Citation: Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 211001. doi: 10.3866/PKU.WHXB202110014 shu

P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution

  • Corresponding author: Xin Li, xinli@scau.edu.cn; xinliscau@126.com
  • Received Date: 12 October 2021
    Revised Date: 3 November 2021
    Accepted Date: 3 November 2021
    Available Online: 8 November 2021

    Fund Project: the National Natural Science Foundation of China 21975084the National Natural Science Foundation of China 51672089Special Funding on Applied Science and Technology in Guangdong, China 2017B020238005

  • Throughout the twentieth century, temperatures climbed rapidly as the use of fossil fuels proliferated and greenhouse gas levels soared. Thus, the need to develop environmentally friendly energy sources to replace traditional fossil fuels is urgent. Clean and highly efficient, hydrogen is considered the most promising energy source to replace traditional fossil fuels. The production of hydrogen by photocatalytic water splitting is environmentally friendly, and is considered the most promising method for producing hydrogen energy. Enhancing the separation efficiency of photogenerated electron-hole pairs has been identified as a key milestone for constructing high-efficiency photocatalysts. However, the construction of efficient and stable hydrogen-evolution photocatalysts with highly dispersed cocatalysts remains a challenge. Here, we succeeded, for the first time, in fabricating P-doped CNS (PCNS) with a highly dispersed non-noble trimetallic transition metal phosphide Co0.2Ni1.6Fe0.2P cocatalyst (PCNS-CoNiFeP), by a one-step in situ high-temperature phosphating method. Remarkably, the CoNiFeP in PCNS-CoNiFeP demonstrated no aggregation and high dispersibility compared with CoNiFeP prepared by the traditional hydroxide-precursor phosphating method (PCNS-CoNiFeP-OH). X-ray diffraction, X-ray photoelectron spectroscopy, element mapping images, and high-resolution transmission electron microscopy results demonstrate that PCNS-CoNiFeP was successfully synthesized. The UV-Vis absorption results indicate a slight increase in absorbance for PCNS-CoNiFeP in the 200–800 nm wavelength region compared with that of PCNS. Photoluminescence spectroscopy, electrochemical impedance spectroscopy, and photocurrent results demonstrated that CoNiFeP cocatalysts could effectively promote the separation of photogenerated electron-hole pairs and accelerate the migration of carriers. The linear sweep voltammetry results also demonstrate that the CoNiFeP cocatalyst loading could significantly decrease the overpotential of CNS. Therefore, the maximum hydrogen evolution rate of PCNS-CoNiFeP was 1200 μmol·h-1·g-1, which was approximately four times higher than that of pure CNS-Pt (320 μmol·h-1·g-1) when using TEOA solution as a sacrificial agent. The apparent quantum efficiency of PCNS-CoNiFeP was 1.4% at 420 nm. The PCNS-CoNiFeP also exhibited good stability during the photocatalytic reaction. In addition, the TEM results indicate that CoNiFeP with a size of 6–8 nm are highly dispersed on the PCNS surface. The highly dispersed CoNiFeP demonstrated better charge-separation capacity and higher intrinsic electrocatalytic hydrogen-evolution activity than the aggregated CoNiFeP. Thus, the hydrogen evolution rate of aggregated CoNiFeP-PCNs (300 μmol·h-1·g-1) was much lower than that of PCNS-CoNiFeP. Furthermore, P doping of CNS could improve electric conductivity and charge transport. It is expected that loading highly dispersed CoNiFeP and P doping could be extended to promote photocatalytic hydrogen production using various photocatalysts.
  • 加载中
    1. [1]

      Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020, 49, 2215. doi: 10.1039/c9cs00869a  doi: 10.1039/c9cs00869a

    2. [2]

      Li, Y.; Zhang, M.; Zhou, L; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    3. [3]

      Jiang, Z.; Chen, Q.; Zheng, Q. Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059.  doi: 10.3866/PKU.WHXB202010059

    4. [4]

      Shen, R.; Ren, D.; Ding, Y.; Guang, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China-Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x  doi: 10.1007/s40843-020-1456-x

    5. [5]

      Liang, Z.; Shen, R.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032  doi: 10.1016/j.jmst.2020.04.032

    6. [6]

