Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries
- Corresponding author: Guangtao Cong, gtcong@szu.edu.cn Yi-Chun Lu, yichunlu@mae.cuhk.edu.hk
 
	            Citation:
	            
		            Guangtao Cong, Yi-Chun Lu. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries[J]. Acta Physico-Chimica Sinica,
							;2022, 38(6): 210600.
						
							doi:
								10.3866/PKU.WHXB202106008
						
					
				
					
				
	        
	                
				Soloveichik, G. L. Chem.  Rev.   2015, 115, 11533. doi: 10.1021/cr500720t
												 doi: 10.1021/cr500720t
											
										
				Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Angew. Chem. Int. Ed.   2017, 56, 686. doi: 10.1002/anie.201604925
												 doi: 10.1002/anie.201604925
											
										
				Wei, X.; Pan, W.; Duan, W.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z.; Liu, J.; Reed, D.; Wang, W.; et al.   ACS Energy Lett.   2017, 2, 2187. doi: 10.1021/acsenergylett.7b00650
												 doi: 10.1021/acsenergylett.7b00650
											
										
				Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Chem. Rev.   2016, 116, 9438. doi: 10.1021/acs.chemrev.6b00070
												 doi: 10.1021/acs.chemrev.6b00070
											
										
				Chen, H.; Cong, G.; Lu, Y. C. J. Energy Chem.   2018, 27, 1304. doi: 10.1016/j.jechem.2018.02.009
												 doi: 10.1016/j.jechem.2018.02.009
											
										
				Yao, Y.; Lei, J.; Shi, Y.; Ai, F.; Lu, Y. C. Nat. Energy 2021, 6, 582. doi: 10.1038/s41560-020-00772-8
												 doi: 10.1038/s41560-020-00772-8
											
										
				Li, Z.; Lu, Y. C. Nat. Energy 2021, 6, 517. doi: 10.1038/s41560-021-00804-x
												 doi: 10.1038/s41560-021-00804-x
											
										
				Wang, C.; Li, X.; Yu, B.; Wang, Y.; Yang, Z.; Wang, H.; Lin, H.; Ma, J.; Li, G.; Jin, Z. ACS Energy Lett.   2020, 5, 411. doi: 10.1021/acsenergylett.9b02676
												 doi: 10.1021/acsenergylett.9b02676
											
										
				Wang, C.; Yang, Z.; Wang, Y.; Zhao, P.; Yan, W.; Zhu, G.; Ma, L.; Yu, B.; Wang, L.; Li, G.; et al. ACS Energy Lett.   2018, 3, 2404. doi: 10.1021/acsenergylett.8b01296
												 doi: 10.1021/acsenergylett.8b01296
											
										
				Wang, C.; Yu, B.; Liu, Y.; Wang, H.; Zhang, Z.; Xie, C.; Li, X.; Zhang, H.; Jin, Z. Energy Stor. Mater.   2021, 36, 417. doi: 10.1016/j.ensm.2021.01.019
												 doi: 10.1016/j.ensm.2021.01.019
											
										
				Kwabi, D. G.; Ji, Y.; Aziz, M. J. Chem. Rev.   2020, 120, 6467. doi: 10.1021/acs.chemrev.9b00599
												 doi: 10.1021/acs.chemrev.9b00599
											
										
				Singh, V.; Kim, S.; Kang, J.; Byon, H. R. Nano Res.   2019, 12, 1988. doi: 10.1007/s12274-019-2355-2
												 doi: 10.1007/s12274-019-2355-2
											
										
				Gentil, S.; Reynard, D.; Girault, H. H. Curr. Opin. Electrochem.   2020, 21, 7. doi: 10.1016/j.coelec.2019.12.006
												 doi: 10.1016/j.coelec.2019.12.006
											
										
				Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Chem. Rev.   2016, 116, 13234. doi: 10.1021/acs.chemrev.6b00067
												 doi: 10.1021/acs.chemrev.6b00067
											
										
				Remya, G. S.; Suresh, C. H. Phys. Chem. Chem. Phys.   2016, 18, 20615. doi: 10.1039/C6CP02936A
												 doi: 10.1039/C6CP02936A
											
										
McMurry, J. E. Organic Chemistry, 8th ed.; Cengage Learning: Boston, 2012.
				Williams, D. L.; Byrne, J. J.; Driscoll, J. S. J. Electrochem.  Soc.   1969, 116, 2. doi: 10.1149/1.2411755
												 doi: 10.1149/1.2411755
											
