Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells
- Corresponding author: Zheng Tang, ztang@dhu.edu.cn Erjun Zhou, zhouej@nanoctr.cn Weiwei Li, liweiwei@iccas.ac.cn Zaifei Ma, mazaifei@dhu.edu.cn
Citation: Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220103. doi: 10.3866/PKU.WHXB202201039
Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270 (5243), 1789. doi: 10.1126/science.270.5243.1789
doi: 10.1126/science.270.5243.1789
Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Mater. Today 2012, 15 (1), 36. doi: 10.1016/S1369-7021(12)70019-6
doi: 10.1016/S1369-7021(12)70019-6
Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93 (4), 394. doi: 10.1016/j.solmat.2008.10.004
doi: 10.1016/j.solmat.2008.10.004
Yang, M.; Wei, W.; Zhou, X.; Wang, Z.; Duan, C. Energy Mater. 2021, 1 (1), 100008. doi: 10.20517/energymater.2021.08
doi: 10.20517/energymater.2021.08
Duan, C.; Ding, L. Sci. Bull. 2020, 65 (15), 1231. doi: 10.1016/j.scib.2020.04.030
doi: 10.1016/j.scib.2020.04.030
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; et al. Nat. Energy 2021, 6 (6), 605. doi: 10.1038/s41560-021-00820-x
doi: 10.1038/s41560-021-00820-x
Song, J.; Zhu, L.; Li, C.; Xu, J.; Wu, H.; Zhang, X.; Zhang, Y.; Tang, Z.; Liu, F.; Sun, Y. Matter 2021, 4 (7), 2542. doi: 10.1016/j.matt.2021.06.010
doi: 10.1016/j.matt.2021.06.010
Liu, Y.; Li, B.; Ma, C. -Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; et al. Sci. Chin. Chem. 2021, 64 (1), 1869. doi: 10.1007/s11426-021-1180-6
doi: 10.1007/s11426-021-1180-6
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139 (21), 7148. doi: 10.1021/jacs.7b02677
doi: 10.1021/jacs.7b02677
Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28 (42), 9423. doi: 10.1002/adma.201602776
doi: 10.1002/adma.201602776
Zhang, M.; Xu, X.; Yu, L.; Peng, Q. J. Power Sources 2021, 499, 229961. doi: 10.1016/j.jpowsour.2021.229961
doi: 10.1016/j.jpowsour.2021.229961
Huo, Y.; Gong, X. -T.; Lau, T. -K.; Xiao, T.; Yan, C.; Lu, X.; Lu, G.; Zhan, X.; Zhang, H. -L. Chem. Mater. 2018, 30 (23), 8661. doi: 10.1021/acs.chemmater.8b03980
doi: 10.1021/acs.chemmater.8b03980
Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28 (23), 4734. doi: 10.1002/adma.201600281
doi: 10.1002/adma.201600281
Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. Mater. Today 2020, 35 (1), 115. doi: 10.1016/j.mattod.2019.10.023
doi: 10.1016/j.mattod.2019.10.023
Po, R.; Bianchi, G.; Carbonera, C.; Pellegrino, A. Macromolecules 2015, 48 (3), 453. doi: 10.1021/ma501894w
doi: 10.1021/ma501894w
Li, X.; Pan, F.; Sun, C.; Zhang, M.; Wang, Z.; Du, J.; Wang, J.; Xiao, M.; Xue, L.; Zhang, Z. -G.; et al. Nat. Commun. 2019, 10 (1), 519. doi: 10.1038/s41467-019-08508-3
doi: 10.1038/s41467-019-08508-3
Yuan, X.; Zhao, Y.; Zhan, T.; Oh, J.; Zhou, J.; Li, J.; Wang, X.; Wang, Z.; Pang, S.; Cai, P.; et al. Energy Environ. Sci. 2021, 14 (10), 5530. doi: 10.1039/D1EE01957K
doi: 10.1039/D1EE01957K
Pang, S.; Wang, Z.; Yuan, X.; Pan, L.; Deng, W.; Tang, H.; Wu, H.; Chen, S.; Duan, C.; Huang, F.; et al. Angew. Chem. Int. Ed. 2021, 60 (16), 8813. doi: 10.1002/anie.202016265
doi: 10.1002/anie.202016265
