Citation: Mengdi Zhang, Bei Chen, Mingbo Wu. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 210100. doi: 10.3866/PKU.WHXB202101001 shu

Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries

  • Corresponding author: Mingbo Wu, wumb@upc.edu.cn
  • Received Date: 4 January 2021
    Revised Date: 26 January 2021
    Accepted Date: 27 January 2021
    Available Online: 8 February 2021

    Fund Project: the National Natural Science Foundation of China 22005341the Shandong Provincial Natural Science Foundation ZR2018ZC1458the Shandong Provincial Natural Science Foundation ZR2020QB128the YanKuang Group Co., Ltd. Technology Project YKKJ2019AJ08JG-R63the Taishan Scholar Project ts201712020the Technological Leading Scholar of 10000 Talent Project W03020508

  • Lithium-sulfur batteries are considered to be one of the most promising new-generation energy storage devices, owing to their ultra-high theoretical energy density and the merits of sulfur cathodes, which include natural abundance, low cost, and no toxicity. However, the commercial application of lithium-sulfur batteries is still subject to various intractable challenges. First, the insulation of sulfur and its solid discharge products (Li2S2/Li2S) leads to low utilization of the active materials. Second, the cathode suffers from an 80% volume expansion after the discharge process, which adversely affects its structural stability. Finally, intermediary lithium polysulfides can easily dissolve into the electrolyte, which can trigger the "shuttle effect." This results in the loss of active materials, fast capacity fading, and low Coulombic efficiency. Graphene has garnered significant interest as a host material to accommodate sulfur for high-performance lithium-sulfur battery. A graphene host featuring a high specific surface area, excellent conductivity, and excellent mechanical stability can ensure a good electrical contact between the sulfur species and the current collector and withstand the volumetric strain of the electrode during cycling. Unfortunately, lithium polysulfides are still prone to escape from cathodes owing to the open two-dimensional (2D) plane structure of graphene sheets. To address this issue, various graphene-based materials with unique structures and chemical compositions have been trialed as sulfur hosts. In this review, we summarize research progress regarding three-dimensional (3D) graphene, graphene with modified surface chemistry, graphene-based composites, and graphene-based flexible materials as sulfur hosts for lithium-sulfur batteries. Furthermore, we analyze the challenges of applying graphene host materials in high-performance lithium-sulfur batteries. This review is mainly divided into four parts: (1) 3D graphene materials as sulfur hosts: the interconnected 3D porous network structure assembled from 2D graphene sheets provides a half-enclosed cavity to accommodate sulfur and its discharge products, which can inhibit the diffusion of lithium polysulfides to a certain extent. (2) Graphene materials with modified surface chemistry as sulfur hosts: hydrophilic surface functional groups and doped non-metal or metal heteroatoms on graphene can chemically adsorb polar lithium polysulfides. (3) Graphene-based composites as sulfur hosts: in various graphene-based composites, graphene usually functions as a conductive and flexible substrate. Other components, such as other types of carbon or metal compounds, can play an important role in restricting lithium polysulfides and propelling their reaction kinetics. (4) Flexible graphene-sulfur electrodes: the excellent flexibility and conductivity of graphene endowed it and its composites with a broad range of prospective applications regarding flexible lithium-sulfur batteries.
  • 加载中
    1. [1]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085  doi: 10.1038/nchem.2085

    2. [2]

      Fotouhi, A.; Auger, D. J.; Propp, K.; Longo, S.; Wild, M. Renew. Sust. Energ. Rev. 2016, 56, 1008. doi: 10.1016/j.rser.2015.12.009  doi: 10.1016/j.rser.2015.12.009

    3. [3]

      Zhang, L.; Wang, Y.; Niu, Z.; Chen, J. Carbon 2019, 141, 400. doi: 10.1016/j.carbon.2018.09.067  doi: 10.1016/j.carbon.2018.09.067

    4. [4]

