Citation: Yong Zhang, Haojie Lu, Xiaoping Liang, Mingchao Zhang, Huarun Liang, Yingying Zhang. Silk Materials for Intelligent Fibers and Textiles: Potential, Progress and Future Perspective[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 210303. doi: 10.3866/PKU.WHXB202103034 shu

Silk Materials for Intelligent Fibers and Textiles: Potential, Progress and Future Perspective

  • Corresponding author: Yingying Zhang, yingyingzhang@tsinghua.edu.cn
  • Received Date: 16 March 2021
    Revised Date: 3 April 2021
    Accepted Date: 6 April 2021
    Available Online: 12 April 2021

    Fund Project: the National Natural Science Foundation of China 21975141the China Postdoctoral Science Foundation 2020M680547

  • Fibers and textiles with good flexibility, air permeability, and mechanical properties are indispensable materials in our daily lives. With the rapid development of flexible electronics, fabricating fibers and textiles that exhibit intelligent characteristics has become an attractive research topic. On the basis of the characteristics of common fibers or textiles, intelligent fibers and textiles may exhibit unique functions such as sensing, feedback, response, self-diagnosis, self-repair, and self-regulation. The development of intelligent fibers and textiles is closely related with the development of material science. Many materials, including metals, artificial polymers and natural biopolymers can be used for fabricating intelligent fibers and textiles. Compared with metals and artificial polymers, natural biopolymers have advantages of green source, biosafety, biodegradability and lightweight. Among natural biopolymers, natural silks, especially that from Bombyx mori, can be obtained in large amounts and have been used for clothes for thousands of years. Silkworm silk has exceptional mechanical properties, attractive luster, good biocompatibility and biodegradability. Therefore, silk materials are considered to be one of most promising candidates for intelligent fibers and textiles. In this review, we firstly introduce the hierarchical structures and basic properties of natural silk fibers. The exceptional mechanical properties of silk fibers can be ascribed to their unique hierarchical structures (from polypeptide chains, secondary structures to macroscopic fibers). The approaches to fabricate regenerated silk materials are briefly reviewed. The basic properties of silk materials, including the mechanical properties, biocompatibility, biodegradability, optical properties, piezoelectric properties, and thermal stability are presented. Then, the application of silk materials in various intelligent fibers and textiles, including fiber-based sensors, actuators, optical devices, energy harvesting and storage devices, are reviewed. Silk fibers can be functionalized and made into strain sensors, pressure sensors, and humidity sensors for applications in health monitoring. They can also transform into electrically conductive materials through high-temperature carbonization and then be fabricated into high-performance sensors or other functional devices. Silk-based actuators have been fabricated based on the response of silk to water or other molecules. Besides, silk-based fluorescence fibers and optical fibers were developed. Silk fibers have also been used in wearable energy devices by designing and fabricating piezoelectric nanogenerators, triboelectric nanogenerators, super-capacitors and batteries. The preparation methods, performance, and working mechanisms of those silk-based intelligent fibers and textiles are discussed in details. Finally, the persisting challenges and future opportunities of silk-based intelligent fibers and textiles are discussed. We believe that silk-based materials have great potential for intelligent fibers and textiles. The further development of this field will be accelerated by the continued development of material science and related techniques.
  • 加载中
    1. [1]

      Sun, H.; Zhang, Y.; Zhang, J.; Sun, X.; Peng, H. Nat. Rev. Mater. 2017, 2, 17023. doi: 10.1038/natrevmats.2017.23  doi: 10.1038/natrevmats.2017.23

    2. [2]

      Weng, W.; Yang, J.; Zhang, Y.; Li, Y.; Yang, S.; Zhu, L.; Zhu, M. Adv. Mater. 2020, 32, 1902301. doi: 10.1002/adma.201902301  doi: 10.1002/adma.201902301

    3. [3]

      Lee, J.; Zambrano, B. L.; Woo, J.; Yoon, K.; Lee, T. Adv. Mater. 2020, 32, 1902532. doi: 10.1002/adma.201902532  doi: 10.1002/adma.201902532

    4. [4]

      Wang, H.; Li, S.; Wang, Y.; Wang, H.; Shen, X.; Zhang, M.; Lu, H.; He, M.; Zhang, Y. Adv. Mater. 2020, 32, 1908214. doi: 10.1002/adma.201908214  doi: 10.1002/adma.201908214

    5. [5]

      Zhang, M.; Zhao, M.; Jian, M.; Wang, C.; Yu, A.; Yin, Z.; Liang, X.; Wang, H.; Xia, K.; Liang, X.; et al. Matter 2019, 1, 168. doi: 10.1016/j.matt.2019.02.003  doi: 10.1016/j.matt.2019.02.003

    6. [6]

      Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J.; Oh, Y. J.; Oviedo, J. P.; Bykova, J.; et al. Science 2017, 357, 773. doi: 10.1126/science.aam8771  doi: 10.1126/science.aam8771

    7. [7]

      Zhang, M.; Wang, Y.; Jian, M.; Wang, C.; Liang, X.; Niu, J.; Zhang, Y. Adv. Sci. 2020, 7, 1903048. doi: 10.1002/advs.201903048  doi: 10.1002/advs.201903048

    8. [8]

      Wu, Y.; Mechael, S. S.; Lerma, C.; Carmichael, R. S.; Carmichael, T. B. Matter 2020, 2, 882. doi: 10.1016/j.matt.2020.01.017  doi: 10.1016/j.matt.2020.01.017

    9. [9]