										
				Wei, X.; Xu, W.; Huang, J.; Zhang, L.; Walter, E.; Lawrence, C.; Vijayakumar, M.; Henderson, W. A.; Liu, T.; Cosimbescu, L.; et al. Angew. Chem. Int. Ed.   2015, 54, 8684. doi: 10.1002/anie.201501443
												 doi: 10.1002/anie.201501443
											
										
				Xing, X.; Huo, Y.; Wang, X.; Zhao, Y.; Li, Y. Int. J. Hydrogen Energy 2017, 42, 17488. doi: 10.1016/j.ijhydene.2017.03.034
												 doi: 10.1016/j.ijhydene.2017.03.034
											
										
				Li, Z.; Li, S.; Liu, S.; Huang, K.; Fang, D.; Wang, F.; Peng, S. Electrochem. Solid-State Lett.   2011, 14, A171. doi: 10.1149/2.012112esl
												 doi: 10.1149/2.012112esl
											
										
				Huang, J.; Yang, Z.; Vijayakumar, M.; Duan, W.; Hollas, A.; Pan, B.; Wang, W.; Wei, X.; Zhang, L. Adv. Sustain. Syst.   2018, 2, 1700131. doi: 10.1002/adsu.201700131
												 doi: 10.1002/adsu.201700131
											
										
				Sevov, C. S.; Brooner, R. E. M.; Chénard, E.; Assary, R. S.; Moore, J. S.; Rodríguez-López, J.; Sanford, M. S. J. Am. Chem. Soc.   2015, 137, 14465. doi: 10.1021/jacs.5b09572
												 doi: 10.1021/jacs.5b09572
											
										
				Wei, X.; Duan, W.; Huang, J.; Zhang, L.; Li, B.; Reed, D.; Xu, W.; Sprenkle, V.; Wang, W. ACS Energy Lett.   2016, 1, 705. doi: 10.1021/acsenergylett.6b00255
												 doi: 10.1021/acsenergylett.6b00255
											
										
				Xing, X.; Liu, Q.; Li, J.; Han, Z.; Wang, B.; Lemmon, J. P. Chem. Commun.   2019, 55, 14214. doi: 10.1039/C9CC07937H
												 doi: 10.1039/C9CC07937H
											
										
				Duan, W.; Huang, J.; Kowalski, J. A.; Shkrob, I. A.; Vijayakumar, M.; Walter, E.; Pan, B.; Yang, Z.; Milshtein, J. D.; Li, B.; et al. ACS Energy Lett.   2017, 2, 1156. doi: 10.1021/acsenergylett.7b00261
												 doi: 10.1021/acsenergylett.7b00261
											
										
				McClelland, B. J. Chem. Rev.   1964, 64, 301. doi: 10.1021/cr60229a005
												 doi: 10.1021/cr60229a005
											
										
				Holy, N. L. Chem. Rev.   1974, 74, 243. doi: 10.1021/cr60288a005
												 doi: 10.1021/cr60288a005
											
										
				Gong, K.; Fang, Q.; Gu, S.; Li, S. F. Y.; Yan, Y. Energy Environ. Sci.   2015, 8, 3515. doi: 10.1039/C5EE02341F
												 doi: 10.1039/C5EE02341F
											
										
				Yu, J.; Hu, Y. S.; Pan, F.; Zhang, Z.; Wang, Q.; Li, H.; Huang, X.; Chen, L. Nat. Commun.   2017, 8, 14629. doi: 10.1038/ncomms14629
												 doi: 10.1038/ncomms14629
											
										
				Wang, G.; Huang, B.; Liu, D.; Zheng, D.; Harris, J.; Xue, J.; Qu, D. J. Mater. Chem. A 2018, 6, 13286. doi: 10.1039/C8TA03221A
												 doi: 10.1039/C8TA03221A
											
										
				Cong, G.; Wang, W.; Lai, N. C.; Liang, Z.; Lu, Y. C. Nat. Mater.   2019, 18, 390. doi: 10.1038/s41563-019-0286-7
												 doi: 10.1038/s41563-019-0286-7
											
										
				Zhang, L.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci.   2012, 5, 8204. doi: 10.1039/C2EE21977H
												 doi: 10.1039/C2EE21977H
											
