Citation: Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2022, 38(7): 210902. doi: 10.3866/PKU.WHXB202109023 shu

Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production

  • Corresponding author: Kai Wang, kaiwang@nun.edu.cn Zhiliang Jin, zl-jin@nun.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 15 September 2021
    Revised Date: 12 October 2021
    Accepted Date: 29 October 2021
    Available Online: 2 November 2021

    Fund Project: the Natural Science Foundation of Ningxia Province 2021AAC03225the Fundamental Research Funds for the Central Universities of North Minzu University 2020KYQD29

  • Constructing an efficient and stable heterojunction photocatalyst system is a promising approach to achieve solar-driven water splitting to produce hydrogen. In this work, a novel Mn0.2Cd0.8S@CoAl LDH (MCCA) S-scheme heterojunction was successfully prepared through the efficient coupling of Mn0.2Cd0.8S nanorods and CoAl LDH nanosheets, employing a physical mixing method. The photoluminescence and photocurrent-time response results demonstrated that the internal electric field of the constructed MCCA S-scheme heterojunction could successfully accelerate charge separation and electron transfer between the Mn0.2Cd0.8S interface and the CoAl LDH. Critically, the introduction of the CoAl LDH effectively inhibited the recombination of photogenerated electrons and holes, thereby improving the photocatalytic hydrogen production activity of Mn0.2Cd0.8S. A maximum H2 production of 1177.9 μmol in 5 h was obtained with MCCA-3. This represents a significant improvement compared to what can be achieved with the pure Mn0.2Cd0.8S nanorods and CoAl LDH nanosheets individually. This work provides a simple and effective approach for the rational design of S-scheme heterojunction photocatalysts for photocatalytic hydrogen production.
  • 加载中
    1. [1]

      Zhang, J.; Tian, J.; Fan, J.; Yu, J.; Ho, W. Small 2020, 16, 1907290. doi: 10.1002/smll.201907290  doi: 10.1002/smll.201907290

    2. [2]

      Cheng, F.; Yin, H.; Xiang, Q. Appl. Surf. Sci. 2017, 391, 432. doi: 10.1016/j.apsusc.2016.06.169  doi: 10.1016/j.apsusc.2016.06.169

    3. [3]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    4. [4]

      Xu, F.; Meng, K.; Zhu, B.; Liu, H.; Xu, J.; Yu, J. Adv. Funct. Mater. 2019, 29, 1904256. doi: 10.1002/adfm.201904256  doi: 10.1002/adfm.201904256

    5. [5]

      Liu, D.; Jin, Z.; Li, H.; Lu, G. Appl. Surf. Sci. 2017, 423, 255. doi: 10.1016/j.apsusc.2017.06.156  doi: 10.1016/j.apsusc.2017.06.156

    6. [6]

      Yan, X.; Jin, Z.; Zhang, Y.; Liu, H.; Ma, X. Phys. Chem. Chem. Phys. 2019, 21, 4501. doi: 10.1039/C8CP07275B  doi: 10.1039/C8CP07275B

    7. [7]

      Shi, J.; Sun, D.; Zou, Y.; Ma, D.; He, C.; Ji, X.; Niu, C. Chem. Eng. J. 2019, 364, 11. doi: 10.1016/j.cej.2019.01.147  doi: 10.1016/j.cej.2019.01.147

    8. [8]

      Shen, R.; Ding, Y.; Li, S.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y.; Li, X. Chin. J. Catal. 2021, 42, 25. doi: 10.1016/S1872-2067(20)63600-2  doi: 10.1016/S1872-2067(20)63600-2

    9. [9]

      Hao, X.; Jin, Z.; Yang, H.; Lu, G.; Bi, Y. Appl. Catal. B Environ. 2017, 210, 45. doi: 10.1016/j.apcatb.2017.03.057  doi: 10.1016/j.apcatb.2017.03.057

    10. [10]

      Wang, H.; Jin, Z. J. Colloid Interface Sci. 2019, 548, 303. doi: 10.1016/j.jcis.2019.04.045  doi: 10.1016/j.jcis.2019.04.045

    11. [11]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    12. [12]

      Shen, R.; Xie, J.; Xiang, Q.; Chen, X.; Jiang, J.; Li, X. Chin. J. Catal. 2019, 40, 240. doi: 10.1016/S1872-2067(19)63294-8  doi: 10.1016/S1872-2067(19)63294-8

    13. [13]

      Wang, B.; Ding, Y.; Deng, Z.; Li, Z. Chin. J. Catal. 2019, 40, 335. doi: 10.1016/S1872-2067(18)63159-6  doi: 10.1016/S1872-2067(18)63159-6

    14. [14]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x  doi: 10.1007/s40843-020-1456-x

    15. [15]

      An, X.; Wang, Y.; Lin, J.; Shen, J.; Zhang, Z.; Wang, X. Sci. Bull. 2017, 62, 599. doi: 10.1016/j.scib.2017.03.025  doi: 10.1016/j.scib.2017.03.025

