Citation: Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 201208. doi: 10.3866/PKU.WHXB202012085 shu

Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation

  • Corresponding author: Lizhi Sheng, shengli_zhi@126.com Zhuangjun Fan, fanzhj666@163.com
  • Received Date: 30 December 2020
    Revised Date: 16 January 2021
    Accepted Date: 18 January 2021
    Available Online: 22 January 2021

    Fund Project: the National Natural Science Foundation of China 51902006the National Natural Science Foundation of China 51702117the National Natural Science Foundation of China 51672055the National Natural Science Foundation of China 51972342the Taishan Scholar Project of Shandong Province ts20190922the Key Basic Research Projects of Natural Science Foundation of Shandong Province ZR2019ZD51Department of Science and Technology of Jilin Province 20190103034JHDepartment of Science and Technology of Jilin Province 20180520014JHthe Young Elite Scientist Sponsorship Program by Jilin Province Science and Technology Association 192009

  • With the rapid development of the functional applications of portable and wearable electronic products (such as curved smartphones, smartwatches, laptops, and electronic skins), there is an urgent need to fabricate flexible, lightweight, and highly efficient energy storage devices that can provide sufficient power support. Flexible supercapacitors with high power density, high charging/discharging rates, wide operating temperature ranges, low maintenance consumption, and a long cycling lifespan can be integrated with smart wearable electronic products to provide power support. The conventional preparation method for the electrodes of flexible supercapacitors involves directly coating the active materials on flexible substrates. However, inactive materials such as the substrates and binders occupy a large volume and contribute notably to the weight of flexible electrodes, which is unsuitable for highly integrated flexible electronic devices. Owing to its unique characteristics, including large theoretical specific surface area, high electrical conductivity, excellent mechanical flexibility, good chemical stability, and ease of film processing, graphene has been widely used as an electrode material for flexible supercapacitors. The graphene film is a macrostructure with graphene nanosheets as the main structural units. As opposed to conventional flexible electrodes containing non-electrochemical active components such as collectors, conductive agents, and binders, graphene film electrodes are considered highly promising electrode materials for flexible supercapacitors because of their light weight and robust mechanical properties. However, the inevitable aggregation of graphene during electrode preparation creates ''dead volume'' in the film electrodes, where the electrolyte cannot reach, further limiting the specific capacitance. In this review, we review the recent research on graphene films used for flexible supercapacitors, with emphasis on the assembling methods for graphene films, regulation of the graphene units, and their electrochemical performance. First, simple preparation methods for graphene films are introduced: vacuum-assisted self-assembly, blade coating, pressing aerogel, wet spinning, and interfacial self-assembly. Second, two major strategies for structural control and surface modification of the graphene units are described in detail: (1) structural control can transform the two-dimensional graphene nanosheets into defect graphene, which not only weakens the van der Waals force and ππ bond interactions between the nanosheets, but also leads to the formation of three-dimensional conductive networks and ion transport channels during the assembly process; (2) surface modification, which can suppress the agglomeration of graphene nanosheets by introducing heteroatoms and reactive functional group molecules, while improving their electrical conductivity and wettability, and introducing pseudocapacitance. Finally, the persisting challenges and future development of the commercial applications of graphene films are discussed.
  • 加载中
    1. [1]

      Korkmaz, S.; Kariper, İ. A. J. Energy Storage 2020, 27, 101038. doi: 10.1016/j.est.2019.101038  doi: 10.1016/j.est.2019.101038

    2. [2]

      Kumar, S.; Saeed, G.; Zhu, L.; Hui, K. N.; Kim, N. H.; Lee, J. H. Chem. Eng. J. 2021, 403, 126352. doi: 10.1016/j.cej.2020.126352  doi: 10.1016/j.cej.2020.126352

    3. [3]

      Wang, J. -G.; Ren, L.; Hou, Z.; Shao, M. Chem. Eng. J. 2020, 397, 125521. doi: 10.1016/j.cej.2020.125521  doi: 10.1016/j.cej.2020.125521

    4. [4]

      Tian, D.; Lu, X.; Li, W.; Li, Y.; Wang, C. Acta Phys. -Chim. Sin. 2020, 36, 1904056. [  doi: 10.3866/PKU.WHXB201904056
       

    5. [5]

