Citation: Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220103. doi: 10.3866/PKU.WHXB202201039 shu

Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells

  • Corresponding author: Zheng Tang, ztang@dhu.edu.cn Erjun Zhou, zhouej@nanoctr.cn Weiwei Li, liweiwei@iccas.ac.cn Zaifei Ma, mazaifei@dhu.edu.cn
  • Received Date: 23 January 2022
    Revised Date: 10 February 2022
    Accepted Date: 16 February 2022
    Available Online: 22 February 2022

    Fund Project: the Fundamental Research Funds for the Central Universities 2232021A09the Fundamental Research Funds for the Central Universities 2232021A06the National Natural Science Foundation of China 52073056the National Natural Science Foundation of China 51973031the National Natural Science Foundation of China 51933001the Natural Science Foundation of Shanghai 22ZR1401900the Natural Science Foundation of Shanghai 19ZR1401400

  • From the industrial perspective, poly(3-hexylthiophene) (P3HT) is one of the most attractive donor materials in organic photovoltaics. The large bandgap in P3HT makes it particularly promising for efficient indoor light harvesting, a unique advantage of organic photovoltaic (PV) devices, and this has started to gain considerable attention in the field of PV technology. In addition, the up-scalability and long material stability associated with the simple chemical structure make P3HT one of the most promising materials for the mass production of organic solar cells. However, the solar cells based on P3HT has a low power conversion efficiency (PCE), which is less than 11%, mainly due to significant voltage losses. In this study, we identified the origin of the high quantum efficiency and voltage losses in the P3HT: non-fullerene based solar cells, and we proposed a strategy to reduce the losses. More specifically, we observed that: 1) the non-radiative decay rate of the charge transfer (CT) states formed at the donor–acceptor interfaces was much higher for the P3HT: non-fullerene solar cells than that for the P3HT: fullerene solar cells, which was the main reason for the more severely limited photovoltage; 2) the origin of the high non-radiative decay rate in the P3HT: non-fullerene solar cell could be ascribed to the short packing distance between the P3HT and non-fullerene acceptor molecules at the donor–acceptor interfaces (DA distance), which is a rarely studied interfacial structural property, highly important in determining the decay rate of CT states; 3) the lower voltage loss in the state-of-the-art P3HT solar cell based on the 2, 2'-((12, 13-bis(2-butyldecyl)-3, 9-diundecyl-12, 13-dihydro-[1, 2, 5]-thiadiazolo[3, 4-e]thieno[2'', 3'': 4', 5']thieno[2', 3': 4, 5]p-yrolo[3, 2-g]thieno[2', 3': 4, 5]thieno[3, 2-b]indole-2, 10-diyl)bis(methanelylidene))bis(5, 6-dichloro-1H-indene-1, 3(2H)-dion-e) (ZY-4Cl) acceptor could be associated with the better alignment of the energy levels of the active materials and the longer DA distance, compared to those based on the commonly used acceptors. However, the DA distance was still very short, limiting the device voltage. Thus, improving the performance of the P3HT based solar cells requires a further increase in the DA distance. Our findings are expected to pave the way for breaking the performance bottleneck of the P3HT based solar cells.
  • 加载中
    1. [1]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270 (5243), 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Mater. Today 2012, 15 (1), 36. doi: 10.1016/S1369-7021(12)70019-6  doi: 10.1016/S1369-7021(12)70019-6

    3. [3]

      Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93 (4), 394. doi: 10.1016/j.solmat.2008.10.004  doi: 10.1016/j.solmat.2008.10.004

    4. [4]

      Yang, M.; Wei, W.; Zhou, X.; Wang, Z.; Duan, C. Energy Mater. 2021, 1 (1), 100008. doi: 10.20517/energymater.2021.08  doi: 10.20517/energymater.2021.08

    5. [5]

      Duan, C.; Ding, L. Sci. Bull. 2020, 65 (15), 1231. doi: 10.1016/j.scib.2020.04.030  doi: 10.1016/j.scib.2020.04.030

    6. [6]

      Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; et al. Nat. Energy 2021, 6 (6), 605. doi: 10.1038/s41560-021-00820-x  doi: 10.1038/s41560-021-00820-x

    7. [7]

      Song, J.; Zhu, L.; Li, C.; Xu, J.; Wu, H.; Zhang, X.; Zhang, Y.; Tang, Z.; Liu, F.; Sun, Y. Matter 2021, 4 (7), 2542. doi: 10.1016/j.matt.2021.06.010  doi: 10.1016/j.matt.2021.06.010

    8. [8]