      Hardy, D. A.; Moneta, A.; Sakalyte, V.; Connolly, L.; Shahidi, A.; Hughes-Riley, T. Fibers 2018, 6, 35. doi: 10.3390/fib6020035  doi: 10.3390/fib6020035

    10. [10]

      Zhang, Z.; Cui, L.; Shi, X.; Tian, X.; Wang, D.; Gu, C.; Chen, E.; Cheng, X.; Xu, Y.; Hu, Y.; et al. Adv. Mater. 2018, 30, 1800323. doi: 10.1002/adma.201800323  doi: 10.1002/adma.201800323

    11. [11]

      Zhang, Z.; Guo, K.; Li, Y.; Li, X.; Guan, G.; Li, H.; Luo, Y.; Zhao, F.; Zhang, Q.; Wei, B.; et al. Nat. Photonic. 2015, 9, 233. doi: 10.1038/nphoton.2015.37  doi: 10.1038/nphoton.2015.37

    12. [12]

      Shi, X.; Zuo, Y.; Zhai, P.; Shen, J.; Yang, Y.; Gao, Z.; Liao, M.; Wu, J.; Wang, J.; Xu, X.; et al. Nature 2021, 591, 240. doi: 10.1038/s41586-021-03295-8  doi: 10.1038/s41586-021-03295-8

    13. [13]

      Levitt, A.; Hegh, D.; Phillips, P.; Uzun, S.; Anayee, M.; Razal, J. M.; Gogotsi, Y.; Dion, G. Mater. Today 2020, 34, 17. doi: 10.1016/j.mattod.2020.02.005  doi: 10.1016/j.mattod.2020.02.005

    14. [14]

      Yu, X.; Pan, J.; Zhang, J.; Sun, H.; He, S.; Qiu, L.; Lou, H.; Sun, X.; Peng, H. J. Mater. Chem. A 2017, 5, 6032. doi: 10.1039/C7TA00248C  doi: 10.1039/C7TA00248C

    15. [15]

      Wen, Z.; Yeh, M. -H.; Guo, H.; Wang, J.; Zi, Y.; Xu, W.; Deng, J.; Zhu, L.; Wang, X.; Hu, C.; et al. Sci. Adv. 2016, 2, e1600097. doi: 10.1126/sciadv.1600097  doi: 10.1126/sciadv.1600097

    16. [16]

      Fu, Y.; Cai, X.; Wu, H.; Lv, Z.; Hou, S.; Peng, M.; Yu, X.; Zou, D. Adv. Mater. 2012, 24, 5713. doi: 10.1002/adma.201202930  doi: 10.1002/adma.201202930

    17. [17]

      Yang, C.; Jiang, Q.; Li, W.; He, H.; Yang, L.; Lu, Z.; Huang, H. Chem. Mater. 2019, 31, 9277. doi: 10.1021/acs.chemmater.9b02115  doi: 10.1021/acs.chemmater.9b02115

    18. [18]

      Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Chem 2017, 3, 348. doi: 10.1016/j.chempr.2017.05.004  doi: 10.1016/j.chempr.2017.05.004

    19. [19]

      Wang, C.; Xia, K.; Zhang, Y.; Kaplan, D. L. Acc. Chem. Res. 2019, 52, 2916. doi: 10.1021/acs.accounts.9b00333  doi: 10.1021/acs.accounts.9b00333

    20. [20]

      Liu, Y.; Ren, J.; Ling, S. Compos. Commun. 2019, 13, 85. doi: 10.1016/j.coco.2019.03.004  doi: 10.1016/j.coco.2019.03.004

    21. [21]

      Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D. L.; Buehler, M. J. Nat. Commun. 2017, 8, 1387. doi: 10.1038/s41467-017-00613-5  doi: 10.1038/s41467-017-00613-5

    22. [22]

      Terry, A. E.; Knight, D. P.; Porter, D.; Vollrath, F. Biomacromolecules 2004, 5, 768. doi: 10.1021/bm034381v  doi: 10.1021/bm034381v

    23. [23]

      Hu, L.; Han, Y.; Ling, S.; Huang, Y.; Yao, J.; Shao, Z.; Chen, X. ACS Biomater. Sci. Eng. 2020, 6, 1874. doi: 10.1021/acsbiomaterials.9b01586  doi: 10.1021/acsbiomaterials.9b01586

    24. [24]

      Asakura, T.; Umemura, K.; Nakazawa, Y.; Hirose, H.; Higham, J.; Knight, D. Biomacromolecules 2007, 8, 175. doi: 10.1021/bm060874z  doi: 10.1021/bm060874z

    25. [25]

      Eisoldt, L.; Smith, A.; Scheibel, T. Mater. Today 2011, 14, 80. doi: 10.1016/S1369-7021(11)70057-8  doi: 10.1016/S1369-7021(11)70057-8

    26. [26]

      Vollrath, F.; Knight, D. P. Nature 2001, 410, 541. doi: 10.1038/35069000  doi: 10.1038/35069000

    27. [27]

      Willcox, P. J.; Gido, S. P.; Muller, W.; Kaplan, D. L. Macromolecules 1996, 29, 5106. doi: 10.1021/ma960588n  doi: 10.1021/ma960588n

    28. [28]

      Volkov, V.; Ferreira, A. V.; Cavaco-Paulo, A. Macromol. Mater. Eng. 2015, 300, 1199. doi: 10.1002/mame.201500179  doi: 10.1002/mame.201500179

    29. [29]

      Rising, A.; Johansson, J. Nat. Chem. Biol. 2015, 11, 309. doi: 10.1038/nchembio.1789  doi: 10.1038/nchembio.1789

    30. [30]

