Citation: Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 220304. doi: 10.3866/PKU.WHXB202203048 shu

Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure

  • Corresponding author: Hyesung Park, hspark@unist.ac.kr Fuzhi Huang, fuzhi.huang@whut.edu.cn
  • Received Date: 28 March 2022
    Revised Date: 22 April 2022
    Accepted Date: 25 April 2022
    Available Online: 29 April 2022

    Fund Project: the National Key Research and Development Plan 2019YFE0107200the National Key Research and Development Plan 2017YFE0131900the National Natural Science Foundation of China 21875178the National Natural Science Foundation of China 52172230the National Natural Science Foundation of China 91963209the Fundamental Research Funds for the Central Universities 202443004Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory XDT2020-001Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory XHT2020-005

  • Solar cells, which are excellent alternatives to traditional fossil fuels, can efficiently convert sunlight into electricity. The intensive development of high-performance photovoltaic materials plays an important role in environmental protection and the utilization of renewable energy. Organic–inorganic hybrid perovskite materials, with a formula of ABX3 (A = methylammonium (MA) or formamidinium (FA); B = Pb or Sn; X = Cl, I, or Br), have exhibited remarkable commercial prospects in high-performance photovoltaic devices owing to their long carrier diffusion length, excellent light absorption properties, high charge carrier mobility, and weak exciton binding energy. Recently, perovskite solar cells, fabricated using halide perovskite materials as light-absorbing layers, have achieved remarkable results; their certified power conversion efficiency has continuously improved and reached 25.7%. However, high-performance devices are usually fabricated using spin-coating methods with active areas below 0.1 cm2. Hence, long-term research goals include achieving a large-scale uniform preparation of high-quality photoactive layers. The current one-step preparation of perovskite films involves the nucleation-crystalline growth process of perovskite. Auxiliary processes, such as using an anti-solvent, are often required to increase the nucleation rate and density of the film, which is not suitable for industrial large-area preparation. Additionally, the large-area preparation of perovskite films by spin-coating will result in different film thicknesses in the center and edge regions of the film due to an uneven centrifugal force. This will cause intense carrier recombination in the thicker area of the film and weak light absorption in the thinner area, which will reduce the performance of the device. To address these problems, the development of a large-area fabrication method for high-performance perovskite light-absorbing layers is essential. In this study, a two-step sequential blade-coating strategy was developed to prepare the FA-based perovskite layer. In general, PbI2 easily forms a dense film; therefore, formamidinium iodide (FAI) cannot deeply penetrate to completely react with PbI2. The PbI2 residue is therefore detrimental to charge transportation. To fabricate the desired porous PbI2 film, tetrahydrothiophene 1-oxide (THTO) was introduced into the PbI2 precursor solution. By forming PbI2·THTO complexes, PbI2 crystallization is controlled, resulting in the formation of vertically packed PbI2 flaky crystals. These crystals provide nanochannels for easy FAI penetration. The 5 cm × 5 cm modules fabricated through this strategy achieved a high efficiency of 18.65% with excellent stability. This indicates that the two-step sequential blade-coating strategy has considerable potential for scaling up the production of perovskite solar cells.
  • 加载中
    1. [1]

      Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281  doi: 10.1002/adma.201306281

    2. [2]

      Cheng, Y. B.; Pascoe, A.; Huang, F. Z.; Peng, Y. Nature 2016, 539, 488. doi: 10.1038/539488a  doi: 10.1038/539488a

    3. [3]

      Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; et al. Science 2016, 354, 206. doi: 10.1126/science.aah5557  doi: 10.1126/science.aah5557

    4. [4]

      Bu, T. L.; Li, J.; Li, H.Y.; Tian, C. C.; Su, J.; Tong, G.; Ono Luis, K.; Wang, C.; Lin, Z. P.; Chai, N. Y.; et al. Science 2021, 372, 1327. doi: 10.1126/science.abh1035  doi: 10.1126/science.abh1035

    5. [5]

      Mo, Y. P.; Wang, C.; Zheng, X. T.; Zhou, P.; Li, J.; Yu, X. X.; Yang, K. Z.; Deng, X.Y.; Park, H.; Huang, F. Z.; et al. Interdiscip. Mater. 2022, (in press). doi: 10.1002/idm2.12022  doi: 10.1002/idm2.12022

    6. [6]

      Yin, Y., Guo Z. D., Chen, G. Y, Zhang, H. F., Yin, W. J. Acta Phys. -Chim Sin. 2021, 37, 2008048.  doi: 10.3866/PKU.WHXB202008048