      Shen, R.; Xie, J.; Xiang, Q.; Chen, X.; Jiang, J.; Li, X. Chin. J. Catal. 2019, 40, 240. doi: 10.1016/s1872-2067(19) 63294-8  doi: 10.1016/s1872-2067(19)63294-8

    7. [7]

      Bie, C.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Energy Chem. 2021, 3, 100051. doi: 10.1016/j.enchem.2021.100051  doi: 10.1016/j.enchem.2021.100051

    8. [8]

      Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Mater. Today Phys. 2020, 15, 100279. doi: 10.1016/j.mtphys.2020.100279  doi: 10.1016/j.mtphys.2020.100279

    9. [9]

      Wang, B.; Ding, Y.; Deng, Z.; Li, Z. Chin. J. Catal. 2019, 40, 335. doi: 10.1016/s1872-2067(18)63159-6  doi: 10.1016/s1872-2067(18)63159-6

    10. [10]

      Wang, M.; Cheng, J.; Wang, X.; Hong, X.; Fan, J.; Yu, H. Chin. J. Catal. 2021, 42, 37. doi: 10.1016/s1872-2067(20)63633-6  doi: 10.1016/s1872-2067(20)63633-6

    11. [11]

      Shen, R.; Zhang, L.; Chen, X.; Jaroniec, M.; Li, N.; Li, X. Appl. Catal. B-Environ. 2020, 266, 118619. doi: 10.1016/j.apcatb.2020.11861  doi: 10.1016/j.apcatb.2020.11861

    12. [12]

      Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    13. [13]

      Shen, R.; Lu, X.; Zheng, Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Solar RRL 2021, 5, 2100177. doi: 10.1002/solr.202100177  doi: 10.1002/solr.202100177

    14. [14]

      Lu, X.; Xie, J.; Chen, X.; Li, X. Appl. Catal. B-Environ. 2019, 252, 250. doi: 10.1016/j.apcatb.2019.04.012  doi: 10.1016/j.apcatb.2019.04.012

    15. [15]

      Zhang, S.; Duan, S.; Chen, G.; Meng, S.; Zheng, X.; Fan, Y.; Fu, X.; Chen, S. Chin. J. Catal. 2021, 42, 193. doi: 10.1016/s1872-2067(20)63584-7  doi: 10.1016/s1872-2067(20)63584-7

    16. [16]

      Ma, S.; Deng, Y.; Xie, J.; He, K.; Liu, W.; Chen, X.; Li, X. Appl. Catal. B-Environ. 2018, 227, 218. doi: 10.1016/j.apcatb.2018.01.031  doi: 10.1016/j.apcatb.2018.01.031

    17. [17]

      Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. Appl. Catal. B-Environ. 2021, 291, 120104. doi: 10.1016/j.apcatb.2021.120104  doi: 10.1016/j.apcatb.2021.120104

    18. [18]

      Liu, Q.; Huang, J.; Tang, H.; Yu, X.; Shen, J. J. Mater. Sci. Technol. 2020, 56, 196. doi: 10.1016/j.jmst.2020.04.026  doi: 10.1016/j.jmst.2020.04.026

    19. [19]

      Lin, B.; Li, J.; Xu, B.; Yan, X.; Yang, B.; Wei, J.; Yang, G. Appl. Catal. B-Environ. 2019, 243, 94. doi: 10.1016/j.apcatb.2018.10.029  doi: 10.1016/j.apcatb.2018.10.029

    20. [20]

      Yan, X.; Jin, Z. Chem. Eng. J. 2021, 420, 127681. doi: 10.1016/j.cej.2020.127681  doi: 10.1016/j.cej.2020.127681

    21. [21]

      Wang, Z.; Li, L.; Liu, M.; Miao, T.; Ye, X.; Meng, S.; Chen, S.; Fu, X. J. Energy Chem. 2020, 48, 241. doi: 10.1016/j.jechem.2020.01.01  doi: 10.1016/j.jechem.2020.01.01

    22. [22]

      Zeng, D.; Zhou, T.; Ong, W. J.; Wu, M.; Duan, X.; Xu, W.; Chen, Y.; Zhu, Y. A.; Peng, D. L. ACS Appl. Mater. Interfaces 2019, 11, 5651. doi: 10.1021/acsami.8b20958  doi: 10.1021/acsami.8b20958

    23. [23]