										
				Huang, J.; Cheng, L.; Assary, R. S.; Wang, P.; Xue, Z.; Burrell, A. K.; Curtiss, L. A.; Zhang, L. Adv. Energy Mater.   2015, 5, 1401782. doi: 10.1002/aenm.201401782
												 doi: 10.1002/aenm.201401782
											
										
				Sevov, C. S.; Samaroo, S. K.; Sanford, M. S. Adv. Energy Mater.   2017, 7, 1602027. doi: 10.1002/aenm.201602027
												 doi: 10.1002/aenm.201602027
											
										
				Yan, Y.; Robinson, S. G.; Sigman, M. S.; Sanford, M. S. J. Am. Chem. Soc.   2019, 141, 15301. doi: 10.1021/jacs.9b07345
												 doi: 10.1021/jacs.9b07345
											
										
				Robinson, S. G.; Yan, Y.; Hendriks, K. H.; Sanford, M. S.; Sigman, M. S. J. Am. Chem. Soc.   2019, 141, 10171. doi: 10.1021/jacs.9b04270
												 doi: 10.1021/jacs.9b04270
											
										
				Shrestha, A.; Hendriks, K. H.; Sigman, M. S.; Minteer, S. D.; Sanford, M. S. Chem. - A Eur. J.   2020, 26, 5369. doi: 10.1002/chem.202000749
												 doi: 10.1002/chem.202000749
											
										
				Cong, G.; Zhou, Y.; Li, Z.; Lu, Y. C. ACS Energy Lett.   2017, 2, 869. doi: 10.1021/acsenergylett.7b00115
												 doi: 10.1021/acsenergylett.7b00115
											
										
				Wang, Y.; Zhou, H. Energy Environ. Sci.   2016, 9, 2267. doi: 10.1039/C6EE00902F
												 doi: 10.1039/C6EE00902F
											
										
				Zhang, C.; Zhang, L.; Ding, Y.; Guo, X.; Yu, G. ACS Energy Lett.   2018, 3, 2875. doi: 10.1021/acsenergylett.8b01899
												 doi: 10.1021/acsenergylett.8b01899
											
										
				Zhang, C.; Qian, Y.; Ding, Y.; Zhang, L.; Guo, X.; Zhao, Y.; Yu, G. Angew. Chem. Int. Ed.   2019, 58, 7045. doi: 10.1002/anie.201902433
												 doi: 10.1002/anie.201902433
											
										
				Goeltz, J. C.; Matsushima, L. N. Chem. Commun.   2017, 53, 9983. doi: 10.1039/C7CC04837H
												 doi: 10.1039/C7CC04837H
											
										
				Sinclair, N. S.; Poe, D.; Savinell, R. F.; Maginn, E. J.; Wainright, J. S. J. Electrochem. Soc.   2021, 168, 020527. doi: 10.1149/1945-7111/abe28a
												 doi: 10.1149/1945-7111/abe28a
											
										
				Zhang, C.; Chen, H.; Qian, Y.; Dai, G.; Zhao, Y.; Yu, G. Adv. Mater.   2021, 33, 2008560. doi: 10.1002/adma.202008560
												 doi: 10.1002/adma.202008560
											
										
				Zhang, C.; Niu, Z.; Ding, Y.; Zhang, L.; Zhou, Y.; Guo, X.; Zhang, X.; Zhao, Y.; Yu, G. Chem 2018, 4, 2814. doi: 10.1016/j.chempr.2018.08.024
												 doi: 10.1016/j.chempr.2018.08.024
											
										
				Takechi, K.; Kato, Y.; Hase, Y. Adv. Mater.   2015, 27, 2501. doi: 10.1002/adma.201405840
												 doi: 10.1002/adma.201405840
											
										
				Cong, G.; Lu, Y. C. Chem 2018, 4, 2732. doi: 10.1016/j.chempr.2018.11.018
												 doi: 10.1016/j.chempr.2018.11.018
											
										
				Duduta, M.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater.   2011, 1, 511. doi: 10.1002/aenm.201100152
												 doi: 10.1002/aenm.201100152
											
										
				Chen, H.; Zou, Q.; Liang, Z.; Liu, H.; Li, Q.; Lu, Y. C. Nat.  Commun.   2015, 6, 5877. doi: 10.1038/ncomms6877
												 doi: 10.1038/ncomms6877
											