      Nguyen, A. T.; Huang, Q. -L.; Yang, Z.; Lin, N.; Xu, G.; Liu, X. Y. Small 2015, 11, 1039. doi: 10.1002/smll.201402985  doi: 10.1002/smll.201402985

    31. [31]

      Wang, Q.; Ling, S.; Yao, Q.; Li, Q.; Hu, D.; Dai, Q.; Weitz, D. A.; Kaplan, D. L.; Buehler, M. J.; Zhang, Y. ACS Mater. Lett. 2020, 2, 153. doi: 10.1021/acsmaterialslett.9b00461  doi: 10.1021/acsmaterialslett.9b00461

    32. [32]

      Guo, C.; Li, C.; Vu, H. V.; Hanna, P.; Lechtig, A.; Qiu, Y.; Mu, X.; Ling, S.; Nazarian, A.; Lin, S. J.; et al. Nat. Mater. 2020, 19, 102. doi: 10.1038/s41563-019-0560-8  doi: 10.1038/s41563-019-0560-8

    33. [33]

      Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L. Nat. Protoc. 2011, 6, 1612. doi: 10.1038/nprot.2011.379  doi: 10.1038/nprot.2011.379

    34. [34]

      Wang, X.; Wenk, E.; Matsumoto, A.; Meinel, L.; Li, C.; Kaplan, D. L. J. Controlled Release 2007, 117, 360. doi: 10.1016/j.jconrel.2006.11.021  doi: 10.1016/j.jconrel.2006.11.021

    35. [35]

      Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D. L. Biomaterials 2010, 31, 1025. doi: 10.1016/j.biomaterials.2009.11.002  doi: 10.1016/j.biomaterials.2009.11.002

    36. [36]

      Cao, Z.; Chen, X.; Yao, J.; Huang, L.; Shao, Z. Soft Matter 2007, 3, 910. doi: 10.1039/B703139D  doi: 10.1039/B703139D

    37. [37]

      Breslauer, D. N.; Muller, S. J.; Lee, L. P. Biomacromolecules 2010, 11, 643. doi: 10.1021/bm901209u  doi: 10.1021/bm901209u

    38. [38]

      Zhou, G.; Shao, Z.; Knight, D. P.; Yan, J.; Chen, X. Adv. Mater. 2009, 21, 366. doi: 10.1002/adma.200800582  doi: 10.1002/adma.200800582

    39. [39]

      Shao, Z. Silkworm Fiber, Spider Silk and Their Fibroin. Chemical Industry Press: Beijing, 2015; 220–289.

    40. [40]

      Yang, W.; Lv, L.; Li, X.; Han, X.; Li, M.; Li, C. ACS Nano 2020, 14, 10600. doi: 10.1021/acsnano.0c04686  doi: 10.1021/acsnano.0c04686

    41. [41]

      Wang, Z.; Yang, H.; Li, Y.; Zheng, X. ACS Appl. Mater. Interfaces 2020, 12, 15726. doi: 10.1021/acsami.0c01330  doi: 10.1021/acsami.0c01330

    42. [42]

      Ling, S.; Kaplan, D. L.; Buehler, M. J. Nat. Rev. Mater. 2018, 3, 18016. doi: 10.1038/natrevmats.2018.16  doi: 10.1038/natrevmats.2018.16

    43. [43]

      Ren, J.; Wang, Y.; Yao, Y.; Wang, Y.; Fei, X.; Qi, P.; Lin, S.; Kaplan, D. L.; Buehler, M. J.; Ling, S. Chem. Rev. 2019, 119, 12279. doi: 10.1021/acs.chemrev.9b00416  doi: 10.1021/acs.chemrev.9b00416

    44. [44]

      Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L. Chem. Soc. Rev. 2018, 47, 6486. doi: 10.1039/c8cs00187a  doi: 10.1039/c8cs00187a

    45. [45]

      Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Nat. Rev. Mater. 2018, 3, 11. doi: 10.1038/natrevmats2018.8  doi: 10.1038/natrevmats2018.8

    46. [46]

      Mortimer, B.; Holland, C.; Vollrath, F. Biomacromolecules 2013, 14, 3653. doi: 10.1021/bm401013k  doi: 10.1021/bm401013k

    47. [47]

      Shao, Z. Z.; Vollrath, F. Nature 2002, 418, 741. doi: 10.1038/418741a  doi: 10.1038/418741a

    48. [48]

      Wang, J. -T.; Li, L. -L.; Zhang, M. -Y.; Liu, S. -L.; Jiang, L. -H.; Shen, Q. Mater. Sci. Eng. C 2014, 34, 417. doi: 10.1016/j.msec.2013.09.041  doi: 10.1016/j.msec.2013.09.041

    49. [49]

      Wang, Q.; Wang, C.; Zhang, M.; Jian, M.; Zhang, Y. Nano Lett. 2016, 16, 6695. doi: 10.1021/acs.nanolett.6b03597  doi: 10.1021/acs.nanolett.6b03597

    50. [50]

      Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J. F.; Duguay, F.; Chretien, N.; Welsh, E. A.; Soares, J. W.; Karatzas, C. N. Science 2002, 295, 472. doi: 10.1126/science.1065780  doi: 10.1126/science.1065780

    51. [51]

      Fang, G.; Zheng, Z.; Yao, J.; Chen, M.; Tang, Y.; Zhong, J.; Qi, Z.; Li, Z.; Shao, Z.; Chen, X. J. Mater. Chem. B 2015, 3, 3940. doi: 10.1039/c5tb00448a  doi: 10.1039/c5tb00448a

    52. [52]