      Wang, Y.; Huo, W.; Yuan, X.; Zhang, Y. Acta Phys. -Chim. Sin. 2020, 36, 1904007.  doi: 10.3866/PKU.WHXB201904007
       

    6. [6]

      Jiang, L.; Fan, Z. Nanoscale 2014, 6, 1922. doi: 10.1039/c3nr04555b  doi: 10.1039/c3nr04555b

    7. [7]

      Cheng, L.; Li, X.; Li, J.; Qiu, H.; Xue, Y.; Evgenyevna, K. -I.; Kolesov, V.; Chen, C.; Yang, J. New Carbon Mater. 2020, 35, 684.  doi: 10.1016/S1872-5805(20]60522-4

    8. [8]

      Ma, Y.; Zhi, L. Small Methods 2019, 3, 1800199. doi: 10.1002/smtd.201800199  doi: 10.1002/smtd.201800199

    9. [9]

      Li, X.; Tang, Y.; Song, J.; Yang, W.; Wang, M.; Zhu, C.; Zhao, W.; Zheng, J.; Lin, Y. Carbon 2018, 129, 236. doi: 10.1016/j.carbon.2017.11.099  doi: 10.1016/j.carbon.2017.11.099

    10. [10]

      Lv, Z.; Luo, Y.; Tang, Y.; Wei, J.; Zhu, Z.; Zhou, X.; Li, W.; Zeng, Y.; Zhang, W.; Zhang, Y.; et al. Adv. Mater. 2018, 30, 1704531. doi: 10.1002/adma.201704531  doi: 10.1002/adma.201704531

    11. [11]

      Jabari, E.; Ahmed, F.; Liravi, F.; Secor, E. B.; Lin, L.; Toyserkani, E. 2D Mater. 2019, 6, 042004. doi: 10.1088/2053-1583/ab29b2  doi: 10.1088/2053-1583/ab29b2

    12. [12]

      Xiong, Z.; Liao, C.; Han, W.; Wang, X. Adv. Mater. 2015, 27, 4469. doi: 10.1002/adma.201501983  doi: 10.1002/adma.201501983

    13. [13]

      Gao, C.; Chen, K.; Wang, Y.; Zhao, Y.; Qu, L. ChemSusChem 2020, 13, 1255. doi: 10.1002/cssc.201902707  doi: 10.1002/cssc.201902707

    14. [14]

      Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020, 36, 1903055.  doi: 10.3866/PKU.WHXB201903055
       

    15. [15]

      Wang, X.; Wan, F.; Zhang, L.; Zhao, Z.; Niu, Z.; Chen, J. Adv. Funct. Mater. 2018, 28, 1707247. doi: 10.1002/adfm.201707247  doi: 10.1002/adfm.201707247

    16. [16]

      Zhu, Y.; Ye, X.; Jiang, H.; Wang, L.; Zhao, P.; Yue, Z.; Wan, Z.; Jia, C. J. Power Sources 2018, 400, 605. doi: 10.1016/j.jpowsour.2018.07.075  doi: 10.1016/j.jpowsour.2018.07.075

    17. [17]

      Salman, M.; Chu, X.; Huang, T.; Cai, S.; Yang, Q.; Dong, X.; Gopalsamy, K.; Gao, C. Mater. Chem. Front. 2018, 2, 2313. doi: 10.1039/c8qm00260f  doi: 10.1039/c8qm00260f

    18. [18]

      Meng, Q.; Du, C.; Xu, Z.; Nie, J.; Hong, M.; Zhang, X.; Chen, J. Chem. Eng. J. 2020, 393, 124684. doi: 10.1016/j.cej.2020.124684  doi: 10.1016/j.cej.2020.124684

    19. [19]

      Wang, Y.; Chen, J.; Cao, J.; Liu, Y.; Zhou, Y.; Ouyang, J. -H.; Jia, D. J. Power Sources 2014, 271, 269. doi: 10.1016/j.jpowsour.2014.08.007  doi: 10.1016/j.jpowsour.2014.08.007

    20. [20]

      Feng, X.; Chen, W.; Yan, L. Nanoscale 2015, 7, 3712. doi: 10.1039/c4nr06897a  doi: 10.1039/c4nr06897a

    21. [21]

      Hu, C.; Song, L.; Zhang, Z.; Chen, N.; Feng, Z.; Qu, L. Energy Environ. Sci. 2015, 8, 31. doi: 10.1039/c4ee02594f  doi: 10.1039/c4ee02594f