      Xu, J.; Qi, Y.; Wang, C.; Wang, L. Appl. Catal. B-Environ. 2019, 241, 178. doi: 10.1016/j.apcatb.2018.09.035  doi: 10.1016/j.apcatb.2018.09.035

    24. [24]

      Liu, W.; Shen, J.; Liu, Q.; Yang, X.; Tang, H. Appl. Surf. Sci. 2018, 462, 822. doi: 10.1016/j.apsusc.2018.08.189  doi: 10.1016/j.apsusc.2018.08.189

    25. [25]

      Yang, F.; Liu, D.; Li, Y.; Ning, S.; Cheng, L.; Ye, J. Chem. Eng. J. 2021, 406, 126838. doi: 10.1016/j.cej.2020.126838  doi: 10.1016/j.cej.2020.126838

    26. [26]

      Cheng, C.; Zong, S.; Shi, J.; Xue, F.; Zhang, Y.; Guan, X.; Zheng, B.; Deng, J.; Guo, L. Appl. Catal. B-Environ. 2020, 265, 118620. doi: 10.1016/j.apcatb.2020.118620  doi: 10.1016/j.apcatb.2020.118620

    27. [27]

      Li, J.; Yan, M.; Zhou, X.; Huang, Z. Q.; Xia, Z.; Chang, C. R.; Ma, Y.; Qu, Y. Adv. Funct. Mater. 2016, 26, 6785. doi: 10.1002/adfm.201601420  doi: 10.1002/adfm.201601420

    28. [28]

      Yu, J.; Li, Q.; Li, Y.; Xu, C. Y.; Zhen, L.; Dravid, V. P.; Wu, J. Adv. Funct. Mater. 2016, 26, 7644. doi: 10.1002/adfm.201603727  doi: 10.1002/adfm.201603727

    29. [29]

      Wang, P. Y.; Pu, Z. H.; Li, Y. H.; Wu, L.; Tu, Z. K.; Jiang, M.; Kou, Z. K.; Arniinu, I. S.; Mu, S. C. ACS Appl. Mater. Interfaces 2017, 9, 26001. doi: 10.1021/acsami.7b06305  doi: 10.1021/acsami.7b06305

    30. [30]

      Yang, N.; Tang, C.; Wang, K.; Du, G.; Asiri, A. M.; Sun, X. Nano Res. 2016, 9, 3346. doi: 10.1007/s12274-016-1211-x  doi: 10.1007/s12274-016-1211-x

    31. [31]

      Tang, C.; Gan, L. F.; Zhang, R.; Lu, W. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P.; Wang, J.; Chen, L. Nano Lett. 2016, 16, 6617. doi: 10.1021/acs.nanolett.6b03332  doi: 10.1021/acs.nanolett.6b03332

    32. [32]

      Jiao, Y.; Li, Y.; Wang, J.; He, Z.; Li, Z. J. Colloid Interface Sci. 2021, 595, 69. doi: 10.1016/j.jcis.2021.03.134  doi: 10.1016/j.jcis.2021.03.134

    33. [33]

      Luo, B.; Song, R.; Geng, J.; Liu, X.; Jing, D.; Wang, M.; Cheng, C. Appl. Catal. B-Environ. 2019, 256, 117819. doi: 10.1016/j.apcatb.2019.117819  doi: 10.1016/j.apcatb.2019.117819

    34. [34]

      Yi, S. S.; Yan, J. M.; Wulan, B. R.; Li, S. J.; Liu, K. H.; Jiang, Q. Appl. Catal. B-Environ. 2017, 200, 477. doi: 10.1016/j.apcatb.2016.07.046  doi: 10.1016/j.apcatb.2016.07.046

    35. [35]

      Sun, X. J.; Yang, D. D.; Dong, H.; Meng, X. B.; Sheng, J. L.; Zhang, X.; Wei, J. Z.; Zhang, F. M. Sustain. Energy Fuel 2018, 2, 1356. doi: 10.1039/c8se00063h  doi: 10.1039/c8se00063h

    36. [36]

      Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030  doi: 10.1016/j.apsusc.2016.07.030

    37. [37]

      Shen, R.; Xie, J.; Lu, X.; Chen, X.; Li, X. ACS Sustain. Chem. Eng. 2018, 6, 4026. doi: 10.1021/acssuschemeng.7b04403  doi: 10.1021/acssuschemeng.7b04403