      Liu, Y.; Li, B.; Ma, C. -Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; et al. Sci. Chin. Chem. 2021, 64 (1), 1869. doi: 10.1007/s11426-021-1180-6  doi: 10.1007/s11426-021-1180-6

    9. [9]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139 (21), 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    10. [10]

      Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28 (42), 9423. doi: 10.1002/adma.201602776  doi: 10.1002/adma.201602776

    11. [11]

      Zhang, M.; Xu, X.; Yu, L.; Peng, Q. J. Power Sources 2021, 499, 229961. doi: 10.1016/j.jpowsour.2021.229961  doi: 10.1016/j.jpowsour.2021.229961

    12. [12]

      Huo, Y.; Gong, X. -T.; Lau, T. -K.; Xiao, T.; Yan, C.; Lu, X.; Lu, G.; Zhan, X.; Zhang, H. -L. Chem. Mater. 2018, 30 (23), 8661. doi: 10.1021/acs.chemmater.8b03980  doi: 10.1021/acs.chemmater.8b03980

    13. [13]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28 (23), 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    14. [14]

      Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. Mater. Today 2020, 35 (1), 115. doi: 10.1016/j.mattod.2019.10.023  doi: 10.1016/j.mattod.2019.10.023

    15. [15]

      Po, R.; Bianchi, G.; Carbonera, C.; Pellegrino, A. Macromolecules 2015, 48 (3), 453. doi: 10.1021/ma501894w  doi: 10.1021/ma501894w

    16. [16]

      Li, X.; Pan, F.; Sun, C.; Zhang, M.; Wang, Z.; Du, J.; Wang, J.; Xiao, M.; Xue, L.; Zhang, Z. -G.; et al. Nat. Commun. 2019, 10 (1), 519. doi: 10.1038/s41467-019-08508-3  doi: 10.1038/s41467-019-08508-3

    17. [17]

      Yuan, X.; Zhao, Y.; Zhan, T.; Oh, J.; Zhou, J.; Li, J.; Wang, X.; Wang, Z.; Pang, S.; Cai, P.; et al. Energy Environ. Sci. 2021, 14 (10), 5530. doi: 10.1039/D1EE01957K  doi: 10.1039/D1EE01957K

    18. [18]

      Pang, S.; Wang, Z.; Yuan, X.; Pan, L.; Deng, W.; Tang, H.; Wu, H.; Chen, S.; Duan, C.; Huang, F.; et al. Angew. Chem. Int. Ed. 2021, 60 (16), 8813. doi: 10.1002/anie.202016265  doi: 10.1002/anie.202016265

    19. [19]

      Jia, X.; Liu, G.; Chen, S.; Li, Z.; Wang, Z.; Yin, Q.; Yip, H. -L.; Yang, C.; Duan, C.; Huang, F.; et al. ACS Appl. Energy Mater. 2019, 2 (10), 7572. doi: 10.1021/acsaem.9b01532  doi: 10.1021/acsaem.9b01532

    20. [20]

      Jia, X.; Chen, Z.; Duan, C.; Wang, Z.; Yin, Q.; Huang, F.; Cao, Y. J. Mater. Chem. C 2019, 7 (2), 314. doi: 10.1039/C8TC04746D  doi: 10.1039/C8TC04746D

    21. [21]

      Po, R.; Bernardi, A.; Calabrese, A.; Carbonera, C.; Corso, G.; Pellegrino, A. Energy Environ. Sci. 2014, 7 (3), 925. doi: 10.1039/C3EE43460E  doi: 10.1039/C3EE43460E

    22. [22]

      Wadsworth, A.; Hamid, Z.; Bidwell, M.; Ashraf, R. S.; Khan, J. I.; Anjum, D. H.; Cendra, C.; Yan, J.; Rezasoltani, E.; Guilbert, A. A. Y.; et al. Adv. Energy Mater. 2018, 8 (28), 1801001. doi: 10.1002/aenm.201801001  doi: 10.1002/aenm.201801001

    23. [23]

      Xu, X.; Zhang, G.; Yu, L.; Li, R.; Peng, Q. Adv. Mater. 2019, 31 (52), 1906045. doi: 10.1002/adma.201906045  doi: 10.1002/adma.201906045

    24. [24]

      Vincent, P.; Shin, S. -C.; Goo, J. S.; You, Y. -J.; Cho, B.; Lee, S.; Lee, D. -W.; Kwon, S. R.; Chung, K. -B.; Lee, J. -J.; et al. Dyes. Pigm. 2018, 159, 306. doi: 10.1016/j.dyepig.2018.06.025  doi: 10.1016/j.dyepig.2018.06.025