    22. [22]

      Lu, X.; Dou, H.; Zhang, X. Mater. Lett. 2016, 178, 304. doi: 10.1016/j.matlet.2016.05.029  doi: 10.1016/j.matlet.2016.05.029

    23. [23]

      Deng, L.; Gu, Y.; Gao, Y.; Ma, Z.; Fan, G. J. Colloid Interface Sci. 2017, 494, 355. doi: 10.1016/j.jcis.2017.01.062  doi: 10.1016/j.jcis.2017.01.062

    24. [24]

      Huang, C.; Hu, A.; Li, Y.; Zhou, H.; Xu, Y.; Zhang, Y.; Zhou, S.; Tang, Q.; Chen, C.; Chen, X. Nanoscale 2019, 11, 16515. doi: 10.1039/c9nr06001d  doi: 10.1039/c9nr06001d

    25. [25]

      Hou, M.; Xu, M.; Hu, Y.; Li, B. Electrochim. Acta 2019, 313, 245. doi: 10.1016/j.electacta.2019.05.037  doi: 10.1016/j.electacta.2019.05.037

    26. [26]

      Kavinkumar, T.; Kavitha, P.; Naresh, N.; Manivannan, S.; Muneeswaran, M.; Neppolian, B. Appl. Surf. Sci. 2019, 480, 671. doi: 10.1016/j.apsusc.2019.02.231  doi: 10.1016/j.apsusc.2019.02.231

    27. [27]

      Wu, D. -Y.; Zhou, W. -H.; He, L. -Y.; Tang, H. -Y.; Xu, X. -H.; Ouyang, Q. -S.; Shao, J. -J. Carbon 2020, 160, 156. doi: 10.1016/j.carbon.2020.01.019  doi: 10.1016/j.carbon.2020.01.019

    28. [28]

      Yang, X.; Qiu, L.; Cheng, C.; Wu, Y.; Ma, Z. F.; Li, D. Angew. Chem. Int. Ed. 2011, 50, 7325. doi: 10.1002/anie.201100723  doi: 10.1002/anie.201100723

    29. [29]

      Zhu, Y.; Ye, X.; Jiang, H.; Xia, J.; Yue, Z.; Wang, L.; Wan, Z.; Jia, C.; Yao, X. J. Power Sources 2020, 453, 227851. doi: 10.1016/j.jpowsour.2020.227851  doi: 10.1016/j.jpowsour.2020.227851

    30. [30]

      Fan, Z.; Zhu, J.; Sun, X.; Cheng, Z.; Liu, Y.; Wang, Y. ACS Appl. Mater. Interfaces 2017, 9, 21763. doi: 10.1021/acsami.7b03477  doi: 10.1021/acsami.7b03477

    31. [31]

      Xu, Y.; Lin, Z.; Huang, X.; Liu, Y.; Huang, Y.; Duan, X. ACS Nano 2013, 7, 4042. doi: 10.1021/nn4000836  doi: 10.1021/nn4000836

    32. [32]

      Liu, F.; Song, S.; Xue, D.; Zhang, H. Adv. Mater. 2012, 24, 1089. doi: 10.1002/adma.201104691  doi: 10.1002/adma.201104691

    33. [33]

      Jian, M.; Zhang, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2007093.  doi: 10.3866/PKU.WHXB202007093
       

    34. [34]

      Xu, Z.; Gao, C. ACS Nano 2011, 5, 2908. doi: 10.1021/nn200069w  doi: 10.1021/nn200069w

    35. [35]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    36. [36]

      Huang, T.; Chu, X.; Cai, S.; Yang, Q.; Chen, H.; Liu, Y.; Gopalsamy, K.; Xu, Z.; Gao, W.; Gao, C. Energy Storage Mater. 2019, 17, 349. doi: 10.1016/j.ensm.2018.07.001  doi: 10.1016/j.ensm.2018.07.001

    37. [37]

      Kou, L.; Liu, Z.; Huang, T.; Zheng, B.; Tian, Z.; Deng, Z.; Gao, C. Nanoscale 2015, 7, 4080. doi: 10.1039/c4nr07038k  doi: 10.1039/c4nr07038k

    38. [38]