      Qiu, W.; Patil, A.; Hu, F.; Liu, X. Y. Small 2019, 15, 1903948. doi: 10.1002/smll.201903948  doi: 10.1002/smll.201903948

    53. [53]

      Soong, H. K.; Kenyon, K. R. Ophthalmology 1984, 91, 479. doi: 10.1016/S0161-6420(84)34273-7  doi: 10.1016/S0161-6420(84)34273-7

    54. [54]

      Catherine, P. Eur. J. Dermatol. 2013, 23, 767. doi: 10.1684/ejd.2013.2186  doi: 10.1684/ejd.2013.2186

    55. [55]

      Jiao, Z.; Song, Y.; Jin, Y.; Zhang, C.; Peng, D.; Chen, Z.; Chang, P.; Kundu, S. C.; Wang, G.; Wang, Z.; et al. Macromol. Biosci. 2017, 17, 1700229. doi: 10.1002/mabi.201700229  doi: 10.1002/mabi.201700229

    56. [56]

      Kunz, R. I.; Brancalhão, R. M. C.; Ribeiro, L. D. F. C.; Natali, M. R. M. Biomed. Res. Int. 2016, 2016, 8175701. doi: 10.1155/2016/8175701  doi: 10.1155/2016/8175701

    57. [57]

      Meinel, L.; Hofmann, S.; Karageorgiou, V.; Kirker-Head, C.; McCool, J.; Gronowicz, G.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D. L. Biomaterials 2005, 26, 147. doi: 10.1016/j.biomaterials.2004.02.047  doi: 10.1016/j.biomaterials.2004.02.047

    58. [58]

      Patil, A. C.; Xiong, Z.; Thakor, N. V. Small Methods 2020, 4, 2000274. doi: 10.1002/smtd.202000274  doi: 10.1002/smtd.202000274

    59. [59]

      Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F. P. Adv. Healthcare Mater. 2019, 8, 1800465. doi: 10.1002/adhm.201800465  doi: 10.1002/adhm.201800465

    60. [60]

      Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S.; et al. Science 2012, 337, 1640. doi: 10.1126/science.1226325  doi: 10.1126/science.1226325

    61. [61]

      Hu, F.; Lin, N.; Liu, X. Y. iScience 2020, 23, 101035. doi: 10.1016/j.isci.2020.101035  doi: 10.1016/j.isci.2020.101035

    62. [62]

      Maiti, S.; Karan, S. K.; Kim, J. K.; Khatua, B. B. Adv. Energy Mater. 2019, 9, 1803027. doi: 10.1002/aenm.201803027  doi: 10.1002/aenm.201803027

    63. [63]

      Niu, Q.; Huang, L.; Lv, S.; Shao, H.; Fan, S.; Zhang, Y. Nano Energy 2020, 74, 104837. doi: 10.1016/j.nanoen.2020.104837  doi: 10.1016/j.nanoen.2020.104837

    64. [64]

      Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. -Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. -J. Nat. Commun. 2015, 6, 7145. doi: 10.1038/ncomms8145  doi: 10.1038/ncomms8145

    65. [65]

      Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Adv. Mater. 2016, 28, 6640. doi: 10.1002/adma.201601572  doi: 10.1002/adma.201601572

    66. [66]

      Wang, C.; Chen, W.; Xia, K.; Xie, N.; Wang, H.; Zhang, Y. Small 2019, 15, 1804966. doi: 10.1002/smll.201804966  doi: 10.1002/smll.201804966

    67. [67]

      Wang, C.; Xie, N. -H.; Zhang, Y.; Huang, Z.; Xia, K.; Wang, H.; Guo, S.; Xu, B. -Q.; Zhang, Y. Chem. Mater. 2019, 31, 1023. doi: 10.1021/acs.chemmater.8b04572  doi: 10.1021/acs.chemmater.8b04572

    68. [68]

      Qiao, M.; Wang, H.; Lu, H.; Li, S.; Yan, J.; Qu, L.; Zhang, Y.; Jiang, L.; Lu, Y. Sci. China Mater. 2020, 63, 1300. doi: 10.1007/s40843-020-1351-3  doi: 10.1007/s40843-020-1351-3

    69. [69]

      Jian, M.; Zhang, Y.; Liu, Z. Chin. J. Polym. Sci. 2020, 38, 459. doi: 10.1007/s10118-020-2379-9  doi: 10.1007/s10118-020-2379-9

    70. [70]

      Hwang, B.; Lund, A.; Tian, Y.; Darabi, S.; Müller, C. ACS Appl. Mater. Interfaces 2020, 12, 27537. doi: 10.1021/acsami.0c04316  doi: 10.1021/acsami.0c04316

    71. [71]

      Ye, C.; Ren, J.; Wang, Y.; Zhang, W.; Qian, C.; Han, J.; Zhang, C.; Jin, K.; Buehler, M. J.; Kaplan, D. L.; et al. Matter 2019, 1, 1411. doi: 10.1016/j.matt.2019.07.016  doi: 10.1016/j.matt.2019.07.016

    72. [72]

      Ma, L.; Liu, Q.; Wu, R.; Meng, Z.; Patil, A.; Yu, R.; Yang, Y.; Zhu, S.; Fan, X.; Hou, C.; et al. Small 2020, 16, e2000203. doi: 10.1002/smll.202000203  doi: 10.1002/smll.202000203

    73. [73]

      Steven, E.; Saleh, W. R.; Lebedev, V.; Acquah, S. F. A.; Laukhin, V.; Alamo, R. G.; Brooks, J. S. Nat. Commun. 2013, 4, 2435. doi: 10.1038/ncomms3435  doi: 10.1038/ncomms3435

    74. [74]

