Citation: Cheng Ma, Xiangyu Dou, Zeyu Liu, Peilong Liao, Zhiyang Zhu, Kaerdun Liu, Jianbin Huang. Application and Mechanism of a Novel CO2-Oil Miscible Flooding Agent, CAA8-X[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 201201. doi: 10.3866/PKU.WHXB202012019 shu

Application and Mechanism of a Novel CO2-Oil Miscible Flooding Agent, CAA8-X

  • Corresponding author: Jianbin Huang, JBHuang@pku.edu.cn
  • Received Date: 8 December 2020
    Revised Date: 5 January 2021
    Accepted Date: 6 January 2021
    Available Online: 8 January 2021

    Fund Project: the National Oil and Gas Major Project 2016ZX05016-001

  • Surfactants are widely applied for promoting miscibility and reducing interfacial tension between oil and water phases because of their remarkable amphiphilic morphology. Along with development and popularization of tertiary oil recovery techniques, surfactants play a significant role in crude oil exploitation. Among the various tertiary oil recovery techniques, supercritical CO2-enhanced oil recovery is a promising method for improving oil recovery. However, the establishment of CO2-enhanced oil recovery brought new requirements and challenges to traditional surfactant research and development, especially for molecular design. In this method, the reduction of the minimum miscibility pressure between supercritical CO2 and crude oil is required to achieve miscible flooding—an important means to enhance oil recovery. Therefore, a novel miscible flooding agent that exhibits oil-water miscibility analogous to conventional surfactants is desirable for this method. Meanwhile, a conspicuous difference of polarity matching the high polarity of H2O molecule against low polarity of alkane molecule, which is the essential feature of traditional surfactant, won't suit this case well due to a medium polarity of CO2 molecule. According to previous work done in our laboratory, surfactants with multiple ester groups considerably reduce the minimum miscibility pressure between supercritical CO2 and crude oil. Therefore, inspired by the "oil-water-amphiphilic molecules" design, herein, we replaced the hydrophilic moiety with multiple ester groups and designed a new type of "oil-CO2 amphiphilic molecule" as a miscible flooding agent, which is composed of an alkane tail and multiple ester groups as the lipophilic and CO2-philic groups, respectively. In the strategy based on the proposed agent, the number of ester groups and the length of the alkane tail are the main parameters. In addition, we optimized the molecular structure of the proposed agent, CAA8-X, which comprises cetyl and acetyl sucrose esters as the lipophilic and CO2-philic groups, respectively. We verified that the as-synthesized agent can remarkably reduce the minimum miscibility pressure between supercritical CO2 and various types of oil samples, including kerosene, white oil, and crude oil from the Changqing region. The crude oil-CO2 minimum miscibility pressure reduction ratio was 20.5% as measured by the vanishing interfacial tension method and the slim tube test. In this study, we also established a method called the rising height method to measure the minimum miscibility pressure with significantly reduced time and equipment cost. Furthermore, to demonstrate the mechanism of this miscible flooding agent for CO2-enhanced oil recovery, the affinity between the CO2-philic group and molecular CO2 was investigated via molecular dynamics simulation. The results indicated that the "oil-CO2 amphiphilic molecule" can reduce oil-CO2 interfacial tension because of lower affinity potential energy between the CO2-philic group and molecular CO2.
  • 加载中
    1. [1]

      Whorton, L. P.; Brownscombe, E. R. Method for Producing Oil by Means of Carbon Dioxide. U.S. Patent, 2, 623, 596 [P], 1952-12-30.

    2. [2]

      Olea, R. A. J. Pet. Sci. Eng. 2015, 129, 23. doi: 10.1016/j.petrol.2015.03.012  doi: 10.1016/j.petrol.2015.03.012

    3. [3]

      Azzolina, N. A.; Nakles, D. V.; Gorecki, C. D.; Peck, W. D.; Ayash, S. C.; Melzer, L. S.; Chatterjee, S. Int. J. Greenh. Gas. Control. 2015, 37, 384. doi: 10.1016/j.ijggc.2015.03.037  doi: 10.1016/j.ijggc.2015.03.037

    4. [4]

      Hu, W. R. Special Oil and Gas Reservoir, 2007, 14, 1.
       

