Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth
- Corresponding author: Feng Ding, f.ding@unist.ac.kr Zhongfan Liu, zfliu@pku.edu.cn †These authors contributed equally to this work.
 
	            Citation:
	            
		            Ting Cheng, Luzhao Sun, Zhirong Liu, Feng Ding, Zhongfan Liu. Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth[J]. Acta Physico-Chimica Sinica,
							;2022, 38(1): 201200.
						
							doi:
								10.3866/PKU.WHXB202012006
						
					
				
					
				
	        
	                
				Chen, J. -H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Nat. Nanotechnol. 2008,  3, 206. doi: 10.1038/nnano.2008.58
												 doi: 10.1038/nnano.2008.58
											
										
				Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008,  8, 902. doi: 10.1021/nl0731872
												 doi: 10.1021/nl0731872
											
										
				Cheng, T.; Lang, H. F.; Li, Z. Z.; Liu, Z. F.; Liu, Z. R. Phys. Chem. Chem. Phys. 2017,  19, 23942. doi: 10.1039/c7cp03736h
												 doi: 10.1039/c7cp03736h
											
										
				Lin, L.; Deng, B.; Sun, J. Y.; Peng, H.; Liu, Z. Chem. Rev. 2018,  118, 9281. doi: 10.1021/acs.chemrev.8b00325
												 doi: 10.1021/acs.chemrev.8b00325
											
										
				Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008,  320, 1308. doi: 10.1126/science.1156965
												 doi: 10.1126/science.1156965
											
										
				Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008,  321, 385. doi: 10.1126/science.1157996
												 doi: 10.1126/science.1157996
											
										
				Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Nature 2009,  457, 706. doi: 10.1038/nature07719
												 doi: 10.1038/nature07719
											
										
				Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012,  490, 192. doi: 10.1038/nature11458
												 doi: 10.1038/nature11458
											
										
				Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016,  32, 14.
												 doi: 10.3866/PKU.WHXB201511133
											
										
				Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020,  36, 1907004.
												 doi: 10.3866/PKU.WHXB201907004
											
										
				Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019,  31, e1800996. doi: 10.1002/adma.201800996
												 doi: 10.1002/adma.201800996
											
										
				Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z.; Gao, J.; Sun, L.; Xue, R.; Li, J.; Kang, N.; Luo, Z.;  et al.  J. Am. Chem. Soc. 2019,  141, 7670. doi: 10.1021/jacs.9b02068
												 doi: 10.1021/jacs.9b02068
											
										
				Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H.; et al.  Nat. Commun.  2019,  10, 1912. doi: 10.1038/s41467-019-09565-4
												 doi: 10.1038/s41467-019-09565-4
											
										
				Sun, L. Z.; Lin, L.; Wang, Z. H.; Rui, D.; Yu, Z.; Zhang, J.; Li, Y.; Liu, X.; Jia, K.; Wang, K.;  et al.  Adv. Mater. 2019,  31, 1902978. doi: 10.1002/adma.201902978
												 doi: 10.1002/adma.201902978
											
										
				Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Huy Ta, Q.; Sun, L.; Li, T.; Li, Z.; Liu, X.; Zheng, L.;  et al.  Angew. Chem. Int. Ed.  2019,  58, 14446. doi: 10.1002/anie.201905672
												 doi: 10.1002/anie.201905672
											
										
				Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z.; Ma, Z.; Zhu, Y.; Liu, S.; Liu, J.; Sun, L.; Liu, X.;  et al.  Angew. Chem. Int. Ed.  2020,  59, 17214. doi: 10.1002/anie.202005406
												 doi: 10.1002/anie.202005406
											
										
				Jacobberger, R. M.; Arnold, M. S. Chem. Mater. 2013, 25, 871. doi: 10.1021/cm303445s
												 doi: 10.1021/cm303445s
											