      Liu, Y.; Wang, Y.; Nie, Y.; Wang, C.; Ji, X.; Zhou, L.; Pan, F.; Zhang, S. ACS Sustainable Chem. Eng. 2019, 7, 20013. doi: 10.1021/acssuschemeng.9b05489  doi: 10.1021/acssuschemeng.9b05489

    75. [75]

      Cho, S. -Y.; Yu, H.; Choi, J.; Kang, H.; Park, S.; Jang, J. -S.; Hong, H. -J.; Kim, I. -D.; Lee, S. -K.; Jeong, H. S.; et al. ACS Nano 2019, 13, 9332. doi: 10.1021/acsnano.9b03971  doi: 10.1021/acsnano.9b03971

    76. [76]

      Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E.; et al. Adv. Funct. Mater. 2015, 25, 3114. doi: 10.1002/adfm.201500628  doi: 10.1002/adfm.201500628

    77. [77]

      Levitt, A.; Seyedin, S.; Zhang, J.; Wang, X.; Razal, J. M.; Dion, G.; Gogotsi, Y. Small 2020, 16, 2002158. doi: 10.1002/smll.202002158  doi: 10.1002/smll.202002158

    78. [78]

      Jalili, R.; Razal, J. M.; Innis, P. C.; Wallace, G. G. Adv. Funct. Mater. 2011, 21, 3363. doi: 10.1002/adfm.201100785  doi: 10.1002/adfm.201100785

    79. [79]

      Schirmer, K. S. U.; Esrafilzadeh, D.; Thompson, B. C.; Quigley, A. F.; Kapsa, R. M. I.; Wallace, G. G. J. Mater. Chem. B 2016, 4, 1142. doi: 10.1039/C5TB02130H  doi: 10.1039/C5TB02130H

    80. [80]

      Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. ACS Appl. Mater. Interfaces 2016, 8, 20894. doi: 10.1021/acsami.6b06984  doi: 10.1021/acsami.6b06984

    81. [81]

      Wu, R.; Ma, L.; Hou, C.; Meng, Z.; Guo, W.; Yu, W.; Yu, R.; Hu, F.; Liu, X. Y. Small 2019, 15, 1901558. doi: 10.1002/smll.201901558  doi: 10.1002/smll.201901558

    82. [82]

      Lu, Z.; Mao, C.; Zhang, H. J. Mater. Chem. C 2015, 3, 4265. doi: 10.1039/C5TC00917K  doi: 10.1039/C5TC00917K

    83. [83]

      Ling, S.; Wang, Q.; Zhang, D.; Zhang, Y.; Mu, X.; Kaplan, D. L.; Buehler, M. J. Adv. Funct. Mater. 2018, 28, 1705291. doi: 10.1002/adfm.201705291  doi: 10.1002/adfm.201705291

    84. [84]

      Hwang, B.; Lund, A.; Tian, Y.; Darabi, S.; Muller, C. ACS Appl. Mater. Interfaces 2020, 12, 27537. doi: 10.1021/acsami.0c04316  doi: 10.1021/acsami.0c04316

    85. [85]

      Li, B. T.; Xiao, G.; Liu, F.; Qiao, Y.; Li, C. M.; Lu, Z. S. J. Mater. Chem. C 2018, 6, 4549. doi: 10.1039/c8tc00238j  doi: 10.1039/c8tc00238j

    86. [86]

      Wang, C.; Xia, K.; Jian, M.; Wang, H.; Zhang, M.; Zhang, Y. J. Mater. Chem. C 2017, 5, 7604. doi: 10.1039/C7TC01962A  doi: 10.1039/C7TC01962A

    87. [87]

      He, W.; Wang, C.; Wang, H.; Jian, M.; Lu, W.; Liang, X.; Zhang, X.; Yang, F.; Zhang, Y. Sci. Adv. 2019, 5, eaax0649. doi: 10.1126/sciadv.aax0649  doi: 10.1126/sciadv.aax0649

    88. [88]

      Lu, W.; Yu, P.; Jian, M.; Wang, H.; Wang, H.; Liang, X.; Zhang, Y. ACS Appl. Mater. Interfaces 2020, 12, 11825. doi: 10.1021/acsami.9b21068  doi: 10.1021/acsami.9b21068

    89. [89]

      Lu, W.; Jian, M.; Wang, Q.; Xia, K.; Zhang, M.; Wang, H.; He, W.; Lu, H.; Zhang, Y. Nanoscale 2019, 11, 11856. doi: 10.1039/C9NR01791G  doi: 10.1039/C9NR01791G

    90. [90]

      Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Adv. Funct. Mater. 2017, 27, 1605657. doi: 10.1002/adfm.201605657  doi: 10.1002/adfm.201605657

    91. [91]

      Wang, C.; Xia, K.; Zhang, M.; Jian, M.; Zhang, Y. ACS Appl. Mater. Interfaces 2017, 9, 39484. doi: 10.1021/acsami.7b13356  doi: 10.1021/acsami.7b13356

    92. [92]

      Gotti, C.; Sensini, A.; Zucchelli, A.; Carloni, R.; Focarete, M. L. Appl. Mater. Today 2020, 20, 100772. doi: 10.1016/j.apmt.2020.100772  doi: 10.1016/j.apmt.2020.100772

    93. [93]

      Jia, T.; Wang, Y.; Dou, Y.; Li, Y.; Jung de Andrade, M.; Wang, R.; Fang, S.; Li, J.; Yu, Z.; Qiao, R.; et al. Adv. Funct. Mater. 2019, 29, 1808241. doi: 10.1002/adfm.201808241  doi: 10.1002/adfm.201808241