    38. [38]

      Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. ACS Appl. Mater. Interfaces 2013, 5, 10317. doi: 10.1021/am403327g  doi: 10.1021/am403327g

    39. [39]

      Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. J. Mater. Chem. A 2017, 5, 3230. doi: 10.1039/c6ta08310b  doi: 10.1039/c6ta08310b

    40. [40]

      Ray, C.; Lee, S. C.; Jin, B.; Kundu, A.; Park, J. H.; Jun, S. C. ACS Sustain. Chem. Eng. 2018, 6, 6146. doi: 10.1021/acssuschemeng.7b04808  doi: 10.1021/acssuschemeng.7b04808

    41. [41]

      Huang, Z. F.; Song, J.; Wang, X.; Pan, L.; Li, K.; Zhang, X.; Wang, L.; Zou J. J. Nano Energy. 2017, 40, 308. doi: 10.1016/j.nanoen.2017.08.032  doi: 10.1016/j.nanoen.2017.08.032

    42. [42]

      Jin, Z.; Li, Y.; Hao, X. Acta Phys. -Chim. Sin. 2021, 37, 1912033.  doi: 10.3866/PKU.WHXB201912033

    43. [43]

      Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

    44. [44]

      Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P. K. Adv. Mater. 2018, 30, 1706108. doi: 10.1002/adma.201706108  doi: 10.1002/adma.201706108

    45. [45]

      Ai, C.; Tong, L.; Wang, Z.; Zhang, X.; Wang, G.; Deng, S.; Li, J.; Lin, S. Chin. J. Catal. 2020, 41, 1645. doi: 10.1016/s1872-2067(19)63512-6  doi: 10.1016/s1872-2067(19)63512-6

    46. [46]

      Chen, Q.; Li, S.; Xu, H.; Wang, G.; Qu, Y.; Zhu, P.; Wang, D. Chin. J. Catal. 2020, 41, 514. doi: 10.1016/s1872-2067(19)63497-2  doi: 10.1016/s1872-2067(19)63497-2

    47. [47]

      Li, C.; Du, Y.; Wang, D.; Yin, S.; Tu, W.; Chen, Z.; Kraft, M.; Chen, G.; Xu, R. Adv. Funct. Mater. 2017, 27, 1604328. doi: 10.1002/adfm.201604328  doi: 10.1002/adfm.201604328

    48. [48]

      Liu, W.; Cao, L.; Cheng, W.; Cao, Y.; Liu, X.; Zhang, W.; Mou, X.; Jin, L.; Zheng, X.; Che, W.; et al. Angew. Chem. Int. Edit. 2017, 56, 9312. doi: 10.1002/anie.201704358  doi: 10.1002/anie.201704358

    49. [49]

      Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. Am. Chem. Soc. 2010, 132, 6294. doi: 10.1021/ja101749y  doi: 10.1021/ja101749y

    50. [50]

      Zhang, F.; Zhang, J.; Li, J.; Jin, X.; Li, Y.; Wu, M.; Kang, X.; Hu, T.; Wang, X.; Ren, W.; Zhang, G. J. Mater. Chem. A 2019, 7, 6939. doi: 10.1039/c9ta00765b  doi: 10.1039/c9ta00765b

    51. [51]

      Wang, X. J.; Tian, X.; Sun, Y. J.; Zhu, J. Y.; Li, F. T.; Mu, H. Y.; Zhao, J. Nanoscale 2018, 10, 12315. doi: 10.1039/c8nr03846e  doi: 10.1039/c8nr03846e

    52. [52]

      Zhao, H.; Jiang, P.; Cai, W. Chem-Asian J. 2017, 12, 361. doi: 10.1002/asia.201601543  doi: 10.1002/asia.201601543

    53. [53]

      Shen, R. C.; Xie, J.; Zhang, H. D. Zhang, A. P.; Chen, X. B.; Li, X. ACS Sustain. Chem. Eng. 2018, 6, 816. doi: 10.1021/acssuschemeng.7b03169  doi: 10.1021/acssuschemeng.7b03169

    54. [54]

      Shen, R.; Liu, W.; Ren, D.; Xie, J.; Li, X. Appl. Surf. Sci. 2019, 466, 393. doi: 10.1016/j.apsusc.2018.10.033  doi: 10.1016/j.apsusc.2018.10.033