    16. [16]

      Wang, J.; Luo, J.; Liu, D.; Chen, S.; Peng, T. Appl. Catal. B Environ. 2019, 241, 130. doi: 10.1016/j.apcatb.2018.09.033  doi: 10.1016/j.apcatb.2018.09.033

    17. [17]

      Jiang, X.; Gong, H.; Liu, Q.; Song, M.; Huang, C. Appl. Catal. B Environ. 2020, 268, 118439. doi: 10.1016/j.apcatb.2019.118439  doi: 10.1016/j.apcatb.2019.118439

    18. [18]

      Ikeue, K.; Shiiba, S.; Machida, M. Chem. Mater. 2010, 22, 743. doi: 10.1021/cm9026013  doi: 10.1021/cm9026013

    19. [19]

      Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    20. [20]

      Huang, Q.; Wang, J.; Ye, L.; Zhang, Q.; Yao, H.; Li, Z. J. Taiwan Inst. Chem. E 2017, 80, 570. doi: 10.1016/j.jtice.2017.08.030  doi: 10.1016/j.jtice.2017.08.030

    21. [21]

      Gong, H.; Wang, G.; Li, H.; Jin, Z.; Guo, Q. Int. J. Hydrogen Energy 2020, 45, 26733. doi:10.1016/j.ijhydene.2020.07.059  doi: 10.1016/j.ijhydene.2020.07.059

    22. [22]

      Li, X.; Du, D.; Zhang, Y.; Xing, W.; Xue, Q.; Yan, Z. J. Mater. Chem. A 2017, 5, 15460. doi: 10.1039/C7TA04001F  doi: 10.1039/C7TA04001F

    23. [23]

      Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Yan, D.; Wei, M.; Evans, D.; Duan, X. J. Mater. Chem. A 2013, 1, 8836. doi: 10.1039/C3TA11452J  doi: 10.1039/C3TA11452J

    24. [24]

      Liu, W.; Dang, L.; Xu, Z.; Yu, H.; Jin, S.; Huber, G. ACS Catal. 2018, 8, 5533. doi: 10.1021/acscatal.8b01017  doi: 10.1021/acscatal.8b01017

    25. [25]

      Li, H.; Li, J.; Xu, C.; Yang, P.; Ng, D.; Song, P.; Zuo, M. J. Alloys Compd. 2017, 698, 852. doi: 10.1016/j.jallcom.2016.12.310  doi: 10.1016/j.jallcom.2016.12.310

    26. [26]

      Sahoo, D.; Nayak, S.; ReddySaty, K.; Martha, A.; Parida, K. Inorg. Chem. 2018, 57, 3840. doi: 10.1021/acs.inorgchem.7b03213  doi: 10.1021/acs.inorgchem.7b03213

    27. [27]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    28. [28]

      Li, H.; Hao, X.; Liu, Y.; Li, Y.; Jin, Z. J. Colloid Interface Sci. 2020, 572, 62. doi: 10.1016/j.jcis.2020.03.052  doi: 10.1016/j.jcis.2020.03.052

    29. [29]

      Liang, Z.; Shen, R.; Ng, Y.; Zhang, P.; Xiang, Q.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032  doi: 10.1016/j.jmst.2020.04.032

    30. [30]

      Li, Y.; Huang, L.; Xu, J.; Xu, H.; Xu, Y.; Xia, J.; Li, H. Mater. Res. Bull. 2015, 70, 500. doi: 10.1016/j.materresbull.2015.05.013  doi: 10.1016/j.materresbull.2015.05.013

    31. [31]

      Zeng, H.; Zhang, H.; Deng, L.; Shi, Z. J. Water Process. Eng. 2020, 33, 101084. doi: 10.1016/j.jwpe.2019.101084  doi: 10.1016/j.jwpe.2019.101084

    32. [32]

      Jiang, S.; Song, L.; Zeng, W. ACS Appl. Mater. Interfaces 2015, 7, 8506. doi: 10.1021/acsami.5b00176  doi: 10.1021/acsami.5b00176

    33. [33]

      Detwiler, M.; Gharachorlou, A.; Mayr, L.; Gu, X.; Liu, B.; Greeley, J.; Delgass, W.; Ribeiro, F.; Zemlyanov, D. J. Phys. Chem. C 2015, 119, 2399. doi: 10.1021/jp510032u  doi: 10.1021/jp510032u

    34. [34]

      Reddy, B.; Chowdhury, B.; Reddy, E. Appl. Catal. A 2001, 213, 279. doi: 10.1016/S0926-860X(00)00906-6  doi: 10.1016/S0926-860X(00)00906-6

    35. [35]

      Liu, H.; Xu, Z.; Zhang, Z.; Ao, D. Appl. Catal. A Gen. 2016, 518, 150. doi: 10.1016/j.apcata.2015.08.026  doi: 10.1016/j.apcata.2015.08.026

    36. [36]

      Zhang, Y.; Jin, Z. Phys. Chem. Chem. Phys. 2019, 21, 8326. doi: 10.1039/C9CP01180C  doi: 10.1039/C9CP01180C