    94. [94]

      Lin, S.; Wang, Z.; Chen, X.; Ren, J.; Ling, S. Adv. Sci. 2020, 7, 1902743. doi: 10.1002/advs.201902743  doi: 10.1002/advs.201902743

    95. [95]

      Yin, Z.; Shi, S.; Liang, X.; Zhang, M.; Zheng, Q.; Zhang, Y. Adv. Fiber Mater. 2019, 1, 197. doi: 10.1007/s42765-019-00021-y  doi: 10.1007/s42765-019-00021-y

    96. [96]

      Krasnov, I.; Krekiehn, N. R.; Krywka, C.; Jung, U.; Zillohu, A. U.; Strunskus, T.; Elbahri, M.; Magnussen, O. M.; Müller, M. Appl. Phys. Lett. 2015, 106, 093702. doi: 10.1063/1.4913912  doi: 10.1063/1.4913912

    97. [97]

      Shimanovich, U.; Pinotsi, D.; Shimanovich, K.; Yu, N.; Bolisetty, S.; Adamcik, J.; Mezzenga, R.; Charmet, J.; Vollrath, F.; Gazit, E.; et al. Macromol. Biosci. 2018, 18, 1700295. doi: 10.1002/mabi.201700295  doi: 10.1002/mabi.201700295

    98. [98]

      Agrawal, A. Nat. Biotechnol. 1999, 17, 412. doi: 10.1038/8558  doi: 10.1038/8558

    99. [99]

      Iizuka, T.; Sezutsu, H.; Tatematsu, K. -i.; Kobayashi, I.; Yonemura, N.; Uchino, K.; Nakajima, K.; Kojima, K.; Takabayashi, C.; Machii, H.; et al. Adv. Funct. Mater. 2013, 23, 5232. doi: 10.1002/adfm.201300365  doi: 10.1002/adfm.201300365

    100. [100]

      Zhang, F. Acta Bioch. Biophys. Sin. 1999, 31, 119. doi: 10.1016/S0005-2736(99)00009-7  doi: 10.1016/S0005-2736(99)00009-7

    101. [101]

      Tansil, N. C.; Li, Y.; Teng, C. P.; Zhang, S.; Win, K. Y.; Chen, X.; Liu, X. Y.; Han, M. -Y. Adv. Mater. 2011, 23, 1463. doi: 10.1002/adma.201003860  doi: 10.1002/adma.201003860

    102. [102]

      Lin, N.; Meng, Z.; Toh, G. W.; Zhen, Y.; Diao, Y.; Xu, H.; Liu, X. Y. Small 2015, 11, 1205. doi: 10.1002/smll.201402079  doi: 10.1002/smll.201402079

    103. [103]

      Lin, N.; Cao, L.; Huang, Q.; Wang, C.; Wang, Y.; Zhou, J.; Liu, X. -Y. Adv. Funct. Mater. 2016, 26, 8885. doi: 10.1002/adfm.201603826  doi: 10.1002/adfm.201603826

    104. [104]

      Song, Y.; Lin, Z.; Kong, L.; Xing, Y.; Lin, N.; Zhang, Z.; Chen, B. -H.; Liu, X. -Y. Adv. Funct. Mater. 2017, 27, 1700628. doi: 10.1002/adfm.201700628  doi: 10.1002/adfm.201700628

    105. [105]

      Zhang, P.; Lan, J.; Wang, Y.; Xiong, Z. H.; Huang, C. Z. Biomaterials 2015, 36, 26. doi: 10.1016/j.biomaterials.2014.08.026  doi: 10.1016/j.biomaterials.2014.08.026

    106. [106]

      Cohen-Karni, T.; Jeong, K. J.; Tsui, J. H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D. C.; Langer, R.; et al. Nano Lett. 2012, 12, 5403. doi: 10.1021/nl302810c  doi: 10.1021/nl302810c

    107. [107]

      Founda, I. M.; El-Tonsy, M. M. J. Mater. Sci. 1990, 25, 4752. doi: 10.1007/BF01129936  doi: 10.1007/BF01129936

    108. [108]

      Prajzler, V.; Min, K.; Kim, S.; Nekvindova, P. Materials 2018, 11, 112. doi: 10.3390/ma11010112  doi: 10.3390/ma11010112

    109. [109]

      Kujala, S.; Mannila, A.; Karvonen, L.; Kieu, K.; Sun, Z. Sci. Rep. 2016, 6, 22358. doi: 10.1038/srep22358  doi: 10.1038/srep22358

    110. [110]

      Parker, S. T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J. A.; Kaplan, D. L.; Omenetto, F. G. Adv. Mater. 2009, 21, 2411. doi: 10.1002/adma.200801580  doi: 10.1002/adma.200801580

    111. [111]

      Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z. L. Nano Lett. 2006, 6, 2768. doi: 10.1021/nl061802g  doi: 10.1021/nl061802g

    112. [112]

      He, X.; Zi, Y. L.; Yu, H.; Zhang, S. L.; Wang, J.; Ding, W. B.; Zou, H. Y.; Zhang, W.; Lu, C. H.; Wang, Z. L. Nano Energy 2017, 39, 328. doi: 10.1016/j.nanoen.2017.06.046  doi: 10.1016/j.nanoen.2017.06.046

    113. [113]

      Wang, Z. L.; Song, J. Science 2006, 312, 242. doi: 10.1126/science.1124005  doi: 10.1126/science.1124005

    114. [114]

      Maiti, S.; Kumar Karan, S.; Lee, J.; Kumar Mishra, A.; Bhusan Khatua, B.; Kon Kim, J. Nano Energy 2017, 42, 282. doi: 10.1016/j.nanoen.2017.10.041  doi: 10.1016/j.nanoen.2017.10.041

