Citation: Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211102. doi: 10.3866/PKU.WHXB202111021 shu

Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production

  • Corresponding author: Zhengxin Ding, zxding@fzu.edu.cn Wee-Jun Ong, weejun.ong@xmu.edu.my Sibo Wang, sibowang@fzu.edu.cn
  • Received Date: 15 November 2021
    Revised Date: 8 December 2021
    Accepted Date: 15 December 2021
    Available Online: 20 December 2021

    Fund Project: the National Key R & D Program of China 2021YFA1502100the National Science Foundation of China U1805255the State Key Laboratory of NBC Protection for Civilian SKLNBC2020-18

  • The rational interface tailoring of nanosheets on hollow spheres is a promising strategy to develop efficient photocatalysts for hydrogen production with solar energy. Among the various photocatalyst materials, metal sulfides have been extensively researched because of their relatively narrow band gap and superior visible-light response. ZnIn2S4 is a layered ternary chalcogenide semiconductor photocatalyst with a tunable band gap energy (approximately 2.4 eV). Among various metal sulfide photocatalysts, ZnIn2S4 has gained considerable attention. However, intrinsic ZnIn2S4 only exhibits a relatively moderate photocatalytic activity, which is mainly owing to the high recombination and low migration rate of photocarriers. Loading cocatalysts onto semiconductor photocatalysts is an effective way to improve the performance of photocatalysts, because it can not only facilitate the separation of electron-hole pairs, but also reduce the activation energy for proton reduction. As a ternary transition metal sulfide, NiCo2S4 features a high electrical conductivity, low electronegativity, excellent redox properties, and outstanding electrocatalytic activity. Such favorable characteristics suggest that NiCo2S4 can expedite charge separation and transfer, thereby promoting photocatalytic H2 production by serving as a cocatalyst. Moreover, both NiCo2S4 and ZnIn2S4 possess the ternary spinel crystal structure, which may facilitate the construction of NiCo2S4/ZnIn2S4 hybrids with tight interfacial contact for an enhanced photocatalytic performance. Herein, ultrathin ZnIn2S4 nanosheets were grown in situ on a non-noble-metal cocatalyst, namely NiCo2S4 hollow spheres, to form hierarchical NiCo2S4@ZnIn2S4 hollow heterostructured photocatalysts with an intimately coupled interface and strong visible light absorption extending to ca. 583 nm. The optimized NiCo2S4@ZnIn2S4 hybrid with a NiCo2S4 content of ca. 3.1% exhibited a high hydrogen evolution rate of 78 μmol·h-1, which was approximately 9 times higher than that of bare ZnIn2S4 and 3 times higher than that of 1% (w, mass fraction) Pt/ZnIn2S4. Additionally, the hybrid photocatalysts displayed good stability in the reaction. Photoluminescence and electrochemical analysis results indicated that NiCo2S4 hollow spheres served as an efficient cocatalyst for facilitating the separation and transport of light-induced charge carriers as well as reducing the hydrogen evolution reaction barrier. Finally, a possible reaction mechanism for the photocatalytic hydrogen evolution was proposed. In the NiCo2S4@ZnIn2S4 composite photocatalyst, the NiCo2S4 cocatalyst with high electrical conductivity favorably accepts the photoinduced electrons transferred from ZnIn2S4 and then employs the electrons to reduce protons for H2 production on the reactive sites. Concurrently, the photogenerated holes are trapped by TEOA that acts as a hole scavenger to accomplish the photoredox cycle. This study provides guidance for the fabrication of hierarchical hollow heterostructures based on nanosheet semiconductor subunits as remarkable photocatalysts for hydrogen production.
  • 加载中
    1. [1]

      Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a  doi: 10.1038/440295a

    2. [2]

      Maeda, K.; Higashi, M.; Lu, D.; Abe, R.; Domen, K. J. Am. Chem. Soc. 2010, 132, 5858. doi: 10.1021/ja1009025  doi: 10.1021/ja1009025

    3. [3]

      Chen, A.; Yang, M.; Wang, S.; Qian, Q. Front. Nanotechnol. 2021, 3, 723120. doi: 10.3389/fnano.2021.723120  doi: 10.3389/fnano.2021.723120

    4. [4]

      Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45, 2603. doi: 10.1039/C5CS00838G  doi: 10.1039/C5CS00838G

    5. [5]

      Du, P.; Eisenberg, R. Energy Environ. Sci. 2012, 5, 6012. doi: 10.1039/C2EE03250C  doi: 10.1039/C2EE03250C

    6. [6]

      Dong, H.; Xiao, M.; Yu, S.; Wu, H.; Wang, Y.; Sun, J.; Chen, G.; Li, C. ACS Catal. 2020, 10, 458. doi: 10.1021/acscatal.9b04671  doi: 10.1021/acscatal.9b04671