										
				Meng, L.; Wu, R. T.; Zhang, L. Z.; Li, L. F.; Du, S. X.; Wang, Y. L.; Gao, H. -J. J. Phys. : Condens. Matter 2012,  24, 314214. doi: 10.1088/0953-8984/24/31/314214
												 doi: 10.1088/0953-8984/24/31/314214
											
										
				Zhang, Y. F.; Gao, T.; Zhang, Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 2012,  28, 2456.
												 doi: 10.3866/PKU.WHXB201209062
											
										
				Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Nat. Commun.  2011,  2, 522. doi: 10.1038/ncomms1539
												 doi: 10.1038/ncomms1539
											
										
				Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z.; Gao, Y.; Yin, L. -C.; Ma, X. -L.; Ding, F.; Cheng, H. -M. Proc. Natl. Acad. Sci. U.S.A.  2013,  110, 20386. doi: 10.1073/pnas.1312802110
												 doi: 10.1073/pnas.1312802110
											
										
				Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.;  et al.  Sci. Bull.  2017,  62, 1074. doi: 10.1016/j.scib.2017.07.005
												 doi: 10.1016/j.scib.2017.07.005
											
										
				Deng, B.; Xin, Z. W.; Xue, R. W.; Zhang, S. Q.; Xu, X. Z.; Gao, J.; Tang, J. L.; Qi, Y.; Wang, Y. N.; Zhao, Y.;  et al.  Sci. Bull. 2019,  64, 659. doi: 10.1016/j.scib.2019.04.030
												 doi: 10.1016/j.scib.2019.04.030
											
										
				Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z. Nano Lett. 2011,  11, 297. doi: 10.1021/nl103962a
												 doi: 10.1021/nl103962a
											
										
				Ma, W.; Chen, M. -L.; Yin, L.; Liu, Z.; Li, H.; Xu, C.; Xin, X.; Sun, D. -M.; Cheng, H. -M.; Ren, W. Nat. Commun.  2019,  10, 2809. doi: 10.1038/s41467-019-10691-2
												 doi: 10.1038/s41467-019-10691-2
											
										
				Huang, M.; Bakharev, P. V.; Wang, Z. -J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y.; Qu, D.;  et al.  Nat. Nanotechnol. 2020,  15, 289. doi: 10.1038/s41565-019-0622-8
												 doi: 10.1038/s41565-019-0622-8
											
										
				Van Luan, N.; Dinh Loc, D.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. -M.; Asensio, M. C.; Jeong, S. -Y.; Lee, Y. H. Nat. Nanotechnol. 2020,  15, 861. doi: 10.1038/s41565-020-0743-0
												 doi: 10.1038/s41565-020-0743-0
											
										
				Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H.; Lin, L.; Liu, Z. ACS Nano 2020,  14, 10796. doi: 10.1021/acsnano.0c06141
												 doi: 10.1021/acsnano.0c06141
											
										
				Mattevi, C.; Kim, H.; Chhowalla, M. J. Mater. Chem. 2011,  21, 3324. doi: 10.1039/c0jm02126a
												 doi: 10.1039/c0jm02126a
											
										
Earnshaw, A.; Harrington, T. J. Inorganic Chemistry of the Transition Elements, 6th ed.; Oxford University Press: Oxford, UK, 1972; pp. 210–394.
				Qi, Y.; Meng, C. X.; Xu, X. Z.; Deng, B.; Han, N.; Liu, M.; Hong, M.; Ning, Y.; Liu, K.; Zhao, J.;  et al.  J. Am. Chem. Soc. 2017,  139, 17574. doi: 10.1021/jacs.7b09755
												 doi: 10.1021/jacs.7b09755
											
										
				Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009,  9, 4268. doi: 10.1021/nl902515k
												 doi: 10.1021/nl902515k
											
										
				Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Nano Res.  2009,  2, 509. doi: 10.1007/s12274-009-9059-y
												 doi: 10.1007/s12274-009-9059-y
											