      Liu, Y. -T.; Liu, S.; Li, G. -R.; Gao, X. -P. Adv. Mater. 2020, 33, 2003955. doi: 10.1002/adma.202003955  doi: 10.1002/adma.202003955

    5. [5]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Nat. Mater. 2011, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    6. [6]

      Yang, Y.; Zheng, G.; Cui, Y. Chem. Soc. Rev. 2013, 42, 3018. doi: 10.1039/c2cs35256g  doi: 10.1039/c2cs35256g

    7. [7]

      Zhang, M.; Yu, C.; Zhao, C.; Song, X.; Han, X.; Liu, S.; Hao, C.; Qiu, J. Energy Storage Mater. 2016, 5, 223. doi: 10.1016/j.ensm.2016.04.002  doi: 10.1016/j.ensm.2016.04.002

    8. [8]

      Cheon, S. E.; Ko, K. S.; Cho, J. H.; Kim, S. W.; Chin, E. Y.; Kim, H. T. J. Electrochem. Soc. 2003, 150, A796. doi: 10.1149/1.1571532  doi: 10.1149/1.1571532

    9. [9]

      Liu, S.; Yao, L.; Zhang, Q.; Li, L. -L.; Hu, N. -T.; Wei, L. -M.; Wei, H. Acta Phys. -Chim. Sin. 2017, 33, 2339.  doi: 10.3866/PKU.WHXB201706021

    10. [10]

      He, Y.; Chang, Z.; Wu, S.; Zhou, H. J. Mater. Chem. A 2018, 6, 6155. doi: 10.1039/C8TA01115J  doi: 10.1039/C8TA01115J

    11. [11]

      Zheng, D.; Wang, G. W.; Liu, D.; Si, J. Y.; Ding, T. Y.; Qu, D. Y.; Yang, X. Q.; Qu, D. Y. Adv. Mater. Technol. 2018, 3. doi: 10.1002/admt.201700233  doi: 10.1002/admt.201700233

    12. [12]

      Deng, S.; Yan, Y.; Wei, L.; Li, T.; Su, X.; Yang, X.; Li, Z.; Wu, M. ACS Appl. Energy Mater. 2019, 2, 1266. doi: 10.1021/acsaem.8b01815  doi: 10.1021/acsaem.8b01815

    13. [13]

      Xu, Z. L.; Kim, J. K.; Kang, K. Nano Today 2018, 19, 84. doi: 10.1016/j.nantod.2018.02.006  doi: 10.1016/j.nantod.2018.02.006

    14. [14]

      Guan, L.; Hu, H.; Li, L.; Pan, Y.; Zhu, Y.; Li, Q.; Guo, H.; Wang, K.; Huang, Y.; Zhang, M.; et al. ACS Nano 2020, 14, 6222. doi: 10.1021/acsnano.0c02294  doi: 10.1021/acsnano.0c02294

    15. [15]

      Yan, Y.; Chen, Z.; Yang, J.; Guan, L.; Hu, H.; Zhao, Q.; Ren, H.; Lin, Y.; Li, Z.; Wu, M. Small 2020, 16, 2004631. doi: 10.1002/smll.202004631  doi: 10.1002/smll.202004631

    16. [16]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    17. [17]

      Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Energy Storage Mater. 2020, 24, 22. doi: 10.1016/j.ensm.2019.08.004  doi: 10.1016/j.ensm.2019.08.004

    18. [18]

      Chen, K.; Sun, Z. H.; Fang, R. P.; Li, F.; Cheng, H. M. Acta Phys. -Chim. Sin. 2018, 34, 377.  doi: 10.3866/PKU.WHXB201709001

    19. [19]

      Zhang, Y.; Gao, Z.; Song, N.; He, J.; Li, X. Mater. Today Energy 2018, 9, 319. doi: 10.1016/j.mtener.2018.06.001  doi: 10.1016/j.mtener.2018.06.001