    5. [5]

      He, J. C.; Liao, G. Z.; Wang, Z. M. J. Southeast Petroleum Univ. 2011, 33 (3), 96.  doi: 10.3863/j.issn.1674-5086.2011.03.015

    6. [6]

      Yang, Z. G. Chem. Ind. Eng. Prog. 2011, 30 (S1), 420.  doi: 10.16085/j.issn.1000-6613.2011.s1.184

    7. [7]

      Marcus, Y. Processes 2019, 7 (3), 156. doi: 10.3390/pr7030156  doi: 10.3390/pr7030156

    8. [8]

      De Sousa, E. M. B. D.; Toussaint, V. A.; Shariati, A.; Florusse, L. J.; Chiavone, O.; Meireles, M. A. A.; Peters, C. J. Fluid Phase Equilib. 2016, 428 (Suppl.), 32. doi: 10.1016/j.fluid.2016.06.046  doi: 10.1016/j.fluid.2016.06.046

    9. [9]

      Sagisaka, M.; Ono, S.; James, C.; Yoshizawa, A.; Mohamed, A.; Guittard, F.; Enick, R. M.; Rogers, S. E.; Czajka, A.; Hill, C.; Eastoe, J. Colloids Surf. B: Biointerfaces 2018, 168, 201. doi: 10.1016/j.colsurfb.2017.12.012  doi: 10.1016/j.colsurfb.2017.12.012

    10. [10]

      Mohamed, A.; Ardyani, T.; Sagisaka, M.; Ono, S.; Narumi, T.; Kubota, M.; Brown, P.; James, C.; Eastoe, J.; Kamari, A.; et al. J. Supercritical Fluids 2015, 98, 127. doi: 10.1016/j.supflu.2015.01.012  doi: 10.1016/j.supflu.2015.01.012

    11. [11]

      Cummings, S. D.; Enick, R. M.; Rogers, S.; Heenan R.; Eastoe, J. Biochimie 2012, 94, 94. doi: 10.1016/j.biochi.2011.06.021  doi: 10.1016/j.biochi.2011.06.021

    12. [12]

      Doherty, M. D.; Lee, J. J.; Dhuwe, A.; O'Brien, M. J.; Perry, R. J.; Beckman, E. J.; Enick, R. M. Energy Fuels 2016, 30, 5601. doi: 10.1021/acs.energyfuels.6b00859  doi: 10.1021/acs.energyfuels.6b00859

    13. [13]

      Lee, J. J; Cummings, S. D.; Beckman, E. J.; Enick, R. M.; Burgess, W. A.; Doherty, M. D.; O'Brien, M. J.; Perry, R. J. J. Supercritical Fluids 2017, 119, 17. doi: 10.1016/j.supflu.2016.08.003  doi: 10.1016/j.supflu.2016.08.003

    14. [14]

      Luo, T.; Zhang, J. L.; Tan, X. N.; Liu, C. C.; Wu, T. B.; Li, W.; Sang, X. X.; Han, B. X.; Li, Z. H.; Mo, G.; et al. Angew. Chem. Int. Ed. 2016, 55 (43), 13533. doi: 10.1002/anie.201608695  doi: 10.1002/anie.201608695

    15. [15]

      Teoh, W. H.; Mammucari, R.; Foster, N. R. J. Organomet. Chem. 2013, 724, 102. doi: 10.1016/j.jorganchem.2012.10.005  doi: 10.1016/j.jorganchem.2012.10.005

    16. [16]

      Yang, S. Y.; Lian, L. M.; Yang, Y. Z.; Li, S.; Tang, J.; Ji, Z. M.; Zhang, Y. F. Xinjiang Petrolum Geology 2015, 36 (5), 555.  doi: 10.7657/XJPG20150510