    7. [7]

      Yu, J.; Zhang, T.; Wu, N. Solar RRL 2021, 5, 2100037. doi: 10.1002/solr.202100037  doi: 10.1002/solr.202100037

    8. [8]

      Tian, L.; Min, S.; Wang, F. Appl. Catal., B 2019, 259, 118029. doi: 10.1016/j.apcatb.2019.118029  doi: 10.1016/j.apcatb.2019.118029

    9. [9]

      Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, ,Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; et al. Angew. Chem. Int. Ed. 2020, 59, 11287. doi: 10.1002/anie.202002136  doi: 10.1002/anie.202002136

    10. [10]

      Liang, Z.; Shen, R.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032  doi: 10.1016/j.jmst.2020.04.032

    11. [11]

      Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. doi: 10.1002/anie.201207199  doi: 10.1002/anie.201207199

    12. [12]

      Wen, J.; Li, X.; Liu, W.; Fang, Y.; Xie, J.; Xu, Y. Chin. J. Catal. 2015, 36, 2049. doi: 10.1016/S1872-2067(15)60999-8  doi: 10.1016/S1872-2067(15)60999-8

    13. [13]

      Yu, J.; Xu, L.; Ong, W. J.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2012043.  doi: 10.3866/PKU.WHXB202012043

    14. [14]

      Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J  doi: 10.1039/C3CS60425J

    15. [15]

      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/C3CS60378D  doi: 10.1039/C3CS60378D

    16. [16]

      Peng, J.; Xu, J.; Wang, Z.; Ding, Z.; Wang, S. Phys. Chem. Chem. Phys. 2017, 19, 25919. doi: 10.1039/C7CP05147F  doi: 10.1039/C7CP05147F

    17. [17]

      Xia, Y.; Zhang, L.; Hu, B.; Yu, J.; Al-Ghamdi, A. A.; Wageh, S. Chem. Eng. J. 2021, 421, 127732. doi: 10.1016/j.cej.2020.127732  doi: 10.1016/j.cej.2020.127732

    18. [18]

      Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521  doi: 10.1002/adma.202003521

    19. [19]

      Xia, Y.; Yu, J. Chem 2020, 6, 1039. doi: 10.1016/j.chempr.2020.02.015  doi: 10.1016/j.chempr.2020.02.015

    20. [20]

      He, R.; Cao, S.; Yu, J. Acta Phys. -Chim. Sin. 2016, 32, 2841.  doi: 10.3866/PKU.WHXB201611021

    21. [21]

      Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073. [  doi: 10.3866/PKU.WHXB202010073

    22. [22]

      Yu, J.; Zhao, X.; Chen, W.; Li, L.; Zhang, A. Acta Phys. -Chim. Sin. 2001, 17, 261.  doi: 10.3866/PKU.WHXB20010316

    23. [23]

      Wang, S.; Wang, X. Small 2015, 11, 3097. doi: 10.1002/smll.201500084  doi: 10.1002/smll.201500084

    24. [24]

      Lu, Y.; Yin, W.; Peng, K.; Wang, K.; Hu, Q.; Selloni, A.; Chen, F.; Liu, L.; Sui, M. Nat. Commun. 2018, 9, 2752. doi: 10.1038/s41467-018-05144-1  doi: 10.1038/s41467-018-05144-1

    25. [25]

      Lee, J.; Kim, H.; Lee, T.; Jang, W.; Lee, K. H.; Soon, A. Chem. Mater. 2019, 31, 9148. doi: 10.1021/acs.chemmater.9b03539  doi: 10.1021/acs.chemmater.9b03539

    26. [26]

      Yang, W.; Zhang, L.; Xie, J.; Zhang, X.; Liu, Q.; Yao, T.; Wei, S.; Zhang, Q.; Xie, Y. Angew. Chem. Int. Ed. 2016, 55, 6716. doi: 10.1002/anie.201602543  doi: 10.1002/anie.201602543

    27. [27]

      Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Angew. Chem. Int. Ed. 2020, 59, 8255. doi: 10.1002/anie.202000503  doi: 10.1002/anie.202000503

    28. [28]

      Zhang, S.; Liu, X.; Liu, C.; Luo, S.; Wang, L.; Cai, T.; Zeng, Y.; Yuan, J.; Dong, W.; Pei, Y.; et al. ACS Nano 2018, 12, 751. doi: 10.1021/acsnano.7b07974  doi: 10.1021/acsnano.7b07974

    29. [29]

      Gao, F.; Zhao, Y.; Zhang, L.; Wang, B.; Wang, Y.; Huang, X.; Wang, K.; Feng, W.; Liu, P. J. Mater. Chem. A 2018, 6, 18979. doi: 10.1039/C8TA06029K  doi: 10.1039/C8TA06029K