Jia, X.; Liu, G.; Chen, S.; Li, Z.; Wang, Z.; Yin, Q.; Yip, H. -L.; Yang, C.; Duan, C.; Huang, F.; et al. ACS Appl. Energy Mater. 2019, 2 (10), 7572. doi: 10.1021/acsaem.9b01532
doi: 10.1021/acsaem.9b01532
Jia, X.; Chen, Z.; Duan, C.; Wang, Z.; Yin, Q.; Huang, F.; Cao, Y. J. Mater. Chem. C 2019, 7 (2), 314. doi: 10.1039/C8TC04746D
doi: 10.1039/C8TC04746D
Po, R.; Bernardi, A.; Calabrese, A.; Carbonera, C.; Corso, G.; Pellegrino, A. Energy Environ. Sci. 2014, 7 (3), 925. doi: 10.1039/C3EE43460E
doi: 10.1039/C3EE43460E
Wadsworth, A.; Hamid, Z.; Bidwell, M.; Ashraf, R. S.; Khan, J. I.; Anjum, D. H.; Cendra, C.; Yan, J.; Rezasoltani, E.; Guilbert, A. A. Y.; et al. Adv. Energy Mater. 2018, 8 (28), 1801001. doi: 10.1002/aenm.201801001
doi: 10.1002/aenm.201801001
Xu, X.; Zhang, G.; Yu, L.; Li, R.; Peng, Q. Adv. Mater. 2019, 31 (52), 1906045. doi: 10.1002/adma.201906045
doi: 10.1002/adma.201906045
Vincent, P.; Shin, S. -C.; Goo, J. S.; You, Y. -J.; Cho, B.; Lee, S.; Lee, D. -W.; Kwon, S. R.; Chung, K. -B.; Lee, J. -J.; et al. Dyes. Pigm. 2018, 159, 306. doi: 10.1016/j.dyepig.2018.06.025
doi: 10.1016/j.dyepig.2018.06.025
Ansari, M. A.; Mohiuddin, S.; Kandemirli, F.; Malik, M. I. RSC Adv. 2018, 8 (15), 8319. doi: 10.1039/C8RA00555A
doi: 10.1039/C8RA00555A
Xiao, B.; Tang, A.; Yang, J.; Wei, Z.; Zhou, E. ACS Macro Lett. 2017, 6 (4), 410. doi: 10.1021/acsmacrolett.7b00097
doi: 10.1021/acsmacrolett.7b00097
He, Y.; Chen, H. -Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132 (4), 1377. doi: 10.1021/ja908602j
doi: 10.1021/ja908602j
Veldman, D.; Meskers, S. C. J.; Janssen, R. A. J. Adv. Funct. Mater. 2009, 19 (12), 1939. doi: 10.1002/adfm.200900090
doi: 10.1002/adfm.200900090
Zakhidov, E.; Imomov, M.; Quvondikov, V.; Nematov, S.; Tajibaev, I.; Saparbaev, A.; Ismail, I.; Shahid, B.; Yang, R. Appl. Phys. A 2019, 125 (11), 803. doi: 10.1007/s00339-019-3100-0
doi: 10.1007/s00339-019-3100-0
Qin, Y.; Uddin, M. A.; Chen, Y.; Jang, B.; Zhao, K.; Zheng, Z.; Yu, R.; Shin, T. J.; Woo, H. Y.; Hou, J. Adv. Mater. 2016, 28 (42), 9416. doi: 10.1002/adma.201601803
doi: 10.1002/adma.201601803
Yang, C.; Zhang, S.; Ren, J.; Gao, M.; Bi, P.; Ye, L.; Hou, J. Energy Environ. Sci. 2020, 13 (9), 2864. doi: 10.1039/D0EE01763A
doi: 10.1039/D0EE01763A
Eisner, F.; Foot, G.; Yan, J.; Azzouzi, M.; Georgiadou, D. G.; Sit, W. Y.; Firdaus, Y.; Zhang, G.; Lin, Y. -H.; Yip, H. -L.; et al. Adv. Mater. 2021, 5, 2104654. doi: 10.1002/adma.202104654
doi: 10.1002/adma.202104654
Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Nat. Mater. 2017, 16 (3), 363. doi: 10.1038/nmat4797
doi: 10.1038/nmat4797
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. Sci. Bull. 2020, 65 (4), 272. doi: 10.1016/j.scib.2020.01.001
doi: 10.1016/j.scib.2020.01.001
Kamm, V.; Battagliarin, G.; Howard, I. A.; Pisula, W.; Mavrinskiy, A.; Li, C.; Müllen, K.; Laquai, F. Adv. Energy Mater. 2011, 1 (2), 297. doi: 10.1002/aenm.201000006
doi: 10.1002/aenm.201000006
Zalar, P.; Kuik, M.; Ran, N. A.; Love, J. A.; Nguyen, T. -Q. Adv. Energy Mater. 2014, 4 (14), 1400438. doi: 10.1002/aenm.201400438
doi: 10.1002/aenm.201400438
Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Phys. Rev. B 2010, 81 (12), 125204. doi: 10.1103/PhysRevB.81.125204
doi: 10.1103/PhysRevB.81.125204
Vandewal, K.; Benduhn, J.; Nikolis, V. C. Sustain. Energy Fuels 2018, 2 (3), 538. doi: 10.1039/C7SE00601B
doi: 10.1039/C7SE00601B
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. -L.; Lau, T. -K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3 (4), 1140. doi: 10.1016/j.joule.2019.01.004
doi: 10.1016/j.joule.2019.01.004
Pan, M. -A.; Lau, T. -K.; Tang, Y.; Wu, Y. -C.; Liu, T.; Li, K.; Chen, M. -C.; Lu, X.; Ma, W.; Zhan, C. J. Mater. Chem. A 2019, 7 (36), 20713. doi: 10.1039/C9TA06929A
doi: 10.1039/C9TA06929A
Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15 (10), 1617. doi: 10.1002/adfm.200500211
doi: 10.1002/adfm.200500211
Pettersson, L. A. A.; Roman, L. S.; Inganäs, O. J. Appl. Phys. 1999, 86 (1), 487. doi: 10.1063/1.370757
doi: 10.1063/1.370757
Burkhard, G. F.; Hoke, E. T.; Scully, S. R.; McGehee, M. D. Nano Lett. 2009, 9 (12), 4037. doi: 10.1021/nl902205n
doi: 10.1021/nl902205n
Ghosekar, I. C.; Patil, G. C. Semicond. Sci. Technol. 2021, 36 (4), 045005. doi: 10.1088/1361-6641/abe21b
doi: 10.1088/1361-6641/abe21b
Lenes, M.; Morana, M.; Brabec, C. J.; Blom, P. W. M. Adv. Funct. Mater. 2009, 19 (7), 1106. doi: 10.1002/adfm.200801514
doi: 10.1002/adfm.200801514
Wang, Y.; Qian, D.; Cui, Y.; Zhang, H.; Hou, J.; Vandewal, K.; Kirchartz, T.; Gao, F. Adv. Energy Mater. 2018, 8 (28), 1801352. doi: 10.1002/aenm.201801352
doi: 10.1002/aenm.201801352
Vandewal, K. Annu. Rev. Phys. Chem. 2016, 67 (1), 113. doi: 10.1146/annurev-physchem-040215-112144
doi: 10.1146/annurev-physchem-040215-112144
Liu, H.; Li, M.; Wu, H.; Wang, J.; Ma, Z.; Tang, Z. J. Mater. Chem. A 2021, 9 (35), 19770. doi: 10.1039/D1TA00576F
doi: 10.1039/D1TA00576F
Coropceanu, V.; Chen, X. -K.; Wang, T.; Zheng, Z.; Brédas, J. -L. Nat. Rev. Mater. 2019, 4 (11), 689. doi: 10.1038/s41578-019-0137-9
doi: 10.1038/s41578-019-0137-9
Marcus, R. A.; Sutin, N. Biophys. Acta Bioenergy 1985, 811 (3), 265. doi: 10.1016/0304-4173(85)90014-X
doi: 10.1016/0304-4173(85)90014-X
Closs, G. L.; Miller, J. R. Science 1988, 240 (4851), 440. doi: 10.1126/science.240.4851.440
doi: 10.1126/science.240.4851.440
Oevering, H.; Verhoeven, J. W.; Paddon-Row, M. N.; Warman, J. M. Tetrahedron 1989, 45 (15), 4751. doi: 10.1016/S0040-4020(01)85150-4
doi: 10.1016/S0040-4020(01)85150-4
Oliver, A. M.; Paddon-Row, M. N.; Kroon, J.; Verhoeven, J. W. Chem. Phys. Lett. 1992, 191 (3), 371. doi: 10.1016/0009-2614(92)85316-3
doi: 10.1016/0009-2614(92)85316-3
Wang, J.; Jiang, X.; Wu, H.; Feng, G.; Wu, H.; Li, J.; Yi, Y.; Feng, X.; Ma, Z.; Li, W.; et al. Nat. Commun. 2021, 12 (1), 6679. doi: 10.1038/s41467-021-26995-1
doi: 10.1038/s41467-021-26995-1
Yang, C.; Yu, R.; Liu, C.; Li, H.; Zhang, S.; Hou, J. ChemSusChem 2021, 14 (1), 3607. doi: 10.1002/cssc.202100627
doi: 10.1002/cssc.202100627
Yu, Z. -P.; Li, X.; He, C.; Wang, D.; Qin, R.; Zhou, G.; Liu, Z. -X.; Andersen, T. R.; Zhu, H.; Chen, H.; et al. Chin. Chem. Lett. 2020, 31 (7), 1991. doi: 10.1016/j.cclet.2019.12.003
doi: 10.1016/j.cclet.2019.12.003
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194