W.; Farle, M. RSC Adv. 2017, 7, 13097. doi: 10.1039/C6RA27505B  doi: 10.1039/C6RA27505B

    102. [102]

      Wang, L.; Tian, M.; Zhang, Y.; Sun, F.; Qi, X.; Liu, Y.; Qu, L. J. Mater. Sci. 2020, 55, 6187. doi: 10.1007/s10853-020-04425-9  doi: 10.1007/s10853-020-04425-9

    103. [103]

      Ma, X.; Jiang, Z.; Lin, Y. J. Semicond. 2021, 42, 101602. doi: 10.1088/1674-4926/42/10/101602  doi: 10.1088/1674-4926/42/10/101602

    104. [104]

      Wang, Y.; Zheng, Y.; Zhao, J.; Li, Y. Energy Storage Mater. 2020, 33, 82. doi: 10.1016/j.ensm.2020.06.018  doi: 10.1016/j.ensm.2020.06.018

    105. [105]

      Li, H.; Shao, F.; Wen, X.; Ding, Y.; Zhou, C.; Zhang, Y.; Wei, H.; Hu, N. Electrochim. Acta 2021, 371, 137838. doi: 10.1016/j.electacta.2021.137838  doi: 10.1016/j.electacta.2021.137838

    106. [106]

      Wu, G.; Sun, S.; Zhu, X.; Ma, Z.; Zhang, Y.; Bao, N. Angew. Chem. Int. Ed. 2021, 61, e202115559. doi: 10.1002/anie.202115559  doi: 10.1002/anie.202115559

    107. [107]

      Seyedin, S.; Yanza, E. R. S.; Razal, J. M. J. Mater. Chem. A 2017, 5, 24076. doi: 10.1039/c7ta08355f  doi: 10.1039/c7ta08355f

    108. [108]

      Guo, Z.; Li, Y.; Zhang, R.; Lu, Z. J. Textile Res. 2022, 43, 74.  doi: 10.13475/j.fzxb.20211102607

    109. [109]

      Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Science 2016, 353, 1137. doi: 10.1126/science.aag2421  doi: 10.1126/science.aag2421

    110. [110]

      Han, M.; Yin, X.; Hantanasirisakul, K.; Li, X.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y.; et al. Adv. Opt. Mater. 2019, 7, 1900267. doi: 10.1002/adom.201900267  doi: 10.1002/adom.201900267

    111. [111]

      Wang, Q.; Zhang, H.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z. Adv. Funct. Mater. 2019, 29, 1806819. doi: 10.1002/adfm.201806819  doi: 10.1002/adfm.201806819

    112. [112]

      Liu, L.; Chen, W.; Zhang, H.; Wang, Q.; Guan, F.; Yu, Z. Adv. Funct. Mater. 2019, 29, 1905197. doi: 10.1002/adfm.201905197  doi: 10.1002/adfm.201905197

    113. [113]

      Zheng, Y.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D.; Shi, X.; Zhang, B.; Liu, C.; Shen, C. Chem. Eng. J. 2021, 420, 127720. doi: 10.1016/j.cej.2020.127720  doi: 10.1016/j.cej.2020.127720

    114. [114]

      Zheng, X.; Shen, J.; Hu, Q.; Nie, W.; Wang, Z.; Zhou, L.; Li, C. Nanoscale 2021, 13, 1832. doi: 10.1039/d0nr07433k  doi: 10.1039/d0nr07433k

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    4. [4]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    5. [5]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    12. [12]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

Metrics
  • PDF Downloads(50)
  • Abstract views(1246)
  • HTML views(309)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return