    115. [115]

      Gomes, J.; Serrado Nunes, J.; Sencadas, V.; Lanceros-Mendez, S. Smart Mater. Struct. 2010, 19, 065010. doi: 10.1088/0964-1726/19/6/065010  doi: 10.1088/0964-1726/19/6/065010

    116. [116]

      Harvey, E. N. Science 1939, 89, 460. doi: 10.1126/science.89.2316.460  doi: 10.1126/science.89.2316.460

    117. [117]

      Fukada, E. J. Phys. Soc. Jpn. 1956, 11, 1301A. doi: 10.1143/JPSJ.11.1301A  doi: 10.1143/JPSJ.11.1301A

    118. [118]

      Yucel, T.; Cebe, P.; Kaplan, D. L. Adv. Funct. Mater. 2011, 21, 779. doi: 10.1002/adfm.201002077  doi: 10.1002/adfm.201002077

    119. [119]

      Sencadas, V.; Garvey, C.; Mudie, S.; Kirkensgaard, J. J. K.; Gouadec, G.; Hauser, S. Nano Energy 2019, 66, 104106. doi: 10.1016/j.nanoen.2019.104106  doi: 10.1016/j.nanoen.2019.104106

    120. [120]

      Fan, F. -R.; Tian, Z. -Q.; Lin Wang, Z. Nano Energy 2012, 1, 328. doi: 10.1016/j.nanoen.2012.01.004  doi: 10.1016/j.nanoen.2012.01.004

    121. [121]

      Wang, S.; Lin, L.; Wang, Z. L. Nano Lett. 2012, 12, 6339. doi: 10.1021/nl303573d  doi: 10.1021/nl303573d

    122. [122]

      Li, X.; Jiang, C.; Ying, Y.; Ping, J. Adv. Energy Mater. 2020, 10, 2002001. doi: 10.1002/aenm.202002001  doi: 10.1002/aenm.202002001

    123. [123]

      Kim, H. -J.; Kim, J. -H.; Jun, K. -W.; Kim, J. -H.; Seung, W. -C.; Kwon, O. H.; Park, J. -Y.; Kim, S. -W.; Oh, I. -K. Adv. Energy Mater. 2016, 6, 1502329. doi: 10.1002/aenm.201502329  doi: 10.1002/aenm.201502329

    124. [124]

      Jiang, C.; Wu, C.; Li, X.; Yao, Y.; Lan, L.; Zhao, F.; Ye, Z.; Ying, Y.; Ping, J. Nano Energy 2019, 59, 268. doi: 10.1016/j.nanoen.2019.02.052  doi: 10.1016/j.nanoen.2019.02.052

    125. [125]

      Guo, Y.; Zhang, X. -S.; Wang, Y.; Gong, W.; Zhang, Q.; Wang, H.; Brugger, J. Nano Energy 2018, 48, 152. doi: 10.1016/j.nanoen.2018.03.033  doi: 10.1016/j.nanoen.2018.03.033

    126. [126]

      Jiang, D.; Zhang, J.; Li, C.; Yang, W.; Liu, J. New J. Chem. 2017, 41, 11792. doi: 10.1039/C7NJ02042B  doi: 10.1039/C7NJ02042B

    127. [127]

      Das, C.; Krishnamoorthy, K. ACS Appl. Mater. Interfaces 2016, 8, 29504. doi: 10.1021/acsami.6b10431  doi: 10.1021/acsami.6b10431

    128. [128]

      Sun, C.; Li, X.; Zhao, J.; Cai, Z.; Ge, F. Electrochim. Acta 2019, 317, 42. doi: 10.1016/j.electacta.2019.05.124  doi: 10.1016/j.electacta.2019.05.124

    129. [129]

      Song, P.; Tao, J.; He, X.; Sun, Y.; Shen, X.; Zhai, L.; Yuan, A.; Zhang, D.; Ji, Z.; Li, B. Chem. Eng. J. 2020, 386, 124024. doi: 10.1016/j.cej.2020.124024  doi: 10.1016/j.cej.2020.124024

    130. [130]

      Hou, J.; Cao, C.; Idrees, F.; Ma, X. ACS Nano 2015, 9, 2556. doi: 10.1021/nn506394r  doi: 10.1021/nn506394r

    131. [131]

      Sahu, V.; Grover, S.; Tulachan, B.; Sharma, M.; Srivastava, G.; Roy, M.; Saxena, M.; Sethy, N.; Bhargava, K.; Philip, D.; et al. Electrochim. Acta 2015, 160, 244. doi: 10.1016/j.electacta.2015.02.019  doi: 10.1016/j.electacta.2015.02.019

    132. [132]

      Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. -J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S.; et al. Adv. Mater. 2013, 25, 1993. doi: 10.1002/adma.201204692  doi: 10.1002/adma.201204692

    133. [133]

      Zhang, L.; Meng, Z.; Qi, Q.; Yan, W.; Lin, N.; Liu, X. Y. RSC Adv. 2018, 8, 22146. doi: 10.1039/C8RA01988F  doi: 10.1039/C8RA01988F

    134. [134]

      Zhu, Y.; Sun, W.; Luo, J.; Chen, W.; Cao, T.; Zheng, L.; Dong, J.; Zhang, J.; Zhang, M.; Han, Y.; et al. Nat. Commun. 2018, 9, 3861. doi: 10.1038/s41467-018-06296-w  doi: 10.1038/s41467-018-06296-w

    135. [135]