										
				Geng, D. C.; Wu, B.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Jiang, L.; Hu, W. P.; Liu, Y. Q. Proc. Natl. Acad. Sci. U.S.A.  2012,  109, 7992. doi: 10.1073/pnas.1200339109
												 doi: 10.1073/pnas.1200339109
											
										
				Li, Y.; Sun, L.; Liu, H.; Wang, Y.; Liu, Z. Inorg. Chem. Front.  2021,  8, 182. doi: 10.1039/D0QI00923G
												 doi: 10.1039/D0QI00923G
											
										
				Zhao, C.; Liu, F. N.; Kong, X.; Yan, T.; Ding, F. Int. J. Smart Nano Mater.  2020,  11, 277. doi: 10.1080/19475411.2020.1820621
												 doi: 10.1080/19475411.2020.1820621
											
										
				Zhang, J. C.; Lin, L.; Jia, K. C.; Sun, L. Z.; Peng, H. L.; Liu, Z. F. Adv. Mater. 2020,  32, 1903266. doi: 10.1002/adma.201903266
												 doi: 10.1002/adma.201903266
											
										
				Cheng, H. M. Nat. Nanotechnol. 2014,  9, 726. doi: 10.1038/nnano.2014.229
												 doi: 10.1038/nnano.2014.229
											
										
				Wang, K. X.; Shi, L. R.; Wang, M. Z.; Yang, H.; Liu, Z. F.; Peng, H. L. Acta Phys. -Chim. Sin. 2019,  35, 1112.
												 doi: 10.3866/PKU.WHXB201805032
											
										
				Xie, Y. D.; Cheng, T.; Liu, C.; Chen, Y.; Chen, Z. L.; Qiu, L.; Cui, G.; Yu, Y.; Cui, L. Z.; Zhang, M. T.; et al.  ACS Nano 2019,  13, 10272. doi: 10.1021/acsnano.9b03596
												 doi: 10.1021/acsnano.9b03596
											
										
				Chen, Z. L.; Chang, H. L.; Cheng, T.; Wei, T.; Wang, R.; Yang, S.; Dou, Z.; Liu, B.; Zhang, S.; Xie, Y.;  et al.  Adv. Funct. Mater. 2020,  30, 2001483. doi: 10.1002/adfm.202001483
												 doi: 10.1002/adfm.202001483
											
										
				Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021,  37, 2006046.
												 doi: 10.3866/PKU.WHXB202006046
											
										
				Zhang, W.; Wu, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2011,  115, 17782. doi: 10.1021/jp2006827
												 doi: 10.1021/jp2006827
											
										
				Wang, L.; Gao, J. F.; Ding, F. Acta Chim. Sin. 2014,  72, 345.
												 doi: 10.6023/a13090984
											
										
				Wu, P.; Zhang, W.; Li, Z.; Yang, J. Small 2014,  10, 2136. doi: 10.1002/smll.201303680
												 doi: 10.1002/smll.201303680
											
										
				Li, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2017,  121, 25949. doi: 0.1021/acs.jpcc.7b09622
										
				Qiu, Z.; Li, P.; Li, Z.; Yang, J. Acc. Chem. Res. 2018,  51, 728. doi: 10.1021/acs.accounts.7b00592
												 doi: 10.1021/acs.accounts.7b00592
											
										
				Dong, J. C.; Zhang, L. N.; Ding, F. Adv. Mater. 2019,  31, 1801583. doi: 10.1002/adma.201801583
												 doi: 10.1002/adma.201801583
											
										
				Cheng, T.; Tan, C. W.; Zhang, S. Q.; Tu, T.; Peng, H.; Liu, Z. J. Phys. Chem. C 2018,  122, 19970. doi: 10.1021/acs.jpcc.8b05475
												 doi: 10.1021/acs.jpcc.8b05475
											
										
				Cheng, T.; Liu, Z. F.; Liu, Z. R. J. Mater. Chem. C 2020,  8, 13819. doi: 10.1039/d0tc03253k
												 doi: 10.1039/d0tc03253k
											
