Citation: Zhicheng Liu, Xiaodong Yi, Feixue Gao, Zaiku Xie, Buxing Han, Yuhan Sun, Mingyuan He, Junlin Yang. Green Carbon Science: A Scientific Basis for Achieving 'Dual Carbon' Goal——Academic Summary of the 292nd "Shuang-Qing Forum"[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 211202. doi: 10.3866/PKU.WHXB202112029 shu

Green Carbon Science: A Scientific Basis for Achieving 'Dual Carbon' Goal——Academic Summary of the 292nd "Shuang-Qing Forum"

  • This paper, based on the 292nd "Shuang-Qing Forum, " introduces the scientific concept of "green carbon science" and summarizes the current research progress, challenges, and future opportunities for carbon-neutral science and technology in China. Furthermore, there is scientific discussion on the path to realizing this, key scientific problems, and future research focus on carbon-neutral science and technology. It may provide a reference from which the National Science Foundation of China (NSFC) can formulate an action plan and funding scheme for basic research on carbon neutrality as a next step.
  • 加载中
    1. [1]

      BP Energy Outlook: 2019 edition. Available online: https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-energy-outlook-2019.html (accessed on 21 December 2021)

    2. [2]

      Xie, Z. K.; Liu, Z. C.; Wang, Y. D. Sci. China-Chem. 2014, 44, 1. doi: 10.1360/N032014 -00155  doi: 10.1360/N032014-00155

    3. [3]

      He, M. -Y.; Sun, Y. -H. Sci. China-Chem. 2011, 41, 925. doi: 10.1360/032011-152  doi: 10.1360/032011-152

    4. [4]

      He, M. -Y.; Sun, Y. -H.; Han, B. -X. Angew. Chem. Int. Ed. 2013, 52, 9620. doi: 10.1002/anie.201209384  doi: 10.1002/anie.201209384

    5. [5]

      He, M. -Y.; Sun, Y. -H.; Han, B. -X. Chin. Sci. Bull. 2015, 60, 1421. doi: 10.1360/csb2015-60-16-1421  doi: 10.1360/csb2015-60-16-1421

    6. [6]

      Xie, Z. K. Sci. China-Chem. 2020, 50, 155. doi: 10.1360/ SSC-2020-0012  doi: 10.1360/SSC-2020-0012

    7. [7]

      Chen, L. -H. Nat. Sci. Rev. 2020, 7, 1759. doi: 10.1093/nsr /nwaa131  doi: 10.1093/nsr/nwaa131

    8. [8]

      He, M. -Y. Green Carbon Science: Scientific Basis for the Efficient Utilization of Fossil Energy with Low Emission. Proceedings of the 15th National Congress on Catalysis of China, Guangzhou, China, 29 November 2010.

    9. [9]

      He, M. -Y. Green Carbon Science—Seeking Ways to Realize Carbon Neutral Balance. Proceedings of the 20th National Congress on Catalysis of China, Wuhan, China, 16 October 2021.

    10. [10]

      He, M. -Y. Catal. Today 2002, 73, 49. doi: 10.1016/S0920-5861 (01)00517-X  doi: 10.1016/S0920-5861(01)00517-X

    11. [11]

      Werther, J. Chem. Ing. Tech. 2014, 86, 2022. doi: 10.1002/cite. 201400117  doi: 10.1002/cite.201400117

    12. [12]

      Xu, Y. -H.; He, M. -Y. Sci. China-Chem. 2020, 50, 271. doi: 10.1360/SSC-2019-0137  doi: 10.1360/SSC-2019-0137

    13. [13]

      Yang, W. M.; Wang, Z. D.; Sun, H. M.; Zhang, B. Chin. J. Catal. 2016, 37, 16. doi: 10.1016/S1872-2067(15)60965-2  doi: 10.1016/S1872-2067(15)60965-2

    14. [14]

      Xie, K. -C. Shanxi Energy Conserv. 2009, 1, 1. doi: 10.3969/j.issn.2095 -0802.2009.01.002  doi: 10.3969/j.issn.2095-0802.2009.01.002

    15. [15]

      Wayland, B.; Fu, X. F. Science 2006, 311, 790. doi: 10.1126/science.1123884  doi: 10.1126/science.1123884

    16. [16]