    7. [7]

      Ji, J, Liu, X., Huang, H., Jiang, H. R., Duan, M. J., Liu, B. Y., Cui, P., Li, Y. F., Li, M. C. Acta Phys. -Chim Sin. 2021, 37, 2008095.  doi: 10.3866/PKU.WHXB202008095

    8. [8]

      Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; et al. Nature 2021, 598, 444. doi: 10.1038/s41586-021-03964-8  doi: 10.1038/s41586-021-03964-8

    9. [9]

      Kanda, H.; Dan Mihailetchi, V.; Gueunier-Farret, M. -E.; Kleider, J. -P.; Djebbour, Z.; Alvarez, J.; Philippe, B.; Isabella, O.; Vogt, M. R.; Santbergen, R.; et al. Interdiscip. Mater. 2022, 1, 148. doi: 10.1002/idm2.12006  doi: 10.1002/idm2.12006

    10. [10]

      Huang, F. Z.; Dkhissi, Y.; Huang, W. C.; Xiao, M. D.; Benesperi, I.; Rubanov, S.; Zhu, Y.; Lin, X. F.; Jiang, L. C.; Zhou, Y. C.; et al. Nano Energy 2014, 10, 10. doi: 10.1016/j.nanoen.2014.08.015  doi: 10.1016/j.nanoen.2014.08.015

    11. [11]

      Zhang, M.; Yun, J. S.; Ma, Q. S.; Zheng, J. H.; Lau, C. F. J.; Deng, X. F.; Kim, J.; Kim, D.; Seidel, J.; Green, M. A.; et al. ACS Energy Lett. 2017, 2, 438. doi: 10.1021/acsenergylett.6b00697  doi: 10.1021/acsenergylett.6b00697

    12. [12]

      Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Adv. Funct. Mater. 2014, 24, 3250. doi: 10.1002/adfm.201304022  doi: 10.1002/adfm.201304022

    13. [13]

      Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Science 2018, 361, eaat8235. doi: 10.1126/science.aat8235  doi: 10.1126/science.aat8235

    14. [14]

      Swartwout, R.; Hoerantner, M. T.; Bulović, V. Energy Environ. Mater. 2019, 2, 119. doi: 10.1002/eem2.12043  doi: 10.1002/eem2.12043

    15. [15]

      Rong, Y.; Ming, Y.; Ji, W.; Li, D.; Mei, A.; Hu, Y.; Han, H. J. Phys. Chem. Lett. 2018, 9, 2707. doi: 10.1021/acs.jpclett.8b00912  doi: 10.1021/acs.jpclett.8b00912

    16. [16]

      Xiao, Y.; Zuo, C.; Zhong, J. X.; Wu, W. Q.; Shen, L.; Ding, L. Adv. Energy Mater. 2021, 11, 2100378. doi: 10.1002/aenm.202100378  doi: 10.1002/aenm.202100378

    17. [17]

      Zhang, L.; Lin, B.; Hu, B.; Xu, X.; Ma, W. Adv. Mater. 2018, 30, e1800343. doi: 10.1002/adma.201800343  doi: 10.1002/adma.201800343

    18. [18]

      Guo, F.; He, W.; Qiu, S.; Wang, C.; Liu, X.; Forberich, K.; Brabec, C. J.; Mai, Y. Adv. Funct. Mater. 2019, 29, 1900964. doi: 10.1002/adfm.201900964  doi: 10.1002/adfm.201900964

    19. [19]

      He, M.; Li, B.; Cui, X.; Jiang, B.; He, Y.; Chen, Y.; O'Neil, D.; Szymanski, P.; Ei-Sayed, M. A.; Huang, J.; et al. Nat. Commun. 2017, 8, 16045. doi: 10.1038/ncomms16045  doi: 10.1038/ncomms16045

    20. [20]

      Hu, H. L.; Ren, Z. W.; Fong, P. W. K.; Qin, M. C.; Liu, D. J.; Lei, D. Y.; Lu, X. H.; Li, G. Adv. Funct. Mater. 2019, 29, 1900092. doi: 10.1002/adfm.201900092  doi: 10.1002/adfm.201900092

    21. [21]

      Jeong, D. -N.; Lee, D. -K.; Seo, S.; Lim, S. Y.; Zhang, Y.; Shin, H.; Cheong, H.; Park, N. -G. ACS Energy Lett. 2019, 4, 1189. doi: 10.1021/acsenergylett.9b00042  doi: 10.1021/acsenergylett.9b00042