    30. [30]

      Peng, X.; Ye, L.; Ding, Y.; Yi, L.; Zhang, C.; Wen, Z. Appl. Catal. B 2020, 260, 118152. doi: 10.1016/j.apcatb.2019.118152  doi: 10.1016/j.apcatb.2019.118152

    31. [31]

      Ye, L.; Li, Z. Appl. Catal. B 2014, 160, 552. doi: 10.1016/j.apcatb.2014.06.012  doi: 10.1016/j.apcatb.2014.06.012

    32. [32]

      Zhong, W.; Gao, D.; Yu, H.; Fan, J.; Yu, J. Chem. Eng. J. 2021, 419, 129652. doi: 10.1016/j.cej.2021.129652  doi: 10.1016/j.cej.2021.129652

    33. [33]

      Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660  doi: 10.1002/adma.201807660

    34. [34]

      Hu, P.; Ngaw, C. K.; Yuan, Y.; Bassi, P. S.; Loo, S. C. J.; Tan, T. T. Y. Nano Energy 2016, 26, 577. doi: 10.1016/j.nanoen.2016.06.006  doi: 10.1016/j.nanoen.2016.06.006

    35. [35]

      Shen, R.; Xie, J.; Xiang, Q.; Chen, X.; Jiang, J.; Li, X. Chin. J. Catal. 2019, 40, 240. doi: 10.1016/S1872-2067(19)63294-8  doi: 10.1016/S1872-2067(19)63294-8

    36. [36]

      Wang, J.; Wu, N.; Liu, T.; Cao, S.; Yu, J. Acta Phys. -Chim. Sin. 2020, 36, 1907072.  doi: 10.3866/PKU.WHXB201907072

    37. [37]

      Guan, B. Y.; Yu, L.; Wang, X.; Song, S.; Lou, X. W. Adv. Mater. 2017, 6, 1605051. doi: 10.1002/adma.201605051  doi: 10.1002/adma.201605051

    38. [38]

      Li, S.; Xu, P.; Aslam, M. K.; Chen, C.; Rashid, A.; Wang, G.; Zhang, L.; Mao, B. Energy Storage Mater. 2020, 27, 51. doi: 10.1016/j.ensm.2020.01.017  doi: 10.1016/j.ensm.2020.01.017

    39. [39]

      Zhao, Q.; Sun, J.; Li, S.; Huang, C.; Yao, W.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. ACS Catal. 2018, 12, 11863. doi: 10.1021/acscatal.8b03737  doi: 10.1021/acscatal.8b03737

    40. [40]

      Wang, S.; Guan, B. Y.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 15145. doi: 10.1021/jacs.8b07721  doi: 10.1021/jacs.8b07721

    41. [41]

      Wang, S.; Wang, Y.; Zhang, S.; Zang, S.; Lou, X. W. Adv. Mater. 2019, 31, 1970291. doi: 10.1002/adma.201970291  doi: 10.1002/adma.201970291

    42. [42]

      Lin, X.; Xie, Z.; Su, B.; Zheng, M.; Dai, W.; Hou, Y.; Ding, Z.; Lin, W.; Fang, Y.; Wang, S. Nanoscale 2021, 13, 18070. doi: 10.1039/D1NR04812K  doi: 10.1039/D1NR04812K

    43. [43]

      Zheng, D.; Cao, X.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 11512. doi: 10.1002/anie.201606102  doi: 10.1002/anie.201606102

    44. [44]

      Sun, J.; Zhang, J.; Zhang, M.; Antonietti, M.; Fu, X.; Wang, X. Nat. Commun. 2012, 3, 1139. doi: 10.1038/ncomms2152  doi: 10.1038/ncomms2152

    45. [45]

      In, S. -I.; Vaughn Ii, D. D.; Schaak, R. E. Angew. Chem. Int. Ed. 2012, 51, 3915. doi: 10.1002/anie.201108936

    46. [46]

      Shi, H.; Li, Y.; Wang, X.; Yu, H.; Yu, J. Appl. Catal. B 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414  doi: 10.1016/j.apcatb.2021.120414

    47. [47]

      Liu, T.; Zhang, L.; You, W.; Yu, J. Small 2018, 14, 1702407. doi: 10.1002/smll.201702407  doi: 10.1002/smll.201702407

    48. [48]

      Wang, S.; Guan, B. Y.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 15145. doi: 10.1021/jacs.8b07721  doi: 10.1021/jacs.8b07721

    49. [49]

      Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S.; Lou, X. W. Adv. Mater. 2019, 31, 1903404. doi: 10.1002/adma.201903404  doi: 10.1002/adma.201903404

    50. [50]