      Huang, W.; Zhang, A.; Liang, H.; Liu, R.; Cai, J.; Cui, L.; Liu, J. J. Colloid Interface Sci. 2019, 549, 140. doi: 10.1016/j.jcis.2019.04.066  doi: 10.1016/j.jcis.2019.04.066

    136. [136]

      Hu, M.; Hu, T.; Cheng, R.; Yang, J.; Cui, C.; Zhang, C.; Wang, X. J. Energy Chem. 2018, 27, 161. doi: 10.1016/j.jechem.2017.10.030  doi: 10.1016/j.jechem.2017.10.030

    137. [137]

      Li, X.; Sun, C.; Cai, Z.; Ge, F. Appl. Surf. Sci. 2019, 473, 967. doi: 10.1016/j.apsusc.2018.12.244  doi: 10.1016/j.apsusc.2018.12.244

    138. [138]

      Pan, P.; Hu, Y.; Wu, K.; Cheng, Z.; Shen, Z.; Jiang, L.; Mao, J.; Ni, C.; Ge, Y.; Wang, Z. J. Alloy. Compd. 2020, 814, 152306. doi: 10.1016/j.jallcom.2019.152306  doi: 10.1016/j.jallcom.2019.152306

    139. [139]

      Zhang, W.; Yang, Z. -Y.; Tang, R. -C.; Guan, J. -P.; Qiao, Y. -F. J. Clean. Prod. 2020, 250, 119545. doi: 10.1016/j.jclepro.2019.119545  doi: 10.1016/j.jclepro.2019.119545

    140. [140]

      Bhattacharjee, S.; Macintyre, C. R.; Bahl, P.; Kumar, U.; Wen, X.; Aguey-Zinsou, K. -F.; Chughtai, A. A.; Joshi, R. Adv. Mater. Interfaces 2020, 7, 2000814. doi: 10.1002/admi.202000814  doi: 10.1002/admi.202000814

    141. [141]

      Zhou, Q.; Wu, W.; Zhou, S.; Xing, T.; Sun, G.; Chen, G. Chem. Eng. J. 2020, 382, 122988. doi: 10.1016/j.cej.2019.122988  doi: 10.1016/j.cej.2019.122988

    142. [142]

      Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. Adv. Mater. 2018, 30, 1706807. doi: 10.1002/adma.201706807  doi: 10.1002/adma.201706807

    143. [143]

      Wang, H.; Dong, Q.; Yao, J.; Shao, Z.; Ma, J.; Chen, X. Biomacromolecules 2020, 21, 1596. doi: 10.1021/acs.biomac.0c00170  doi: 10.1021/acs.biomac.0c00170

    144. [144]

      Peng, Y.; Cui, Y. Joule 2020, 4, 724. doi: 10.1016/j.joule.2020.02.011  doi: 10.1016/j.joule.2020.02.011

    145. [145]

      Yin, Z.; Jian, M.; Wang, C.; Xia, K.; Liu, Z.; Wang, Q.; Zhang, M.; Wang, H.; Liang, X.; Liang, X.; et al. Nano Lett. 2018, 18, 7085. doi: 10.1021/acs.nanolett.8b03085  doi: 10.1021/acs.nanolett.8b03085

    146. [146]

      Liang, X.; Li, H.; Dou, J.; Wang, Q.; He, W.; Wang, C.; Li, D.; Lin, J. -M.; Zhang, Y. Adv. Mater. 2020, 32, 2000165. doi: 10.1002/adma.202000165  doi: 10.1002/adma.202000165

    147. [147]

      UniProt Consortium, T. Nucleic. Acids. Res. 2018, 46, 2699. doi: 10.1093/nar/gky092  doi: 10.1093/nar/gky092

    148. [148]

      Kim, D. -H.; Kim, Y. -S.; Amsden, J.; Panilaitis, B.; Kaplan, D. L.; Omenetto, F. G.; Zakin, M. R.; Rogers, J. A. Appl. Phys. Lett. 2009, 95, 133701. doi: 10.1063/1.3238552.  doi: 10.1063/1.3238552

    149. [149]

      Wang, D.; Wang, L.; Lou, Z.; Zheng, Y.; Wang, K.; Zhao, L.; Han, W.; Jiang, K.; Shen, G. Nano Energy 2020, 78, 105252. doi: 10.1016/j.nanoen.2020.105252  doi: 10.1016/j.nanoen.2020.105252

    150. [150]

      Wang, T.; Li, Y.; Zhang, J.; Yan, K.; Jaumaux, P.; Yang, J.; Wang, C.; Shanmukaraj, D.; Sun, B.; Armand, M.; et al. Nat. Commun. 2020, 11, 5429. doi: 10.1038/s41467-020-19246-2  doi: 10.1038/s41467-020-19246-2

    151. [151]

      Xu, Y.; Song, Y.; Xu, F. Nano Energy 2021, 79, 105468. doi: 10.1016/j.nanoen.2020.105468  doi: 10.1016/j.nanoen.2020.105468

    152. [152]

      Wang, Q.; Ling, S. J.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhang, Y. Y. Adv. Funct. Mater. 2019, 29, 1808695. doi: 10.1002/adfm.201808695  doi: 10.1002/adfm.201808695

    153. [153]

      Qiu, W.; Patil, A.; Hu, F.; Liu, X. Y. Small 2019, 15, 45. doi: 10.1002/smll.201903948  doi: 10.1002/smll.201903948

  • 加载中
    1. [1]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    2. [2]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    9. [9]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    11. [11]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    12. [12]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    15. [15]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    18. [18]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(52)
  • Abstract views(1671)
  • HTML views(326)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return