    20. [20]

      Sun, C.; Liu, Y.; Sheng, J.; Huang, Q.; Lv, W.; Zhou, G.; Cheng, H. -M. Mater. Horiz. 2020, 7, 2487. doi: 10.1039/d0mh00815j  doi: 10.1039/d0mh00815j

    21. [21]

      Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Nano Lett. 2011, 11, 2644. doi: 10.1021/nl200658a  doi: 10.1021/nl200658a

    22. [22]

      Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522. doi: 10.1021/ja206955k  doi: 10.1021/ja206955k

    23. [23]

      Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. ACS Nano 2014, 8, 5208. doi: 10.1021/nn501284q  doi: 10.1021/nn501284q

    24. [24]

      Ning, H.; Mao, Q.; Wang, W.; Yang, Z.; Wang, X.; Zhao, Q.; Song, Y.; Wu, M. J. Alloys Compd. 2019, 785, 7. doi: 10.1016/j.jallcom.2019.01.142  doi: 10.1016/j.jallcom.2019.01.142

    25. [25]

      Zhao, Q.; Liu, J.; Li, X.; Xia, Z.; Zhang, Q.; Zhou, M.; Tian, W.; Wang, M.; Hu, H.; Li, Z.; et al. Chem. Eng. J. 2019, 369, 215. doi: 10.1016/j.cej.2019.03.076  doi: 10.1016/j.cej.2019.03.076

    26. [26]

      Wang, Y.; Huo. W.; Yuan, X.; Zhang, Y. Acta Phys. -Chim. Sin. 2020, 36, 1904007.  doi: 10.3866/PKU.WHXB201904007

    27. [27]

      Zhang, T.; Li, C.; Wang, W.; Guo, Z.; Pang, A.; Ma, H. Acta Phys. -Chim. Sin. 2020, 36, 1905048.  doi: 10.3866/PKU.WHXB201905048

    28. [28]

      Li, Y.; Cai, Q.; Wang, L.; Li, Q.; Peng, X.; Gao, B.; Huo, K.; Chu, P. K. ACS Appl. Mater. Interfaces 2016, 8, 23784. doi: 10.1021/acsami.6b09479  doi: 10.1021/acsami.6b09479

    29. [29]

      Li, Z.; Xu, R.; Deng, S.; Su, X.; Wu, W.; Liu, S.; Wu, M. Appl. Surf. Sci. 2018, 433, 10. doi: 10.1016/j.apsusc.2017.10.050  doi: 10.1016/j.apsusc.2017.10.050

    30. [30]

      Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q. -H. Adv. Sci. 2018, 5. doi: 10.1002/advs.201700270  doi: 10.1002/advs.201700270

    31. [31]

      Guo, X.; Zheng, S.; Zhang, G.; Xiao, X.; Li, X.; Xu, Y.; Xue, H.; Pang, H. Energy Storage Mater. 2017, 9, 150. doi: 10.1016/j.ensm.2017.07.006  doi: 10.1016/j.ensm.2017.07.006

    32. [32]

      Wang, Z.; Xu, X.; Ji, S.; Liu, Z.; Zhang, D.; Shen, J.; Liu, J. J. Mater. Sci. Technol. 2020, 55, 56. doi: 10.1016/j.jmst.2019.09.037  doi: 10.1016/j.jmst.2019.09.037

    33. [33]

      Huang, J. -Q.; Liu, X. -F.; Zhang, Q.; Chen, C. -M.; Zhao, M. -Q.; Zhang, S. -M.; Zhu, W.; Qian, W. -Z.; Wei, F. Nano Energy 2013, 2, 314. doi: 10.1016/j.nanoen.2012.10.003  doi: 10.1016/j.nanoen.2012.10.003

    34. [34]

      Zhao, M. -Q.; Zhang, Q.; Huang, J. -Q.; Tian, G. -L.; Nie, J. -Q.; Peng, H. -J.; Wei, F. Nat. Commun. 2014, 5, 3410. doi: 10.1038/ncomms4410  doi: 10.1038/ncomms4410