										
				Chen, H.; Lu, Y. C. Adv. Energy Mater.   2016, 6, 1502183. doi: 10.1002/aenm.201502183
												 doi: 10.1002/aenm.201502183
											
										
				Chen, H.; Zhou, Y.; Lu, Y. C. ACS Energy Lett.   2018, 3, 1991. doi: 10.1021/acsenergylett.8b01257
												 doi: 10.1021/acsenergylett.8b01257
											
										
				Zhang, X.; Zhang, P.; Chen, H. ChemSusChem 2021, 14, 1913. doi: 10.1002/cssc.202100094
												 doi: 10.1002/cssc.202100094
											
										
				Wang, Q.; Zakeeruddin, S. M.; Wang, D.; Exnar, I.; Grätzel, M. Angew. Chem. Int. Ed.   2006, 45, 8197. doi: 10.1002/anie.200602891
												 doi: 10.1002/anie.200602891
											
										
				Jia, C.; Pan, F.; Zhu, Y. G.; Huang, Q.; Lu, L.; Wang, Q. Sci. Adv.   2015, 1, e1500886. doi: 10.1126/sciadv.1500886
												 doi: 10.1126/sciadv.1500886
											
										
				Huang, Q.; Yang, J.; Ng, C. B.; Jia, C.; Wang, Q. Energy Environ. Sci.   2016, 9, 917. doi: 10.1039/C5EE03764F
												 doi: 10.1039/C5EE03764F
											
										
				Yan, R.; Wang, Q. Adv. Mater.   2018, 30, 1802406. doi: 10.1002/adma.201802406
												 doi: 10.1002/adma.201802406
											
										
				Yu, J.; Fan, L.; Yan, R.; Zhou, M.; Wang, Q. ACS Energy Lett.   2018, 3, 2314. doi: 10.1021/acsenergylett.8b01420
												 doi: 10.1021/acsenergylett.8b01420
											
										
				Chen, Y.; Zhou, M.; Xia, Y.; Wang, X.; Liu, Y.; Yao, Y.; Zhang, H.; Li, Y.; Lu, S.; Qin, W.; et al. Joule 2019, 3, 2255. doi: 10.1016/j.joule.2019.06.007
												 doi: 10.1016/j.joule.2019.06.007
											
										
				Cheng, Y.; Wang, X.; Huang, S.; Samarakoon, W.; Xi, S.; Ji, Y.; Zhang, H.; Zhang, F.; Du, Y.; Feng, Z.; et al. ACS Energy Lett.   2019, 4, 3028. doi: 10.1021/acsenergylett.9b01939
												 doi: 10.1021/acsenergylett.9b01939
											
										
				Zhou, M.; Chen, Y.; Salla, M.; Zhang, H.; Wang, X.; Mothe, S. R.; Wang, Q. Angew. Chem. Int. Ed.   2020, 59, 14286. doi: 10.1002/anie.202004603
												 doi: 10.1002/anie.202004603
											
										
				Huang, Q.; Li, H.; Grätzel, M.; Wang, Q. Phys. Chem. Chem. Phys.   2013, 15, 1793. doi: 10.1039/C2CP44466F
												 doi: 10.1039/C2CP44466F
											
										
				Zhou, M.; Huang, Q.; Pham Truong, T. N.; Ghilane, J.; Zhu, Y. G.; Jia, C.; Yan, R.; Fan, L.; Randriamahazaka, H.; Wang, Q. Chem 2017, 3, 1036. doi: 10.1016/j.chempr.2017.10.003
												 doi: 10.1016/j.chempr.2017.10.003
											
										
				Kwon, G.; Lee, S.; Hwang, J.; Shim, H. S.; Lee, B.; Lee, M. H.; Ko, Y.; Jung, S. K.; Ku, K.; Hong, J.; Kang, K. Joule 2018, 2, 1771. doi: 10.1016/j.joule.2018.05.014
												 doi: 10.1016/j.joule.2018.05.014
											
										
				Li, Z.; Lu, Y. C. Chem 2018, 4, 2020. doi: 10.1016/j.chempr.2018.08.032
												 doi: 10.1016/j.chempr.2018.08.032
											