      Oksuz, M.; Erbil, H. Y. RSC Adv. 2018, 8, 17443. doi: 10.1039/c8ra02325e  doi: 10.1039/c8ra02325e

    39. [39]

      Kim, F.; Cote, L. J.; Huang, J. Adv. Mater. 2010, 22, 1954. doi: 10.1002/adma.200903932  doi: 10.1002/adma.200903932

    40. [40]

      Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nat. Chem. 2010, 2, 1015. doi: 10.1038/nchem.907  doi: 10.1038/nchem.907

    41. [41]

      Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1, 73. doi: 10.1038/ncomms1067  doi: 10.1038/ncomms1067

    42. [42]

      Shao, J. J.; Lv, W.; Guo, Q.; Zhang, C.; Xu, Q.; Yang, Q. H.; Kang, F. Chem. Commun. 2012, 48, 3706. doi: 10.1039/c1cc16838j  doi: 10.1039/c1cc16838j

    43. [43]

      Chen, C.; Yang, Q. -H.; Yang, Y.; Lv, W.; Wen, Y.; Hou, P. -X.; Wang, M.; Cheng, H. -M. Adv. Mater. 2009, 21, 3007. doi: 10.1002/adma.200803726  doi: 10.1002/adma.200803726

    44. [44]

      Oh, Y. J.; Yoo, J. J.; Kim, Y. I.; Yoon, J. K.; Yoon, H. N.; Kim, J. -H.; Park, S. B. Electrochim. Acta 2014, 116, 118. doi: 10.1016/j.electacta.2013.11.040  doi: 10.1016/j.electacta.2013.11.040

    45. [45]

      Wang, H.; Sun, X.; Liu, Z.; Lei, Z. Nanoscale 2014, 6, 6577. doi: 10.1039/c4nr00538d  doi: 10.1039/c4nr00538d

    46. [46]

      Lei, Z.; Lu, L.; Zhao, X. S. Energy Environ. Sci. 2012, 5, 6391. doi: 10.1039/c1ee02478g  doi: 10.1039/c1ee02478g

    47. [47]

      Sammed, K. A.; Pan, L.; Asif, M.; Usman, M.; Cong, T.; Amjad, F.; Imran, M. A. Sci. Rep. 2020, 10, 2315. doi: 10.1038/s41598-020-58162-9  doi: 10.1038/s41598-020-58162-9

    48. [48]

      Kang, L.; Zhang, G.; Bai, Y.; Wang, H.; Lei, Z.; Liu, Z. Acta Phys. -Chim. Sin. 2020, 36, 1905032.  doi: 10.3866/PKU.WHXB201905032
       

    49. [49]

      Jang, G. G.; Song, B.; Moon, K. -S.; Wong, C. -P.; Keum, J. K.; Hu, M. Z. Carbon 2017, 119, 296. doi: 10.1016/j.carbon.2017.04.023  doi: 10.1016/j.carbon.2017.04.023

    50. [50]

      Xu, T.; Yang, D.; Fan, Z.; Li, X.; Liu, Y.; Guo, C.; Zhang, M.; Yu, Z. -Z. Carbon 2019, 152, 134. doi: 10.1016/j.carbon.2019.06.005  doi: 10.1016/j.carbon.2019.06.005

    51. [51]

      Chao, Y.; Chen, S.; Chen, H.; Hu, X.; Ma, Y.; Gao, W.; Bai, Y. Electrochim. Acta 2018, 276, 118. doi: 10.1016/j.electacta.2018.04.156  doi: 10.1016/j.electacta.2018.04.156

    52. [52]

      Wang, X.; Song, X.; Li, S.; Xu, C.; Cao, Y.; Xiao, Z.; Qi, C.; Ma, X.; Gao, J. Chem. Eng. Sci. 2020, 221, 115657. doi: 10.1016/j.ces.2020.115657  doi: 10.1016/j.ces.2020.115657

    53. [53]

      Nishihara, H.; Kyotani, T. Adv. Mater. 2012, 24, 4473. doi: 10.1002/adma.201201715  doi: 10.1002/adma.201201715

    54. [54]

      Liu, D.; Li, Q.; Zhao, H. J. Mater. Chem. A 2018, 6, 11471. doi: 10.1039/c8ta02580k  doi: 10.1039/c8ta02580k

    55. [55]

      Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332, 1537. doi: 10.1126/science.1200770  doi: 10.1126/science.1200770

    56. [56]

      Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R. B. Mater. Horiz. 2017, 4, 1145. doi: 10.1039/c7mh00441a  doi: 10.1039/c7mh00441a

    57. [57]

      Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 4554. doi: 10.1038/ncomms5554  doi: 10.1038/ncomms5554

    58. [58]

      Xu, Y.; Chen, C. Y.; Zhao, Z.; Lin, Z.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. Nano Lett. 2015, 15, 4605. doi: 10.1021/acs.nanolett.5b01212  doi: 10.1021/acs.nanolett.5b01212

    59. [59]

      Sheng, L.; Wei, T.; Liang, Y.; Jiang, L.; Qu, L.; Fan, Z. Carbon 2017, 120, 17. doi: 10.1016/j.carbon.2017.05.033  doi: 10.1016/j.carbon.2017.05.033

    60. [60]

      Sheng, L.; Chang, J.; Jiang, L.; Jiang, Z.; Liu, Z.; Wei, T.; Fan, Z. Adv. Funct. Mater. 2018, 28, 1800597. doi: 10.1002/adfm.201800597  doi: 10.1002/adfm.201800597

    61. [61]

      Bo, Z.; Mao, S.; Han, Z. J.; Cen, K.; Chen, J.; Ostrikov, K. K. Chem. Soc. Rev. 2015, 44, 2108. doi: 10.1039/c4cs00352g  doi: 10.1039/c4cs00352g

    62. [62]

      Li, M.; Liu, D.; Wei, D.; Song, X.; Wei, D.; Wee, A. T. Adv. Sci. 2016, 3, 1600003. doi: 10.1002/advs.201600003  doi: 10.1002/advs.201600003

    63. [63]

      Zhang, Z.; Lee, C. -S.; Zhang, W. Adv. Energy Mater. 2017, 7, 1700678. doi: 10.1002/aenm.201700678  doi: 10.1002/aenm.201700678

    64. [64]

      Zheng, S.; Li, Z.; Wu, Z. -S.; Dong, Y.; Zhou, F.; Wang, S.; Fu, Q.; Sun, C.; Guo, L.; Bao, X. ACS Nano 2017, 11, 4009. doi: 10.1021/acsnano.7b00553  doi: 10.1021/acsnano.7b00553

    65. [65]

      Qi, H.; Yick, S.; Francis, O.; Murdock, A.; van der Laan, T.; Ostrikov, K.; Bo, Z.; Han, Z.; Bendavid, A. Energy Storage Mater. 2020, 26, 138. doi: 10.1016/j.ensm.2019.12.040  doi: 10.1016/j.ensm.2019.12.040

    66. [66]

      Zhang, C.; Peng, Z.; Lin, J.; Zhu, Y.; Ruan, G.; Hwang, C. C.; Lu, W.; Hauge, R. H.; Tour, J. M. ACS Nano 2013, 7, 5151. doi: 10.1021/nn400750n  doi: 10.1021/nn400750n

    67. [67]

      Zhang, Y.; Zou, Q.; Hsu, H. S.; Raina, S.; Xu, Y.; Kang, J. B.; Chen, J.; Deng, S.; Xu, N.; Kang, W. P. ACS Appl. Mater. Interfaces 2016, 8, 7363. doi: 10.1021/acsami.5b12652  doi: 10.1021/acsami.5b12652

    68. [68]

      Jang, G. G.; Song, B.; Li, L.; Keum, J. K.; Jiang, Y.; Hunt, A.; Moon, K. -S.; Wong, C. -P.; Hu, M. Z. Nano Energy 2017, 32, 88. doi: 10.1016/j.nanoen.2016.12.016  doi: 10.1016/j.nanoen.2016.12.016

    69. [69]

      Zhou, Q.; Wei, T.; Yue, J.; Sheng, L.; Fan, Z. Electrochim. Acta 2018, 291, 234. doi: 10.1016/j.electacta.2018.08.104  doi: 10.1016/j.electacta.2018.08.104

    70. [70]

      Hong, X.; Zhang, B.; Murphy, E.; Zou, J.; Kim, F. J. Power Sources 2017, 343, 60. doi: 10.1016/j.jpowsour.2017.01.034  doi: 10.1016/j.jpowsour.2017.01.034