    55. [55]

      Xu, J.; Qi, Y.; Wang, L. Appl. Catal. B-Environ. 2019, 246, 72. doi: 10.1016/j.apcatb.2019.01.045  doi: 10.1016/j.apcatb.2019.01.045

    56. [56]

      Zhang, Y.; Wang, G.; Jin, Z. Int. J. Hydrog. Energy 2019, 44, 10316. doi: 10.1016/j.ijhydene.2019.03.006  doi: 10.1016/j.ijhydene.2019.03.006

    57. [57]

      Ge, J.; Jiang, D.; Zhang, L.; Du, P. Catal. Lett. 2018, 148, 3741. doi: 10.1007/s10562-018-2562-6  doi: 10.1007/s10562-018-2562-6

    58. [58]

      Liu, E.; Jin, C.; Xu, C.; Fan, J.; Hu, X. Int. J. Hydrog. Energy 2018, 43, 21355. doi: 10.1016/j.ijhydene.2018.09.195  doi: 10.1016/j.ijhydene.2018.09.195

    59. [59]

      Zeng, D.; Xu, W.; Ong, W. J; Xu, J.; Ren, H.; Chen, Y.; Zheng, H.; Peng, D. L. Appl. Catal. B-Environ. 2018, 221, 47. doi: 10.1016/j.apcatb.2017.08.041  doi: 10.1016/j.apcatb.2017.08.041

    60. [60]

      Wen, J.; Xie, J.; Shen, R.; Li, X.; Luo, X.; Zhang, H.; Zhang, A.; Bi, G. Dalton Trans. 2017, 46, 1794. doi: 10.1039/c6dt04575h  doi: 10.1039/c6dt04575h

    61. [61]

      Sun, Z.; Zhu, M.; Fujitsuka, M.; Wang, A.; Shi, C.; Majima, T. ACS Appl. Mater. Interfaces 2017, 9, 30583. doi: 10.1021/acsami.7b06386  doi: 10.1021/acsami.7b06386

    62. [62]

      Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. J. Mater. Chem. A 2015, 3, 2485. doi: 10.1039/c4ta04461d  doi: 10.1039/c4ta04461d

    63. [63]

      Jia, X.; Bai, X.; Ji, Z.; Li, Y.; Sun, Y.; Mi, X.; Zhan, S. Acta Phys. -Chim. Sin. 2021, 37, 2010042.  doi: 10.3866/PKU.WHXB202010042

    64. [64]

      Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030.  doi: 10.3866/PKU.WHXB202010030

    65. [65]

      Wang, W.; Huang, Y.; Wang, Z. Acta Phys. -Chim. Sin. 2021, 37, 2011073.  doi: 10.3866/PKU.WHXB202011073

    66. [66]

      Chen, X.; Chen, Y.; Liu, X.; Wang, Q.; Li, L.; Du, L.; Tian, G. Sci. China-Mater. 2021, doi: 10.1007/s40843-021-1744-5  doi: 10.1007/s40843-021-1744-5

    67. [67]

      Han, C.; Li, J.; Ma, Z.; Xie, H.; Waterhouse, G. I. N.; Ye, L.; Zhang, T. Sci. China-Mater. 2018, 61, 1159. doi: 10.1007/s40843-018-9245-y  doi: 10.1007/s40843-018-9245-y

    68. [68]

      Ma, B.; Zhao, J.; Ge, Z.; Chen, Y.; Yuan, Z. Sci. China-Mater. 2020, 63, 258. doi: 10.1007/s40843-019-1181-y  doi: 10.1007/s40843-019-1181-y

    69. [69]

      Ran, J.; Ma, T. Y.; Gao, G.; Du, X. W.; Qiao, S. Z. Energy Environ. Sci. 2015, 8, 3708. doi: 10.1039/C5EE02650D  doi: 10.1039/C5EE02650D

  • 加载中
    1. [1]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    4. [4]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    5. [5]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    6. [6]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    7. [7]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    8. [8]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    9. [9]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    10. [10]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    11. [11]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    14. [14]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    15. [15]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    16. [16]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    17. [17]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    18. [18]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    19. [19]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    20. [20]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

Metrics
  • PDF Downloads(32)
  • Abstract views(929)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return