    22. [22]

      Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.; Berry, J. J.; van Hest, M. F. A. M.; et al. Nat. Energy 2017, 2, 17038. doi: 10.1038/nenergy.2017.38  doi: 10.1038/nenergy.2017.38

    23. [23]

      Zheng, X.; Deng, Y.; Chen, B.; Wei, H.; Xiao, X.; Fang, Y.; Lin, Y.; Yu, Z.; Liu, Y.; Wang, Q.; et al. Adv. Mater. 2018, 30, e1803428. doi: 10.1002/adma.201803428  doi: 10.1002/adma.201803428

    24. [24]

      Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Nat. Energy 2018, 3, 560. doi: 10.1038/s41560-018-0153-9  doi: 10.1038/s41560-018-0153-9

    25. [25]

      Tait, J. G.; Merckx, T.; Li, W.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Adv. Funct. Mater. 2015, 25, 3393. doi: 10.1002/adfm.201501039  doi: 10.1002/adfm.201501039

    26. [26]

      Deng, Y. H.; Peng, E.; Shao, Y. C.; Xiao, Z. G.; Dong, Q. F.; Huang, J. S. Energy Environ. Sci. 2015, 8, 1544. doi: 10.1039/c4ee03907f  doi: 10.1039/c4ee03907f

    27. [27]

      Deng, Y. H.; Van Brackle, C. H.; Dai, X. Z.; Zhao, J. J.; Chen, B.; Huang, J. S. Sci. Adv. 2019, 5, eaax7537. doi: 10.1126/sciadv.aax7537  doi: 10.1126/sciadv.aax7537

    28. [28]

      Lu, Y., Ge Y., Sui, M. L. Acta Phys. -Chim. Sin. 2022, 38, 2007088.  doi: 10.3866/PKU.WHXB202007088

    29. [29]

      Min, H.; Kim, M.; Lee, S. -U.; Kim, H.; Kim, G.; Choi, K.; Lee Jun, H.; Seok Sang, I. Science 2019, 366, 749. doi: 10.1126/science.aay7044  doi: 10.1126/science.aay7044

    30. [30]

      Kim, M.; Kim, G. -H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D.; et al. Joule 2019, 3, 2179. doi: 10.1016/j.joule.2019.06.014  doi: 10.1016/j.joule.2019.06.014

    31. [31]

      Wang, M. H.; Tan, S. U.; Zhao, Y. P.; Zhu, P. C.; Yin, Y. F.; Feng, Y. L.; Huang, T. Y.; Xue, J. J.; Wang, R.; Han, G. S.; et al. Adv. Funct. Mater. 2020, 31, 2007520. doi: 10.1002/adfm.202007520  doi: 10.1002/adfm.202007520

    32. [32]

      Nan, Z. A.; Chen, L.; Liu, Q.; Wang, S. H.; Chen, Z. X.; Kang, S. Y.; Ji, J. B.; Tan, Y. Y.; Hui, Y.; Yan, J. W.; et al. Chem 2021, 7, 2513. doi: 10.1016/j.chempr.2021.07.011  doi: 10.1016/j.chempr.2021.07.011

    33. [33]

      Doherty, T. A. S.; Nagane, S.; Kubicki, D. J.; Jung, Y. -K.; Johnstone, D. N.; Iqbal, A. N.; Guo, D. Y.; Frohna, K.; Danaie, M.; Tennyson, E. M.; et al. Science 2021, 374, 1598. doi: 10.1126/science.abl4890  doi: 10.1126/science.abl4890

    34. [34]

      Yang, F.; Dong, L. R.; Jang, D. J.; Tam, K. C.; Zhang, K. C.; Li, N.; Guo, F.; Li, C.; Arrive, C.; Bertrand, M.; et al. Adv. Energy Mater. 2020, 10, 2001869. doi: 10.1002/aenm.202001869  doi: 10.1002/aenm.202001869

    35. [35]

      Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M. J.; Berry, J. J.; van Hest, M. F. A. M.; Zhu, K. Nat. Rev. Mater. 2018, 3, 18017. doi: 10.1038/natrevmats.2018.17  doi: 10.1038/natrevmats.2018.17

    36. [36]

      Chen, H. N. Adv. Funct. Mater. 2017, 27, 1605654. doi: 10.1002/adfm.201605654  doi: 10.1002/adfm.201605654