      Lin, T. -J.; Qi, X. -Z.; Wang, X. -X.; Xia, L.; Wang, C. -Q.; Yu, F.; Wang, H.; Li, S. -G.; Zhong, L. -S.; Sun, Y. -H. Angew. Chem. Int. Ed. 2019, 58, 4627. doi: 10.1002/anie.201814611  doi: 10.1002/anie.201814611

    17. [17]

      Zhong, L.; Yu, F.; An, Y. -L.; Zhao, Y. -H.; Sun, Y. -H.; Li, Z. -J., Lin, T. -J.; Lin, Y. -J.; Qi, X. -Z.; Dai, Y. -Y.; et al. Nature 2016, 538, 84. doi: 10.1038/nature19786  doi: 10.1038/nature19786

    18. [18]

      Pan, X. L.; Jiao, F.; Miao, D. Y.; Bao, X. H. Chem. Rev. 2021, 121, 6588. doi: 10.1021/acs.chemrev.0c01012  doi: 10.1021/acs.chemrev.0c01012

    19. [19]

      Zhou, W.; Kang, J. C.; Cheng, K.; He, S.; Shi, J. Q.; Zhou, C.; Zhang, Q. H.; Chen, J. C.; Peng, L. M.; Chen, M. S.; et al. Angew. Chem. Int. Ed. 2018, 130, 12188. doi: 10.1002/anie.201807113  doi: 10.1002/anie.201807113

    20. [20]

      Zhang, Q. H.; Kang, J. C.; Wang, Y. ChemCatChem 2010, 2, 1030. doi: 10.1002/cctc.201000071  doi: 10.1002/cctc.201000071

    21. [21]

      Schwach, P.; Pan, X. -L.; Bao, X. -H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715  doi: 10.1021/acs.chemrev.6b00715

    22. [22]

      Guo, X. -G.; Fang, G. -Z.; Li, G.; Ma, H.; Fan, H. -J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. -H.; Wei, M. -M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    23. [23]

      Fu, Y.; Sun, Y. -H. Sci. China-Chem. 2020, 50, 816. doi: 10.1360/SSC-2019-0160  doi: 10.1360/SSC-2019-0160

    24. [24]

      Zhang, T.; Liu, Z. C.; Yang, W. M. Sci. China-Chem. 2021, 51, 154. doi: 10.1360/SSC-2020-0171  doi: 10.1360/SSC-2020-0171

    25. [25]

      Wang, C. J.; Yang, B.; Gu, Q. Q.; Han, Y. J.; Tian, M.; Su, Y.; Pan, X. L.; Kang, Y.; Huang, C. D.; Liu, H.; et al. Nat. Commun. 2021, 12, 5447. doi: 10.1038/s41467-021-25782-2  doi: 10.1038/s41467-021-25782-2

    26. [26]

      Ding, Z. -K.; Wang, W. -J.; Mi, H. -J.; Zhang, G. -P.; Liu, H. Contemp. Chem. Ind. 2020, 49, 1519. doi: 10.3969/j.issn.1671-0460.2020.07.061  doi: 10.3969/j.issn.1671-0460.2020.07.061

    27. [27]

      Wang, W. Y.; Zhu, H.; Gao, Z. P.; Li, H.; Li, B. J.; Meng, H. X. Modern Chem. Ind. 2020, 40, 80. doi: 10.16606/j.cnki.issn0253-4320.2020.10.017  doi: 10.16606/j.cnki.issn0253-4320.2020.10.017

    28. [28]

      Zhang, H. -M.; Zhang, Y.; Liu, Z. -H.; Wang, X. -L. Prog. Chem. 2009, 21, 2333. doi: CNKI:SUN:HXJZ.0.2009-11-008

    29. [29]

      Zhang, H. -M. Funct. Mater. Inf. 2012, 9, 7. doi: CNKI:SUN:GNCX.0.2012-04-007

    30. [30]

      Hauch, A.; Kungas, R.; Blennow, P.; Hansen, A. B.; Mogensen, M. B. Science 2020, 370 (6513), 6118. doi: 10.1126/science.aba6118  doi: 10.1126/science.aba6118

    31. [31]

      Peng, S. P. Int. J. Coal Sci. Technol. 2021, 8, 327. doi: 10.1007/s40789-021-00443-3  doi: 10.1007/s40789-021-00443-3

    32. [32]