    71. [71]

      Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. Adv. Mater. 2018, 30, e1800124. doi: 10.1002/adma.201800124  doi: 10.1002/adma.201800124

    72. [72]

      Kahriz, P. K.; Mahdavi, H.; Ehsani, A.; Heidari, A. A.; Bigdeloo, M. Electrochim. Acta 2020, 354, 136736. doi: 10.1016/j.electacta.2020.136736  doi: 10.1016/j.electacta.2020.136736

    73. [73]

      Xu, L.; Jia, M.; Li, Y.; Jin, X.; Zhang, F. Sci. Rep. 2017, 7, 12857. doi: 10.1038/s41598-017-11267-0  doi: 10.1038/s41598-017-11267-0

    74. [74]

      Zhou, T.; Wu, C.; Wang, Y.; Tomsia, A. P.; Li, M.; Saiz, E.; Fang, S.; Baughman, R. H.; Jiang, L.; Cheng, Q. Nat. Commun. 2020, 11, 2077. doi: 10.1038/s41467-020-15991-6  doi: 10.1038/s41467-020-15991-6

    75. [75]

      Fan, Z.; Yan, J.; Zhi, L.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M.; Qian, W.; Wei, F. Adv. Mater. 2010, 22, 3723. doi: 10.1002/adma.201001029  doi: 10.1002/adma.201001029

    76. [76]

      Wu, Z. S.; Zheng, Y.; Zheng, S.; Wang, S.; Sun, C.; Parvez, K.; Ikeda, T.; Bao, X.; Mullen, K.; Feng, X. Adv. Mater. 2017, 29, 1602960. doi: 10.1002/adma.201602960  doi: 10.1002/adma.201602960

    77. [77]

      Huang, C.; Tang, Q.; Feng, Q.; Li, Y.; Xu, Y.; Zhang, Y.; Hu, A.; Zhang, S.; Deng, W.; Chen, X. J. Mater. Chem. A 2020, 8, 9661. doi: 10.1039/c9ta13585e  doi: 10.1039/c9ta13585e

    78. [78]

      Yang, X.; Zhu, J.; Qiu, L.; Li, D. Adv. Mater. 2011, 23, 2833. doi: 10.1002/adma.201100261  doi: 10.1002/adma.201100261

    79. [79]

      Yang, X.; Cheng, C.; Wang, Y.; Qiu, L.; Li, D. Science 2013, 341, 534. doi: 10.1126/science.1239089  doi: 10.1126/science.1239089

    80. [80]

      Li, N.; Huang, X.; Zhang, H.; Shi, Z.; Li, Y.; Wang, C. J. Mater. Chem. A 2017, 5, 14595. doi: 10.1039/c7ta03353b  doi: 10.1039/c7ta03353b

    81. [81]

      Li, N.; Huang, X.; Zhang, H.; Li, Y.; Wang, C. ACS Appl. Mater. Interfaces 2017, 9, 9763. doi: 10.1021/acsami.7b00487  doi: 10.1021/acsami.7b00487

    82. [82]

      Li, Z.; Gadipelli, S.; Li, H.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z.; Parkin, I. P.; Li, F. Nat. Energy 2020, 5, 160. doi: 10.1038/s41560-020-0560-6  doi: 10.1038/s41560-020-0560-6

    83. [83]

      Zhang, L.; Huang, D.; Hu, N.; Yang, C.; Li, M.; Wei, H.; Yang, Z.; Su, Y.; Zhang, Y. J. Power Sources 2017, 342, 1. doi: 10.1016/j.jpowsour.2016.11.068  doi: 10.1016/j.jpowsour.2016.11.068

    84. [84]

      Zhang, L.; Yang, C.; Hu, N.; Yang, Z.; Wei, H.; Chen, C.; Wei, L.; Xu, Z. J.; Zhang, Y. Nano Energy 2016, 26, 668. doi: 10.1016/j.nanoen.2016.06.013  doi: 10.1016/j.nanoen.2016.06.013

    85. [85]

      Liu, Y.; Cai, X.; Luo, B.; Yan, M.; Jiang, J.; Shi, W. Carbon 2016, 107, 426. doi: 10.1016/j.carbon.2016.06.025  doi: 10.1016/j.carbon.2016.06.025

    86. [86]