    17. [17]

      Liu, K. E. D.; Ma, C.; Zhu, Z. Y.; Yang, S. Y.; Lv, W. F.; Yang, Y. Z.; Huang, J. B. Oilfield Chem. 2019, 36 (2), 361.  doi: 10.19346/j.cnki.1000-4092.2020.03.026

    18. [18]

      Liao, P. L.; Liu, Z. Y.; Liu, K. E. D.; Ma, C.; Zhu, Z. Y.; Yang, S. Y.; Lv, W. F.; Yang, Y. Z.; Huang, J. B. Acta Phys. -Chim. Sin. 2020, 36 (10), 1907034.  doi: 10.3866/PKU.WHXB201907034

    19. [19]

      Rao, D. N. Fluid Phase Equilibria 1997, 139(1), 311. doi: 10.1016/S0378-3812(97)00180-5  doi: 10.1016/S0378-3812(97)00180-5

    20. [20]

      Ayirala, S. C.; Rao, D. N. Comparative Evaluation of a New MMP Determination Technique[C]. SPE 99606, 2006: 1–15.

    21. [21]

      Flock, D. L.; Nouar, A. J. Can. Petrol. Tecnol. 1984, 5 (12), 80.

    22. [22]

      Zhang, K. Q.; Gu, Y. A. Fuel, 2015, 161, 146. doi: 10.1016/j.fuel.2015.08.039  doi: 10.1016/j.fuel.2015.08.039

    23. [23]

      Liu, Z. Y.; Liao, P. L.; Ma, C.; Liu, K. E. D.; Yang, S. Y.; Lv, W. F.; Yang, Y. Z.; Huang, J. B. Oilfield Chem. 2020, 37 (3), 525.  doi: 10.19346/j.cnki.1000-4092.2020.03.026

    24. [24]

      Chatterjee, D.; Paul, A.; Rajkamal; Yadav, S. RSC Adv. 2015, 5, 29669. doi: 10.1039/c5ra03461b  doi: 10.1039/c5ra03461b

    25. [25]

      Sun, L. X.; Kiselev, S. B.; Ely, J. F. Fluid Phase Equilibria 2005, 233, 204. doi: 10.1016/j.fluid.2005.04.019  doi: 10.1016/j.fluid.2005.04.019

    26. [26]

      Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. J. Am. Chem. Soc.; 1996, 118, 11225. doi: 10.1021/ja9621760  doi: 10.1021/ja9621760

    27. [27]

      Jorgensen, W. L.; Tirado-Rives, J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665. doi: 10.1073/pnas.0408037102  doi: 10.1073/pnas.0408037102

    28. [28]

      Tang, Z. Y.; Zhang, Q.; Yin, Y. D.; Chang, C. E. A. J. Phys. Chem. C 2014, 118, 21589. doi: 10.1021/jp503319s  doi: 10.1021/jp503319s

    29. [29]

      Shang, J.; Wang, M.; Chen, M.; J. Dai; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J. M.; Wu, K. Nat. Chem. 2015, 7, 389. doi: 10.1038/NCHEM.2211  doi: 10.1038/NCHEM.2211

    30. [30]

      Dodda, L. S.; Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B 2017, 121, 3864. doi: 10.1021/acs.jpcb.7b00272  doi: 10.1021/acs.jpcb.7b00272

    31. [31]

      Rad, H. B.; Sabet, J. K.; Varaminian, F. J. Mol. Liq. 2019, 294, 111636. doi: 10.1016/j.molliq.2019.111636  doi: 10.1016/j.molliq.2019.111636

    32. [32]

      Sirk, T. W.; Moore, S.; Brown, E. F. J. Chem. Phys. 2013, 138, 064505. doi: 10.1063/1.4789961  doi: 10.1063/1.4789961

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

Metrics
  • PDF Downloads(12)
  • Abstract views(647)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return