    37. [37]

      Zhang, W. H.; Xiong, J.; Jiang, L.; Wang, J. Y.; Mei, T.; Wang, X. B.; Gu, H. S.; Daoud, W. A.; Li, J. H. ACS Appl. Mater. Interfaces 2017, 9, 38467. doi: 10.1021/acsami.7b10994  doi: 10.1021/acsami.7b10994

    38. [38]

      Zhang, H.; Mao, J.; He, H. X.; Zhang, D.; Zhu, H. L.; Xie, F. X.; Wong, K. S.; Gratzel, M.; Choy, W. C. H. Adv. Energy Mater. 2015, 5, 1501354. doi: 10.1002/aenm.201501354  doi: 10.1002/aenm.201501354

    39. [39]

      Hui, W.; Chao, L. F.; Lu, H.; Xia, F.; Wei, Q.; Su, Z. H.; Niu, T. T.; Tao, L.; Du, B.; Li, D.; et al. Science 2021, 371, 1359. doi: 10.1126/science.abf7652  doi: 10.1126/science.abf7652

    40. [40]

      Zhang, J. W.; Bu, T. L.; Li, J.; Li, H. Y.; Mo, Y. P.; Wu, Z. L.; Liu, Y. F.; Zhang, X. L.; Cheng, Y. B.; Huang, F. Z. J. Mater. Chem. A 2020, 8, 8447. doi: 10.1039/d0ta02043e  doi: 10.1039/d0ta02043e

    41. [41]

      Foley, B. J.; Girard, J.; Sorenson, B. A.; Chen, A. Z.; Scott Niezgoda, J.; Alpert, M. R.; Harper, A. F.; Smilgies, D. -M.; Clancy, P.; Saidi, W. A.; et al. J. Mater. Chem. A 2017, 5, 113. doi: 10.1039/c6ta07671h  doi: 10.1039/c6ta07671h

    42. [42]

      Wang, S. B.; Chen, Y. Q.; Li, R. Y.; Xu, Y. B.; Feng, J. S.; Yang, D.; Yuan, N. Y.; Zhang, W. H.; Liu, S. F.; Ding, J. N. Adv. Sci. 2020, 7, 1903009. doi: 10.1002/advs.201903009  doi: 10.1002/advs.201903009

    43. [43]

      Ye, F. H.; Ma, J. J.; Chen, C.; Wang, H. B.; Xu, Y. H.; Zhang, S. P.; Wang, T.; Tao, C.; Fang, G. J. Adv. Mater. 2021, 33, e2007126. doi: 10.1002/adma.202007126  doi: 10.1002/adma.202007126

    44. [44]

      Jiang, Q.; Chu, Z.; Wang, P. Y.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Adv. Mater. 2017, 29, 1703852. doi: 10.1002/adma.201703852  doi: 10.1002/adma.201703852

    45. [45]

      Tumen-Ulzii, G.; Qin, C.; Klotz, D.; Leyden, M. R.; Wang, P.; Auffray, M.; Fujihara, T.; Matsushima, T.; Lee, J. -W.; Lee, S. -J.; et al. Adv. Mater. 2020, 32, 1905035. doi: 10.1002/adma.201905035  doi: 10.1002/adma.201905035

    46. [46]

      Liu, F. Z.; Dong, Q.; Wong, M. K.; Djurišić, A. B.; Ng, A.; Ren, Z. W.; Shen, Q.; Surya, C.; Chan, W. K.; Wang, J.; et al. Adv. Energy Mater. 2016, 6, 1502206. doi: 10.1002/aenm.201502206  doi: 10.1002/aenm.201502206

    47. [47]

      Bu, T. L.; Li, J.; Huang, W. C.; Mao, W. X.; Zheng, F.; Bi, P. Q.; Hao, X. T.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. J. Mater. Chem. A 2019, 7, 6793. doi: 10.1039/c8ta12284a  doi: 10.1039/c8ta12284a

  • 加载中
    1. [1]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    2. [2]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    3. [3]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    4. [4]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    5. [5]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    6. [6]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    7. [7]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    8. [8]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    9. [9]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    10. [10]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    11. [11]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    12. [12]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    13. [13]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    14. [14]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    15. [15]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    16. [16]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    17. [17]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    18. [18]

      Bo YuPengchen DuJianwen GuoHanshen XinJianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321

    19. [19]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    20. [20]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

Metrics
  • PDF Downloads(14)
  • Abstract views(894)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return