										
				Kwon, G.; Lee, K.; Lee, M. H.; Lee, B.; Lee, S.; Jung, S. K.; Ku, K.; Kim, J.; Park, S. Y.; Kwon, J. E.; et al. Chem 2019, 5, 2642. doi: 10.1016/j.chempr.2019.07.006
												 doi: 10.1016/j.chempr.2019.07.006
											
										
				Ham, Y.; Ri, V.; Kim, J.; Yoon, Y.; Lee, J.; Kang, K.; An, K. S.; Kim, C.; Jeon, S. Nano Res.   2021, 14, 1382. doi: 10.1007/s12274-020-3187-9
												 doi: 10.1007/s12274-020-3187-9
											
										
				Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Green Chem.   2017, 19, 2980. doi: 10.1039/C7GC00849J
												 doi: 10.1039/C7GC00849J
											
										
				Lee, S.; Lee, K.; Ku, K.; Hong, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Adv. Energy Mater.   2020, 10, 2001635. doi: 10.1002/aenm.202001635
												 doi: 10.1002/aenm.202001635
											
										
				Attanayake, N. H.; Kowalski, J. A.; Greco, K. V.; Casselman, M. D.; Milshtein, J. D.; Chapman, S. J.; Parkin, S. R.; Brushett, F. R.; Odom, S. A. Chem. Mater.   2019, 31, 4353. doi: 10.1021/acs.chemmater.8b04770
												 doi: 10.1021/acs.chemmater.8b04770
											
										
				Kowalski, J. A.; Casselman, M. D.; Kaur, A. P.; Milshtein, J. D.; Elliott, C. F.; Modekrutti, S.; Attanayake, N. H.; Zhang, N.; Parkin, S. R.; Risko, C.; et al. J. Mater. Chem. A 2017, 5, 24371. doi: 10.1039/C7TA05883G
												 doi: 10.1039/C7TA05883G
											
										
						
						
						
	                Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Peining Zhu , Xi Guo , Qinqin Yu , Zuyong Wang , Xiangxiao Lei , Zhiwei Zhu , Juan Du , Xiaojia Zhang , Yuan-Li Ding . Design strategies of Si-based anode for solid-state batteries. Chinese Chemical Letters, 2025, 36(9): 111383-. doi: 10.1016/j.cclet.2025.111383
Qiang-Qiang Jia , Jia-Qi Luo , Zhi-Yu Xue , Jing-Song Tang , Wen-Qiang Qiu , Chang-Feng Wang , Zhi-Xu Zhang , Hai-Feng Lu , Yi Zhang , Da-Wei Fu . Enhanced output power density of PVDF/LM composite for piezoelectric sensor. Chinese Chemical Letters, 2025, 36(11): 110471-. doi: 10.1016/j.cclet.2024.110471
Mingxing Chen , Xue Li , Nian Liu , Zihe Du , Zhitao Wang , Jing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294
Jinlong Li , Ruixin Li , Jiahui Liu , Ji-Quan Liu , Jia Xu , Xianglin Zhou , Yefan Zhang , Kairui Wang , Lin Lei , Gang Xie , Fengmei Wang , Ying Yang , Liping Cao . A TOC- and deposition-free electrochromic window driven by redox flow battery. Chinese Chemical Letters, 2024, 35(12): 110355-. doi: 10.1016/j.cclet.2024.110355
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Feibin Wei , Yongfang Rao , Yu Huang , Wei Wang , Hui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Zhili Yang , Liqun Liu , Xuebi Rao , Zeyu Jin , Jialin Sun , Yongkang Zhu , Shiming Zhang . Deprotonation effect doubles active site density in Fe-N4-C catalyst for oxygen reduction electrocatalysis. Chinese Chemical Letters, 2025, 36(11): 111440-. doi: 10.1016/j.cclet.2025.111440
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Chong-Chen Wang , Xiaohang Xu . Metal-organic frameworks helping resource and energy recovery from sludge. Chinese Chemical Letters, 2025, 36(10): 111287-. doi: 10.1016/j.cclet.2025.111287
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Shengdong Jing , Xiaoli Peng , Shilan Li , Long Yuan , Shengjun Lu , Yufei Zhang , Haosen Fan . Synergistic realization of fast polysulfide redox kinetics and stable lithium anode in Li-S battery from CoNi-MOF/MXene derived CoNi@TiO2/C heterostructure. Chinese Chemical Letters, 2025, 36(10): 110732-. doi: 10.1016/j.cclet.2024.110732
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721