    35. [35]

      Tang, C.; Li, B. -Q.; Zhang, Q.; Zhu, L.; Wang, H. -F.; Shi, J. -L.; Wei, F. Adv. Funct. Mater. 2016, 26, 577. doi: 10.1002/adfm.201503726  doi: 10.1002/adfm.201503726

    36. [36]

      Zu, C.; Manthiram, A. Adv. Energy Mater. 2013, 3, 1008. doi: 10.1002/aenm.201201080  doi: 10.1002/aenm.201201080

    37. [37]

      Chang, N.; Zhou, C. G.; Fu, H.; Zhao, Y.; Shui, J. L. Adv. Mater. Interfaces 2017, 4, 9. doi: 10.1002/admi.201700783  doi: 10.1002/admi.201700783

    38. [38]

      Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Wu, H. B.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W. Nat. Commun. 2014, 5, 5002. doi: 10.1038/ncomms6002  doi: 10.1038/ncomms6002

    39. [39]

      Qiu, Y.; Li, W.; Zhao, W.; Li, G.; Hou, Y.; Liu, M.; Zhou, L.; Ye, F.; Li, H.; Wei, Z.; et al. Nano Lett. 2014, 14, 4821. doi: 10.1021/nl5020475  doi: 10.1021/nl5020475

    40. [40]

      Xie, Y.; Meng, Z.; Cai, T.; Han, W. -Q. ACS Appl. Mater. Interfaces 2015, 7, 25202. doi: 10.1021/acsami.5b08129  doi: 10.1021/acsami.5b08129

    41. [41]

      Xu, J.; Su, D.; Zhang, W.; Bao, W.; Wang, G. J. Mater. Chem. A 2016, 4, 17381. doi: 10.1039/c6ta05878g  doi: 10.1039/c6ta05878g

    42. [42]

      Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Small 2016, 12, 3283. doi: 10.1002/smll.201600809  doi: 10.1002/smll.201600809

    43. [43]

      Zhang, K.; Chen, Z.; Ning, R.; Xi, S.; Tang, W.; Du, Y.; Liu, C.; Ren, Z.; Chi, X.; Bai, M.; et al. ACS Appl. Mater. Interfaces 2019, 11, 25147. doi: 10.1021/acsami.9b05628  doi: 10.1021/acsami.9b05628

    44. [44]

      Zhang, L.; Liu, D.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y.; Song, L.; Niu, Z.; Chen, J. Adv. Mater. 2019, 31. 19063955. doi: 10.1002/adma.201903955  doi: 10.1002/adma.201903955

    45. [45]

      Li, Y.; Lin, S.; Wang, D.; Gao, T.; Song, J.; Zhou, P.; Xu, Z.; Yang, Z.; Xiao, N.; Guo, S. Adv. Mater. 2020, 32, 1906722. doi: 10.1002/adma.201906722  doi: 10.1002/adma.201906722

    46. [46]

      Li, Y.; Wu, J.; Zhang, B.; Wang, W.; Zhang, G.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J.; et al. Energy Storage Mater. 2020, 30, 250. doi: 10.1016/j.ensm.2020.05.022  doi: 10.1016/j.ensm.2020.05.022

    47. [47]

      Lu, C.; Chen, Y.; Yang, Y.; Chen, X. Nano Lett. 2020, 20, 5522. doi: 10.1021/acs.nanolett.0c02167  doi: 10.1021/acs.nanolett.0c02167

    48. [48]

      Lu, C.; Fang, R.; Chen, X. Adv. Mater. 2020, 32, 1906548. doi: 10.1002/adma.201906548  doi: 10.1002/adma.201906548

    49. [49]