      El Rouby, W. M. A. RSC Adv. 2015, 5, 66767. doi: 10.1039/c5ra10289h  doi: 10.1039/c5ra10289h

    87. [87]

      Deng, S.; Berry, V. Mater. Today 2016, 19, 197. doi: 10.1016/j.mattod.2015.10.002  doi: 10.1016/j.mattod.2015.10.002

    88. [88]

      Ye, X.; Zhu, Y.; Jiang, H.; Wang, L.; Zhao, P.; Yue, Z.; Wan, Z.; Jia, C. Chem. Eng. J. 2019, 361, 1437. doi: 10.1016/j.cej.2018.10.187  doi: 10.1016/j.cej.2018.10.187

    89. [89]

      Lee, K.; Kim, D.; Yoon, Y.; Yang, J.; Yun, H. -G.; You, I. -K.; Lee, H. RSC Adv. 2015, 5, 60914. doi: 10.1039/c5ra10246d  doi: 10.1039/c5ra10246d

    90. [90]

      Yan, J.; Liu, J.; Fan, Z.; Wei, T.; Zhang, L. Carbon 2012, 50, 2179. doi: 10.1016/j.carbon.2012.01.028  doi: 10.1016/j.carbon.2012.01.028

    91. [91]

      Jiang, L.; Sheng, L.; Long, C.; Fan, Z. Nano Energy 2015, 11, 471. doi: 10.1016/j.nanoen.2014.11.007  doi: 10.1016/j.nanoen.2014.11.007

    92. [92]

      Ye, X.; Zhu, Y.; Jiang, H.; Yue, Z.; Wang, L.; Wan, Z.; Jia, C. J. Power Sources 2019, 441, 227167. doi: 10.1016/j.jpowsour.2019.227167  doi: 10.1016/j.jpowsour.2019.227167

    93. [93]

      Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Maegawa, K.; Tan, W. K.; Kawamura, G.; Kar, K. K.; Matsuda, A. Mater. Today 2020, 39, 47. doi: 10.1016/j.mattod.2020.04.010  doi: 10.1016/j.mattod.2020.04.010

    94. [94]

      Rotte, N. K.; Naresh, V.; Muduli, S.; Reddy, V.; Srikanth, V. V. S.; Martha, S. K. Electrochim. Acta 2020, 363, 137209. doi: 10.1016/j.electacta.2020.137209  doi: 10.1016/j.electacta.2020.137209

    95. [95]

      Liu, Z.; Li, D.; Li, Z.; Liu, Z.; Zhang, Z. Appl. Surf. Sci. 2017, 422, 339. doi: 10.1016/j.apsusc.2017.06.046  doi: 10.1016/j.apsusc.2017.06.046

    96. [96]

      Gopalsamy, K.; Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Chem. Eng. J. 2017, 312, 180. doi: 10.1016/j.cej.2016.11.130  doi: 10.1016/j.cej.2016.11.130

    97. [97]

      Xiao, Z.; Sheng, L.; Jiang, L.; Zhao, Y.; Jiang, M.; Zhang, X.; Zhang, M.; Shi, J.; Lin, Y.; Fan, Z. Chem. Eng. J. 2021, 408, 127269. doi: 10.1016/j.cej.2020.127269  doi: 10.1016/j.cej.2020.127269

    98. [98]

      Zhang, L.; Chen, H.; Lu, X.; Wang, Y.; Tan, L.; Sui, D.; Qi, W. Appl. Surf. Sci. 2020, 529, 147022. doi: 10.1016/j.apsusc.2020.147022  doi: 10.1016/j.apsusc.2020.147022

    99. [99]

      Dai, S.; Liu, Z.; Zhao, B.; Zeng, J.; Hu, H.; Zhang, Q.; Chen, D.; Qu, C.; Dang, D.; Liu, M. J. Power Sources 2018, 387, 43. doi: 10.1016/j.jpowsour.2018.03.055  doi: 10.1016/j.jpowsour.2018.03.055

    100. [100]

      Enterría, M.; Pereira, M. F. R.; Martins, J. I.; Figueiredo, J. L. Carbon 2015, 95, 72. doi: 10.1016/j.carbon.2015.08.009  doi: 10.1016/j.carbon.2015.08.009

    101. [101]