    37. [37]

      Xing, X.; Gui, Y.; Zhang, G.; Song, C. Electrochim. Acta 2015, 157, 15. doi: 10.1016/j.electacta.2015.01.055  doi: 10.1016/j.electacta.2015.01.055

    38. [38]

      Rudolf, C.; Dragoi, B.; Ungureanu, A.; Chirieac, A.; Royer, S.; Nastro, A.; Dumitriu, E. Catal. Sci. Technol. 2014, 4, 179. doi: 10.1039/C3CY00611E  doi: 10.1039/C3CY00611E

    39. [39]

      Yang, M.; Wang, K.; Li, Y.; Yang, K.; Jin, Z. Appl. Surf. Sci. 2021, 548, 149212. doi: 10.1016/j.apsusc.2021.149212  doi: 10.1016/j.apsusc.2021.149212

    40. [40]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010059.  doi: 10.3866/PKU.WHXB202010059

    41. [41]

      He, K.; Xie, J.; Li, M.; Li, X. Appl. Surf. Sci. 2018, 430, 208. doi: 10.1016/j.apsusc.2017.08.191  doi: 10.1016/j.apsusc.2017.08.191

    42. [42]

      Lyth, S.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.; Ozaki, J.; Miyata, S. J. Phys. Chem. C 2009, 113, 20148. doi: 10.1021/jp907928j  doi: 10.1021/jp907928j

    43. [43]

      Jin, Z.; Li, Y.; Hao, X. Acta Phys. -Chim. Sin. 2021, 37 (10), 1912033.  doi: 10.3866/PKU.WHXB201912033

    44. [44]

      Mei, Z.; Wang, G.; Yan, S.; Wang, G. Acta Phys. -Chim. Sin. 2021, 37 (6), 2009097.  doi: 10.3866/PKU.WHXB202009097

    45. [45]

      Wageh, S.; Al-Ghamdi, A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010024. Wageh, S., Al-Ghamdi, A.,

    46. [46]

      Wageh, S.; Al-Ghamdi, A.; Jafer, R.; Li, X. Chin. J. Catal. 2021, 42 (5), 667. doi: 10.1016/S1872-2067(20)63705-6  doi: 10.1016/S1872-2067(20)63705-6

    47. [47]

      Fu, J.; Bie, C.; Cheng, B.; Jiang, C.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6, 2767. doi: 10.1021/acssuschemeng.7b04461  doi: 10.1021/acssuschemeng.7b04461

    48. [48]

      Wei, J.; Chen, Y.; Zhang, H.; Zhuang, Z.; Yu, Y. Chin. J. Catal. 2021, 42, 78. doi: 10.1016/S1872-2067(20)63661-0  doi: 10.1016/S1872-2067(20)63661-0

    49. [49]

      Peng, J.; Shen, J.; Yu, X.; Tang, H.; Zulfiqar; Liu, Q. Chin. J. Catal. 2021, 42, 87. doi: 10.1016/S1872-2067(20)63595-1  doi: 10.1016/S1872-2067(20)63595-1

    50. [50]

      Wen, J.; Xie, J.; Zhang, H.; Zhang, A.; Liu, Y.; Chen, X.; Li, X. ACS Appl. Mater. Interfaces 2017, 9, 14031. doi: 10.1021/acsami.7b02701  doi: 10.1021/acsami.7b02701

    51. [51]

      Ai, G.; Li, H.; Liu, S.; Mo, R.; Zhong, J. Adv. Funct. Mater. 2015, 25, 5706. doi: 10.1002/adfm.201502461  doi: 10.1002/adfm.201502461

    52. [52]

      Jin, Z.; Zhang, Y.; Ma, Q. J. Colloid Interface Sci. 2019, 556, 689. doi: 10.1016/j.jcis.2019.08.107  doi: 10.1016/j.jcis.2019.08.107

    53. [53]

      Mao, Z.; Chen, J.; Yang, Y.; Wang, D.; Bie, L. ACS Appl. Mater. Interfaces 2017, 9, 12427. doi: 10.1021/acsami.7b00370  doi: 10.1021/acsami.7b00370

    54. [54]

      Di, T.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 170. doi: 10.1016/j.jmst.2020.03.032  doi: 10.1016/j.jmst.2020.03.032

    55. [55]

      Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37 (6), 2008030.  doi: 10.3866/PKU.WHXB202008030

    56. [56]

      Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    57. [57]

      Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010027.  doi: 10.3866/PKU.WHXB202010027

    58. [58]

      Li, X.; Liu, J. Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010030.  doi: 10.3866/PKU.WHXB202010030

    59. [59]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    60. [60]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    61. [61]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6  doi: 10.1016/s1872-2067(19)63382-6

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    4. [4]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    5. [5]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    6. [6]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    7. [7]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    8. [8]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    9. [9]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    10. [10]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    11. [11]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    18. [18]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    20. [20]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(43)
  • Abstract views(1171)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return