      Zhang, Q.; Zhang, X.; Wang, J.; Wang, C. Nanotechnology 2021, 32, 032001. doi: 10.1088/1361-6528/abbd70  doi: 10.1088/1361-6528/abbd70

    50. [50]

      Du, Z.; Chen, X.; Hu, W.; Chuang, C.; Xie, S.; Hu, A.; Yan, W.; Kong, X.; Wu, X.; Ji, H.; et al. J. Am. Chem. Soc. 2019, 141, 3977. doi: 10.1021/jacs.8b12973  doi: 10.1021/jacs.8b12973

    51. [51]

      Wang, Y.; Adekoya, D.; Sun, J.; Tang, T.; Qiu, H.; Xu, L.; Zhang, S.; Hou, Y. Adv. Funct. Mater. 2019, 29, 1807485. doi: 10.1002/adfm.201807485  doi: 10.1002/adfm.201807485

    52. [52]

      Zhou, G.; Wang, S.; Wang, T.; Yang, S. -Z.; Johannessen, B.; Chen, H.; Liu, C.; Ye, Y.; Wu, Y.; Peng, Y.; et al. Nano Lett. 2020, 20, 1252. doi: 10.1021/acs.nanolett.9b04719  doi: 10.1021/acs.nanolett.9b04719

    53. [53]

      Zhou, G. M.; Zhao, Y. B.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1402263. doi: 10.1002/aenm.201402263  doi: 10.1002/aenm.201402263

    54. [54]

      Chen, K.; Sun, Z.; Fang, R.; Shi, Y.; Cheng, H. -M.; Li, F. Adv. Funct. Mater. 2018, 28, 1707592. doi: 10.1002/adfm.201707592  doi: 10.1002/adfm.201707592

    55. [55]

      Chen, X.; Xiao, Z.; Ning, X.; Liu, Z.; Yang, Z.; Zou, C.; Wang, S.; Chen, X.; Chen, Y.; Huang, S. Adv. Energy Mater. 2014, 4, 1301988. doi: 10.1002/aenm.201301988  doi: 10.1002/aenm.201301988

    56. [56]

      Peng, H. -J.; Huang, J. -Q.; Zhao, M. -Q.; Zhang, Q.; Cheng, X. -B.; Liu, X. -Y.; Qian, W. -Z.; Wei, F. Adv. Funct. Mater. 2014, 24, 2772. doi: 10.1002/adfm.201303296  doi: 10.1002/adfm.201303296

    57. [57]

      Chen, R.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J.; Tan, G.; Ye, Y.; Amine, K. Nano Lett. 2013, 13, 4642. doi: 10.1021/nl4016683  doi: 10.1021/nl4016683

    58. [58]

      Zhao, C.; Yu, C.; Zhang, M.; Yang, J.; Liu, S.; Li, M.; Han, X.; Dong, Y.; Qiu, J. J. Mater. Chem. A 2015, 3, 21842. doi: 10.1039/c5ta05146k  doi: 10.1039/c5ta05146k

    59. [59]

      Huang, J. -Q.; Xu, Z. -L.; Abouali, S.; Garakani, M. A.; Kim, J. -K. Carbon 2016, 99, 624. doi: 10.1016/j.carbon.2015.12.081  doi: 10.1016/j.carbon.2015.12.081

    60. [60]

      Zhang, Z.; Kong, L. -L.; Liu, S.; Li, G. -R.; Gao, X. -P. Adv. Energy Mater. 2017, 7, 1602543. doi: 10.1002/aenm.201602543  doi: 10.1002/aenm.201602543

    61. [61]

      Zhang, M.; Yu, C.; Yang, J.; Zhao, C.; Ling, Z.; Qiu, J. J. Mater. Chem. A 2017, 5, 10380. doi: 10.1039/c7ta01512g  doi: 10.1039/c7ta01512g

    62. [62]