      Shen, L.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X.; Lou, X. W. Nat. Commun. 2015, 6, 6694. doi: 10.1038/ncomms7694  doi: 10.1038/ncomms7694

    51. [51]

      Wang, S.; Guan, B. Y.; Lou, X. W. J. Am. Chem. Soc. 2018, 140, 5037. doi: 10.1021/jacs.8b02200  doi: 10.1021/jacs.8b02200

    52. [52]

      Wang, P.; Li, C.; Dong, S.; Ge, X.; Zhang, P.; Miao, X.; Wang, R.; Zhang, Z.; Yin, L. Adv. Energy Mater. 2019, 9, 1900788. doi: 10.1002/aenm.201900788  doi: 10.1002/aenm.201900788

    53. [53]

      Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 2684. doi: 10.1002/anie.201612551  doi: 10.1002/anie.201612551

    54. [54]

      Wang, H.; Zhang, H.; Wang, J.; Gao, Y.; Fa, F.; Wu, K.; Zong, X.; Li, C. Angew. Chem. Int. Ed. 2021, 60, 7376. doi: 10.1002/anie.202014623  doi: 10.1002/anie.202014623

    55. [55]

      Wang, J.; Zhang, Y.; Wang, X.; Su, W. Appl. Catal. B 2020, 268, 118444. doi: 10.1016/j.apcatb.2019.118444  doi: 10.1016/j.apcatb.2019.118444

    56. [56]

      Yuan, L.; Weng, B.; Colmenares, J. C.; Sun, Y.; Xu, Y. Small 2017, 13, 1702253. doi: 10.1002/smll.201702253  doi: 10.1002/smll.201702253

    57. [57]

      Su, B.; Huang, L.; Xiong, Z.; Yang, Y.; Hou, Y.; Ding, Z.; Wang, S. J. Mater. Chem. A 2019, 7, 26877. doi: 10.1039/C9TA10470D  doi: 10.1039/C9TA10470D

    58. [58]

      Xiong, Z.; Huang, L.; Peng, J.; Hou, Y.; Ding, Z.; Wang, S. ChemCatChem 2019, 11, 5513. doi: 10.1002/cctc.201901379  doi: 10.1002/cctc.201901379

    59. [59]

      Li, A.; Chang, X.; Huang, Z.; Li, C.; Wei, Y.; Zhang, L.; Wang, T.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201510990  doi: 10.1002/anie.201510990

    60. [60]

      Li, H.; Shang, J.; Ai, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 6393. doi: 10.1021/jacs.5b03105  doi: 10.1021/jacs.5b03105

    61. [61]

      Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. J. Am. Chem. Soc. 2017, 139, 7586. doi: 10.1021/jacs.7b02290  doi: 10.1021/jacs.7b02290

    62. [62]

      Zhang, Z.; Huang, Y.; Liu, K.; Guo, L.; Yuan, Q.; Dong, B. Adv. Mater. 2015, 27, 5906. doi: 10.1002/adma.201502203  doi: 10.1002/adma.201502203

    63. [63]

      Wang, L.; Zhu, Bi.; Cheng, B.; Zhang, J.; Zhang, L.; Yu, J. Chin. J. Catal. 2021, 42, 1648. doi: 10.1016/S1872-2067(21)63805-6  doi: 10.1016/S1872-2067(21)63805-6

    64. [64]

      Gao, Y.; Chen, F.; Chen, Z.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 227. doi: 10.1016/j.jmst.2020.02.050  doi: 10.1016/j.jmst.2020.02.050

    65. [65]

      Han, X.; Chen, Q.; Zhang, H.; Ni, Y.; Zhang, L. Chem. Eng. J. 2019, 368, 513. doi: 10.1016/j.cej.2019.02.138  doi: 10.1016/j.cej.2019.02.138

    66. [66]

      Hojamberdiev, M.; Cai, Y.; Vequizo, J. J. M.; Khan, M. M.; Vargas, R.; Yubuta, K.; Yamakata, A.; Teshimaf, K.; Hasegawaa, M. Green Chem. 2018, 20, 3845. doi: 10.1039/C8GC01746H  doi: 10.1039/C8GC01746H

    67. [67]

      Vattikuti, S. V. P.; Police, A. K. R.; Shim, J.; Byon, C. Sci. Rep. 2018, 8, 4194. doi: 10.1038/s41598-018-22622-0  doi: 10.1038/s41598-018-22622-0

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    8. [8]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    9. [9]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    10. [10]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    11. [11]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    12. [12]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    13. [13]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    14. [14]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    15. [15]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    16. [16]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    17. [17]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    18. [18]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    19. [19]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    20. [20]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

Metrics
  • PDF Downloads(80)
  • Abstract views(1543)
  • HTML views(479)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return