    25. [25]

      Ansari, M. A.; Mohiuddin, S.; Kandemirli, F.; Malik, M. I. RSC Adv. 2018, 8 (15), 8319. doi: 10.1039/C8RA00555A  doi: 10.1039/C8RA00555A

    26. [26]

      Xiao, B.; Tang, A.; Yang, J.; Wei, Z.; Zhou, E. ACS Macro Lett. 2017, 6 (4), 410. doi: 10.1021/acsmacrolett.7b00097  doi: 10.1021/acsmacrolett.7b00097

    27. [27]

      He, Y.; Chen, H. -Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132 (4), 1377. doi: 10.1021/ja908602j  doi: 10.1021/ja908602j

    28. [28]

      Veldman, D.; Meskers, S. C. J.; Janssen, R. A. J. Adv. Funct. Mater. 2009, 19 (12), 1939. doi: 10.1002/adfm.200900090  doi: 10.1002/adfm.200900090

    29. [29]

      Zakhidov, E.; Imomov, M.; Quvondikov, V.; Nematov, S.; Tajibaev, I.; Saparbaev, A.; Ismail, I.; Shahid, B.; Yang, R. Appl. Phys. A 2019, 125 (11), 803. doi: 10.1007/s00339-019-3100-0  doi: 10.1007/s00339-019-3100-0

    30. [30]

      Qin, Y.; Uddin, M. A.; Chen, Y.; Jang, B.; Zhao, K.; Zheng, Z.; Yu, R.; Shin, T. J.; Woo, H. Y.; Hou, J. Adv. Mater. 2016, 28 (42), 9416. doi: 10.1002/adma.201601803  doi: 10.1002/adma.201601803

    31. [31]

      Yang, C.; Zhang, S.; Ren, J.; Gao, M.; Bi, P.; Ye, L.; Hou, J. Energy Environ. Sci. 2020, 13 (9), 2864. doi: 10.1039/D0EE01763A  doi: 10.1039/D0EE01763A

    32. [32]

      Eisner, F.; Foot, G.; Yan, J.; Azzouzi, M.; Georgiadou, D. G.; Sit, W. Y.; Firdaus, Y.; Zhang, G.; Lin, Y. -H.; Yip, H. -L.; et al. Adv. Mater. 2021, 5, 2104654. doi: 10.1002/adma.202104654  doi: 10.1002/adma.202104654

    33. [33]

      Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Nat. Mater. 2017, 16 (3), 363. doi: 10.1038/nmat4797  doi: 10.1038/nmat4797

    34. [34]

      Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. Sci. Bull. 2020, 65 (4), 272. doi: 10.1016/j.scib.2020.01.001  doi: 10.1016/j.scib.2020.01.001

    35. [35]

      Kamm, V.; Battagliarin, G.; Howard, I. A.; Pisula, W.; Mavrinskiy, A.; Li, C.; Müllen, K.; Laquai, F. Adv. Energy Mater. 2011, 1 (2), 297. doi: 10.1002/aenm.201000006  doi: 10.1002/aenm.201000006

    36. [36]

      Zalar, P.; Kuik, M.; Ran, N. A.; Love, J. A.; Nguyen, T. -Q. Adv. Energy Mater. 2014, 4 (14), 1400438. doi: 10.1002/aenm.201400438  doi: 10.1002/aenm.201400438

    37. [37]

      Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Phys. Rev. B 2010, 81 (12), 125204. doi: 10.1103/PhysRevB.81.125204  doi: 10.1103/PhysRevB.81.125204

    38. [38]

      Vandewal, K.; Benduhn, J.; Nikolis, V. C. Sustain. Energy Fuels 2018, 2 (3), 538. doi: 10.1039/C7SE00601B  doi: 10.1039/C7SE00601B

    39. [39]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. -L.; Lau, T. -K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3 (4), 1140. doi: 10.1016/j.joule.2019.01.004  doi: 10.1016/j.joule.2019.01.004

    40. [40]

      Pan, M. -A.; Lau, T. -K.; Tang, Y.; Wu, Y. -C.; Liu, T.; Li, K.; Chen, M. -C.; Lu, X.; Ma, W.; Zhan, C. J. Mater. Chem. A 2019, 7 (36), 20713. doi: 10.1039/C9TA06929A  doi: 10.1039/C9TA06929A

    41. [41]

      Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15 (10), 1617. doi: 10.1002/adfm.200500211  doi: 10.1002/adfm.200500211

    42. [42]