      Chen, H.; Lu, X.; Wang, H.; Sui, D.; Meng, F.; Qi, W. J. Energy Chem. 2020, 49, 348. doi: 10.1016/j.jechem.2020.02.043  doi: 10.1016/j.jechem.2020.02.043

    102. [102]

      Jiang, H.; Ye, X.; Zhu, Y.; Yue, Z.; Wang, L.; Xie, J.; Wan, Z.; Jia, C. ACS Sustainable Chem. Eng. 2019, 7, 18844. doi: 10.1021/acssuschemeng.9b03810  doi: 10.1021/acssuschemeng.9b03810

    103. [103]

      Hsiao, Y. -J.; Lin, L. -Y. ACS Sustainable Chem. Eng. 2020, 8, 2453. doi: 10.1021/acssuschemeng.9b06569  doi: 10.1021/acssuschemeng.9b06569

    104. [104]

      Bakandritsos, A.; Chronopoulos, D. D.; Jakubec, P.; Pykal, M.; Čépe, K.; Steriotis, T.; Kalytchuk, S.; Petr, M.; Zbořil, R.; Otyepka, M. Adv. Funct. Mater. 2018, 28, 1801111. doi: 10.1002/adfm.201801111  doi: 10.1002/adfm.201801111

    105. [105]

      Alipour, S.; Mousavi-Khoshdel, S. M. Electrochim. Acta 2019, 317, 301. doi: 10.1016/j.electacta.2019.05.029  doi: 10.1016/j.electacta.2019.05.029

    106. [106]

      Ma, H.; Zhou, Q.; Wu, M.; Zhang, M.; Yao, B.; Gao, T.; Wang, H.; Li, C.; Sui, D.; Chen, Y.; Shi, G. J. Mater. Chem. A 2018, 6, 6587. doi: 10.1039/c7ta10843e  doi: 10.1039/c7ta10843e

    107. [107]

      Li, Y.; Zhou, M.; Xia, Z.; Gong, Q.; Liu, X.; Yang, Y.; Gao, Q. Colloids Surf. A 2020, 602, 125172. doi: 10.1016/j.colsurfa.2020.125172  doi: 10.1016/j.colsurfa.2020.125172

    108. [108]

      Tian, W.; Gao, Q.; Tan, Y.; Zhang, Y.; Xu, J.; Li, Z.; Yang, K.; Zhu, L.; Liu, Z. Carbon 2015, 85, 351. doi: 10.1016/j.carbon.2015.01.001  doi: 10.1016/j.carbon.2015.01.001

    109. [109]

      Jana, M.; Saha, S.; Khanra, P.; Samanta, P.; Koo, H.; Chandra Murmu, N.; Kuila, T. J. Mater. Chem. A 2015, 3, 7323. doi: 10.1039/c4ta07009g  doi: 10.1039/c4ta07009g

    110. [110]

      Ai, W.; Zhou, W.; Du, Z.; Du, Y.; Zhang, H.; Jia, X.; Xie, L.; Yi, M.; Yu, T.; Huang, W. J. Mater. Chem. 2012, 22, 23439. doi: 10.1039/c2jm35234f  doi: 10.1039/c2jm35234f

    111. [111]

      Vermisoglou, E. C.; Jakubec, P.; Bakandritsos, A.; Pykal, M.; Talande, S.; Kupka, V.; Zboril, R.; Otyepka, M. Chem. Mater. 2019, 31, 4698. doi: 10.1021/acs.chemmater.9b00655  doi: 10.1021/acs.chemmater.9b00655

    112. [112]

      Jiang, L.; Sheng, L.; Long, C.; Wei, T.; Fan, Z. Adv. Energy Mater. 2015, 5, 1500771. doi: 10.1002/aenm.201500771  doi: 10.1002/aenm.201500771

    113. [113]

      Zhao, G.; Zhao, F. -G.; Sun, J.; Wang, W.; Lu, Y.; Li, W. -S.; Chen, Q. -Y. Carbon 2015, 94, 114. doi: 10.1016/j.carbon.2015.06.061  doi: 10.1016/j.carbon.2015.06.061

    114. [114]

      Yang, J.; Zou, L. Electrochim. Acta 2014, 130, 791. doi: 10.1016/j.electacta.2014.03.077  doi: 10.1016/j.electacta.2014.03.077

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(46)
  • Abstract views(1972)
  • HTML views(582)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return