      Xie, W. -F.; Li, H.; Cui, G. -Q.; Li, J. -B.; Song, Y. -K.; Li, S. -J.; Zhang, X.; Lee, J. -Y.; Shao, M. F.; Wei, M. Angew. Chem. Int. Ed. 2021, 60, 7382. doi:10.1002/anie.202014655  doi: 10.1002/anie.202014655

    33. [33]

      Song, Y. J.; Li, Z. H.; Fan, K.; Ren, Z.; Xie, W. F.; Yang, Y. S.; Shao, M. F.; Wei, M. Appl. Catal. B-Environ. 2021, 299, 120669. doi: 10.1016/j.apcatb.2021.120669  doi: 10.1016/j.apcatb.2021.120669

    34. [34]

      Zhang, P.; Xu, J. M.; Shi, L.; Zhang, Z. Y. Eng. Sci. 2019, 1, 20. doi: 10.15302/J-SSCAE -2019.01.004  doi: 10.15302/J-SSCAE-2019.01.004

    35. [35]

      Li, X. B.; Tung, C. H.; Wu, L. Z. Angew. Chem. Int. Ed. 2019, 58, 10804. doi: 10.1002/anie.201901267  doi: 10.1002/anie.201901267

    36. [36]

      Huang, C.; Qiao, J.; Ci, R. N.; Wang, X. Z.; Wu, L. Z. Chem 2021, 7, 1244. doi:10.1016 /j.chempr.2021.01.019  doi: 10.1016/j.chempr.2021.01.019

    37. [37]

      Qie, F. X.; Zhu, J. Y.; Rong, J. F.; Zong, B. N. Bioresour. Technol. 2019, 292, 122037. doi: 10.1016/j.biortech.2019.122037  doi: 10.1016/j.biortech.2019.122037

    38. [38]

      Olah, G. A.; Goeppert, A.; Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. doi: 10.1021/jo801260f  doi: 10.1021/jo801260f

    39. [39]

      Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy; Wiley-VCH: Weinheim, Germany, 2006.

    40. [40]

      Shi, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Joule 2018, 2, 1. doi: 10.1016/j.joule.2018.08.016  doi: 10.1016/j.joule.2018.08.016

    41. [41]

      Han, Y. M. 20 years of Adhering to Innovation and Turning "Liquid Sunlight" into Reality—China Has Built a Thousand Ton Liquid Solar Fuel Synthesis Demonstration Device. Available online: http://news.sciencenet.cn/htmlnews/2020/10/446954.shtm (accessed on 21 December 2021)

    42. [42]

      Tian, X.; Zhang, X. -P.; Cheng, W. -G.; Huang, L.; Zhao, Y. -S.; Zhang, S. -J. Comput. Appl. Chem. 2010, 27, 1059. doi: 10.3969/j.issn.1001-4160.2010.08.015  doi: 10.3969/j.issn.1001-4160.2010.08.015

    43. [43]

      Yin, Z.; Peng, H.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2019, 12, 2455. doi: 10.1039/C9EE01204D  doi: 10.1039/C9EE01204D

    44. [44]

      Wang, Y.; Yang, Y.; Jia, S. -F.; Wang, X. -M.; Lyu, K. -J.; Peng, Y. -Q.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L.; et al. Nat. Commun. 2019, 10, 1506. doi: 10.1038/s41467-019-09503-4  doi: 10.1038/s41467-019-09503-4

    45. [45]

      Li, Q. H.; Peng, H. Q.; Wang, Y. M.; Xiao, L.; Lu, J. T.; Zhuang, L. Angew. Chem. Int. Ed. 2019, 58, 1442. doi: 10.1002/anie.201812662  doi: 10.1002/anie.201812662

    46. [46]

      Li, Y.; Wei, X. -F.; Chen, L. -S.; Shi, J. -L. Angew. Chem. Int. Ed. 2021, 60, 19550. doi: 10.1002/anie.202009854  doi: 10.1002/anie.202009854

    47. [47]

      Meng, Q.; Yan, J.; Wu, R. -Z.; Liu, H. -Z.; Sun, Y.; Wu, N. -N.; Xiang, J. -F.; Zheng, L. -R.; Zhang, J.; Han, B. -X.; et al. Nat. Commun. 2021, 12, 4534. doi: 10.1038/s41467-021-24780-8  doi: 10.1038/s41467-021-24780-8

    48. [48]

      Meng, Q. -L.; Hou M. -Q.; Liu, H. -Z.; Song, J. -L.; Han, B. -X. Nat. Commun. 2017, 8, 14190. doi: 10.1038/ncomms14190  doi: 10.1038/ncomms14190