      Pettersson, L. A. A.; Roman, L. S.; Inganäs, O. J. Appl. Phys. 1999, 86 (1), 487. doi: 10.1063/1.370757  doi: 10.1063/1.370757

    43. [43]

      Burkhard, G. F.; Hoke, E. T.; Scully, S. R.; McGehee, M. D. Nano Lett. 2009, 9 (12), 4037. doi: 10.1021/nl902205n  doi: 10.1021/nl902205n

    44. [44]

      Ghosekar, I. C.; Patil, G. C. Semicond. Sci. Technol. 2021, 36 (4), 045005. doi: 10.1088/1361-6641/abe21b  doi: 10.1088/1361-6641/abe21b

    45. [45]

      Lenes, M.; Morana, M.; Brabec, C. J.; Blom, P. W. M. Adv. Funct. Mater. 2009, 19 (7), 1106. doi: 10.1002/adfm.200801514  doi: 10.1002/adfm.200801514

    46. [46]

      Wang, Y.; Qian, D.; Cui, Y.; Zhang, H.; Hou, J.; Vandewal, K.; Kirchartz, T.; Gao, F. Adv. Energy Mater. 2018, 8 (28), 1801352. doi: 10.1002/aenm.201801352  doi: 10.1002/aenm.201801352

    47. [47]

      Vandewal, K. Annu. Rev. Phys. Chem. 2016, 67 (1), 113. doi: 10.1146/annurev-physchem-040215-112144  doi: 10.1146/annurev-physchem-040215-112144

    48. [48]

      Liu, H.; Li, M.; Wu, H.; Wang, J.; Ma, Z.; Tang, Z. J. Mater. Chem. A 2021, 9 (35), 19770. doi: 10.1039/D1TA00576F  doi: 10.1039/D1TA00576F

    49. [49]

      Coropceanu, V.; Chen, X. -K.; Wang, T.; Zheng, Z.; Brédas, J. -L. Nat. Rev. Mater. 2019, 4 (11), 689. doi: 10.1038/s41578-019-0137-9  doi: 10.1038/s41578-019-0137-9

    50. [50]

      Marcus, R. A.; Sutin, N. Biophys. Acta Bioenergy 1985, 811 (3), 265. doi: 10.1016/0304-4173(85)90014-X  doi: 10.1016/0304-4173(85)90014-X

    51. [51]

      Closs, G. L.; Miller, J. R. Science 1988, 240 (4851), 440. doi: 10.1126/science.240.4851.440  doi: 10.1126/science.240.4851.440

    52. [52]

      Oevering, H.; Verhoeven, J. W.; Paddon-Row, M. N.; Warman, J. M. Tetrahedron 1989, 45 (15), 4751. doi: 10.1016/S0040-4020(01)85150-4  doi: 10.1016/S0040-4020(01)85150-4

    53. [53]

      Oliver, A. M.; Paddon-Row, M. N.; Kroon, J.; Verhoeven, J. W. Chem. Phys. Lett. 1992, 191 (3), 371. doi: 10.1016/0009-2614(92)85316-3  doi: 10.1016/0009-2614(92)85316-3

    54. [54]

      Wang, J.; Jiang, X.; Wu, H.; Feng, G.; Wu, H.; Li, J.; Yi, Y.; Feng, X.; Ma, Z.; Li, W.; et al. Nat. Commun. 2021, 12 (1), 6679. doi: 10.1038/s41467-021-26995-1  doi: 10.1038/s41467-021-26995-1

    55. [55]

      Yang, C.; Yu, R.; Liu, C.; Li, H.; Zhang, S.; Hou, J. ChemSusChem 2021, 14 (1), 3607. doi: 10.1002/cssc.202100627  doi: 10.1002/cssc.202100627

    56. [56]

      Yu, Z. -P.; Li, X.; He, C.; Wang, D.; Qin, R.; Zhou, G.; Liu, Z. -X.; Andersen, T. R.; Zhu, H.; Chen, H.; et al. Chin. Chem. Lett. 2020, 31 (7), 1991. doi: 10.1016/j.cclet.2019.12.003  doi: 10.1016/j.cclet.2019.12.003

  • 加载中
    1. [1]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    4. [4]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    5. [5]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    6. [6]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    7. [7]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    8. [8]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    9. [9]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    10. [10]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    11. [11]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    12. [12]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    13. [13]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    14. [14]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    15. [15]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    16. [16]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    17. [17]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    18. [18]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

Metrics
  • PDF Downloads(42)
  • Abstract views(1253)
  • HTML views(229)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return