      Tang, C.; Zhang, Q.; Zhao, M. -Q.; Huang, J. -Q.; Cheng, X. -B.; Tian, G. -L.; Peng, H. -J.; Wei, F. Adv. Mater. 2014, 26, 6100. doi: 10.1002/adma.201401243  doi: 10.1002/adma.201401243

    63. [63]

      Lu, S.; Cheng, Y.; Wu, X.; Liu, J. Nano Lett. 2013, 13, 2485. doi: 10.1021/nl400543y  doi: 10.1021/nl400543y

    64. [64]

      Yuan, S.; Bao, J. L.; Wang, L.; Xia, Y.; Truhlar, D. G.; Wang, Y. Adv. Energy Mater. 2016, 6, 1501733. doi: 10.1002/aenm.201501733  doi: 10.1002/aenm.201501733

    65. [65]

      Yu, M.; Ma, J.; Song, H.; Wang, A.; Tian, F.; Wang, Y.; Qiu, H.; Wang, R. Energy Environ. Sci. 2016, 9, 1495. doi: 10.1039/c5ee03902a  doi: 10.1039/c5ee03902a

    66. [66]

      Cheng, Z.; Xiao, Z.; Pan, H.; Wang, S.; Wang, R. Adv. Energy Mater. 2018, 8, 1702337. doi: 10.1002/aenm.201702337  doi: 10.1002/aenm.201702337

    67. [67]

      Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H. -M.; Li, F. Nat. Commun. 2017, 8, 14627. doi: 10.1038/ncomms14627  doi: 10.1038/ncomms14627

    68. [68]

      Chen, L.; Yang, W.; Liu, J.; Zhou, Y. Nano Res. 2019, 12, 2743. doi: 10.1007/s12274-019-2508-3  doi: 10.1007/s12274-019-2508-3

    69. [69]

      Jin, J.; Wen, Z.; Ma, G.; Lu, Y.; Cui, Y.; Wu, M.; Liang, X.; Wu, X. RSC Adv. 2013, 3, 2558. doi: 10.1039/C2RA22808D  doi: 10.1039/C2RA22808D

    70. [70]

      Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2015, 11, 356. doi: 10.1016/j.nanoen.2014.11.025  doi: 10.1016/j.nanoen.2014.11.025

    71. [71]

      Wang, C.; Wang, X. S.; Wang, Y. J.; Chen, J. T.; Zhou, H. H.; Huang, Y. H. Nano Energy 2015, 11, 678. doi: 10.1016/j.nanoen.2014.11.060  doi: 10.1016/j.nanoen.2014.11.060

    72. [72]

      Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Adv. Mater. 2016, 28, 9629. doi: 10.1002/adma.201602262  doi: 10.1002/adma.201602262

    73. [73]

      Sun, L.; Kong, W. B.; Jiang, Y.; Wu, H. C.; Jiang, K. L.; Wang, J. P.; Fan, S. S. J. Mater. Chem. A 2015, 3, 5305. doi: 10.1039/c4ta06255h  doi: 10.1039/c4ta06255h

    74. [74]

      Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Nano Energy 2019, 60, 743. doi: 10.1016/j.nanoen.2019.04.006  doi: 10.1016/j.nanoen.2019.04.006

    75. [75]

      Xiao, P.; Bu, F.; Yang, G.; Zhang, Y.; Xu, Y. Adv. Mater. 2017, 29, 1703324. doi: 10.1002/adma.201703324  doi: 10.1002/adma.201703324

    76. [76]

      He, J.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y.; Manthiram, A. Energy Environ. Sci. 2019, 12, 344. doi: 10.1039/C8EE03252A  doi: 10.1039/C8EE03252A

    77. [77]

      Ghosh, A.; Manjunatha, R.; Kumar, R.; Mitra, S. ACS Appl. Mater. Interfaces 2016, 8, 33775. doi: 10.1021/acsami.6b11180  doi: 10.1021/acsami.6b11180

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(91)
  • Abstract views(2156)
  • HTML views(493)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return