    49. [49]

      Mei, Q. -Q.; Liu, H. -Z.; Shen, X. -J.; Meng, Q. -L.; Liu, H. -Y.; Xiang, J. -F.; Han, B. -X. Angew. Chem. Int. Ed. 2017, 56, 14868. doi:10.1002/anie.201710736  doi: 10.1002/anie.201710736

    50. [50]

      Liu, Y.; Luo, C.; Liu, H. -C. Angew. Chem. Int. Ed. 2012, 51, 3249. doi: 10.1002/ange.201200351  doi: 10.1002/ange.201200351

    51. [51]

      Dong, L.; Lin, L. -F.; Han, X.; Si, X. -Q.; Liu, X. -H.; Guo, Y.; Lu, F.; Rudić, S.; Parker, S. F.; Yang, S. -H.; et al. Chem 2019, 5, 1521. doi: 10.1016/j.chempr.2019.03.007  doi: 10.1016/j.chempr.2019.03.007

    52. [52]

      Shao, Y.; Xia, Q. -N.; Dong, L.; Liu, X. -H.; Han, X.; Parker, S. F.; Cheng, Y. -Q.; Daemen, L. L.; Ramirez-Cuesta, A. J.; Yang, S. -H.; et al. Nat. Commun. 2017, 8, 16104. doi: 10.1038/ncomms16104  doi: 10.1038/ncomms16104

    53. [53]

      Xia, Q. -N.; Yang, S. -H.; Shao, Y.; Gong, X. -Q.; Wang, H. -F.; Liu, X. -H.; Parker, S. F.; Han, X.; Yang, S. -H.; Wang, Y. -Q. Nat. Commun. 2016, 7, 11162. doi:10.1038/ncomms11162  doi: 10.1038/ncomms11162

    54. [54]

      Wang, A.; Zhang, T. Acc. Chem. Res. 2013, 46, 1377. doi: 10.1021/ar3002156  doi: 10.1021/ar3002156

    55. [55]

      Zada, B.; Chen, M. Y.; Fu, Y. Sci. China-Chem. 2017, 60, 853. doi: 10.1007/ s11426-017-9067-1  doi: 10.1007/s11426-017-9067-1

    56. [56]

      Yan, L.; Yao, Q.; Fu, Y. Green Chem. 2017, 19, 5527. doi: 10.1039/C7GC02503C  doi: 10.1039/C7GC02503C

    57. [57]

      Huang, Y. -B.; Fu, Y. Green Chem. 2013, 15, 1095. doi: 10.1039/C3GC40136G  doi: 10.1039/C3GC40136G

    58. [58]

      Wang, H. -Y.; Xin, H. -S.; Cai, C. -L.; Zhu, C. -H.; Ma, L. -L. ACS Catal. 2020, 10, 10646. doi: 10.1021/acscatal.0c02375  doi: 10.1021/acscatal.0c02375

    59. [59]

      Ma, L. -L.; Wang, H. -Y.; Zhu, C. -H.; Liu, Q. -Y.; Tan, J.; Wang, C. -G.; Liang, Z. ChemSusChem. 2019, 12, 2154. doi: 10.1002/cssc.201900172  doi: 10.1002/cssc.201900172

    60. [60]

      Liu, Q. -Y.; Wang, H. -Y.; Xin, H. -S.; Wang, C. -G., Yan, L.; Wang, Y. -X.; Zhang, Q.; Zhang, X. -H.; Xu, Y.; Huber, G.W.; et al. ChemSusChem 2019, 12, 3977. doi: 10.1002/cssc.201902282  doi: 10.1002/cssc.201902282

    61. [61]

      Corma, A.; Torrea, O.; Renz, M. Energy Environ. Sci. 2012, 5, 6328. doi: 10.1039/C2EE02778J  doi: 10.1039/C2EE02778J

    62. [62]

      Research on the Implementation Path of Carbon Peaking and Carbon Neutralization in Industrial Sector: Building Materials Industry Section. Available online: http://www.sinopecnews.com.cn/news/ content/2021-02/24/content_1845213.htm (accessed on 24 December 2021)

    63. [63]

      Liu, Z. D. Spec. Steel. Tech. 2010, 16, 1. doi: 10.16683/j.cnki.issn1674-0971.2010.01.016  doi: 10.16683/j.cnki.issn1674-0971.2010.01.016

    64. [64]

      Li, F.; Chu, M. -S.; Tang, Y.; Liu, Z. -G.; Zhou, Y. -S. Hebei Metall. 2019, 286, 8. doi: 10.13630/j.cnki.13-1172.2019.1002  doi: 10.13630/j.cnki.13-1172.2019.1002

    65. [65]

      Zhang, L. -W.; Nie, Z. -R.; Xi, X. L.; Ma, L. -W; Xiao, X. J.; Li, M. Metall. Mater. Trans. B 2018, 49, 334. doi: 10.1007/s11663-017-1125-3  doi: 10.1007/s11663-017-1125-3

    66. [66]

      Nie, Z. -R.; Liu, Y.; Sun, B. X.; Wang, Z. H.; Zuo, T. Y. Mater. China 2016, 35, 161. doi: 10.7502/j.issn.1674-3962.2016.03.01  doi: 10.7502/j.issn.1674-3962.2016.03.01

    67. [67]

      Xu, G. W. POD—Basis and Technology of Decoupled Thermochemical Conversion; Science Press, Beijing, China, 2016.

    68. [68]

      Valera-Medina, A.; Amer-Hatem, F.; Azad, A. K., Dedoussi, I. C.; Costa, M. Energy Fuels 2021, 35, 6964. doi: 10.1021/acs.energyfuels.0c03685  doi: 10.1021/acs.energyfuels.0c03685

    69. [69]

      Jiang, L. -R.; Lin, J. X.; Wei, K. M. Research, Practice and Prospect of High Efficiency Ammonia Synthesis Catalyst. Proceedings of the 19th National Congress on Catalysis of China, Guangzhou, China, 14 October 2019.

    70. [70]

      Wang, X. -Y.; Peng, X. -B.; Chen, W.; Liu, G. -Y.; Zheng, A. -M.; Zheng, L. -R., Ni, J.; Au, C. -T.; Jiang, L, -L. Nat. Commun. , 2020, 11, 1. doi: 10.1038/s41467-020-14287-z  doi: 10.1038/s41467-020-14287-z

    71. [71]

      Chai, T. Y.; Rong, L.; Ma, Q. Y. Metall. Ind. Automat. 2000, 1, 7. doi: 10.3969/j.issn.1000- 7059.2000.01.002  doi: 10.3969/j.issn.1000-7059.2000.01.002

    72. [72]

      Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121  doi: 10.1038/nchem.121

    73. [73]

      Chen, Z.; Wang, H.; Su, N. -Q.; Duan, S.; Shen, T. -H.; Xu, X. ACS Catal. 2018, 8, 5816. doi:10.1021/acscatal.8b00943  doi: 10.1021/acscatal.8b00943

    74. [74]

      Chen, Z.; Wang, H.; Liu, Z. -Y.; Xu, X. ACS Catal. 2021, 11, 3830. doi: 10.1021/acscatal.0c05070  doi: 10.1021/acscatal.0c05070

    75. [75]

      Zhou, X.; Chen, F.; Wu, K. High Resolution Surface Analysis Technology based on Scanning Probe Microscope Coupling Thermochemical Transformation Basis and Technology. In Advances in Chemometrics; East China University of Technology Press: Shanghai, China, 2022.

    76. [76]

      Chen, H. -R.; Zhu, H.; Huang, Z. -C.; Rong, W. -H.; Wu, K. Adv. Mater. 2019, 31, 1902080. doi: 10.1002/adma.201902080  doi: 10.1002/adma.201902080

    77. [77]

      Zhou, X.; Shen, Q.; Yuan, K. -D.; Yang, W. S.; Chen, Q. -W.; Geng, Z. H.; Zhang, J. -L; Shao, X.; Chen W.; Xu, G. -Q; et al. J. Am. Chem. Soc. 2018, 140, 554. doi: 10.1021/jacs.7b10394  doi: 10.1021/jacs.7b10394

    78. [78]

      Su, B. -L; Sanchez, C.; Yang, X. -Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Bomedicine, Optics and Energy; Wiley-VCH, Weinheim, Germany, 2011.

    79. [79]

      Li, J. -H. Engineering 2016, 2, 276. doi: 10.1016/J.ENG.2016.03.001  doi: 10.1016/J.ENG.2016.03.001

  • 加载中
    1. [1]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    2. [2]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(0)
  • Abstract views(682)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return