										
				Yuan, S.; Meng, L.; Wang, J. J. Phys. Chem. C 2013,  117, 14796. doi: 10.1021/jp400944c
												 doi: 10.1021/jp400944c
											
										
				Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K.; Xie, X. M.; et al. Nat. Mater. 2016,  15, 43. doi: 10.1038/nmat4477
												 doi: 10.1038/nmat4477
											
										
				Wang, X. L.; Yuan, Q. L.; Li, J.; Ding, F. Nanoscale 2017,  9, 11584. doi: 10.1039/c7nr02743e
												 doi: 10.1039/c7nr02743e
											
										
				Shu, H. B.; Tao, X. -M.; Ding, F. Nanoscale 2015,  7, 1627. doi: 10.1039/c4nr05590j
												 doi: 10.1039/c4nr05590j
											
										
				Wu, P.; Zhang, Y.; Cui, P.; Li, Z. Y.; Yang, J. L.; Zhang, Z. Y. Phys. Rev. Lett. 2015,  114, 216102. doi: 10.1103/PhysRevLett.114.216102
												 doi: 10.1103/PhysRevLett.114.216102
											
										
				Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2011,  133, 5009. doi: 10.1021/ja110927p
												 doi: 10.1021/ja110927p
											
										
				Xu, Z. W.; Yan, T. Y.; Liu, G. W.; Qiao, G.; Ding, F. Nanoscale 2016,  8, 921. doi: 10.1039/c5nr06016h
												 doi: 10.1039/c5nr06016h
											
										
				Sun, L.; Lin, L.; Zhang, J.; Wang, H.; Peng, H.; Liu, Z. Nano Res.  2017,  10, 355. doi: 10.1007/s12274-016-1297-1
												 doi: 10.1007/s12274-016-1297-1
											
										
				Liu, Y.; Wu, T.; Yin, Y.; Zhang, X.; Yu, Q.; Searles, D. J.; Ding, F.; Yuan, Q.; Xie, X. Adv. Sci.  2018,  5, 1700961. doi: 10.1002/advs.201700961
												 doi: 10.1002/advs.201700961
											
										
				Zhang, X. Y.; Xu, Z. W.; Hui, L.; Xin, J.; Ding, F. J. Phys. Chem. Lett.  2012,  3, 2822. doi: 10.1021/jz301029g
												 doi: 10.1021/jz301029g
											
										
				Yuan, Q. H.; Yakobson, B. I.; Ding, F. J. Phys. Chem. Lett. 2014,  5, 3093. doi: 10.1021/jz5015899
												 doi: 10.1021/jz5015899
											
										
				Xu, Z. W.; Zhao, G. H.; Qiu, L.; Zhang, X. Y.; Ding, F. NPJ Comput. Mater.  2020,  6, 14. doi: 10.1038/s41524-020-0281-1
												 doi: 10.1038/s41524-020-0281-1
											
										
				Li, Y.; Sun, L. Z.; Chang, Z. H.; Liu, H. Y.; Wang, Y. C.; Liang, Y.; Chen, B. H.; Ding, Q. J.; Zhao, Z. Y.; Wang, R. Y.; et al. Adv. Mater. 2020,  32, 2002034. doi: 10.1002/adma.202002034
												 doi: 10.1002/adma.202002034
											
										
				Wu, M. H.; Zhang, Z. B.; Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Qiao, R. X.; You, S. F.; Wang, L.; Qi, J. J.; Zou, D. X.; et al.  Nature 2020,  581, 406. doi: 10.1038/s41586-020-2298-5
												 doi: 10.1038/s41586-020-2298-5
											
										
				Yang, P.; Zhang, S.; Pan, S.; Tang, B.; Liang, Y.; Zhao, X.; Zhang, Z.; Shi, J.; Huan, Y.; Shi, Y.;  et al.  ACS Nano 2020,  14, 5036. doi: 10.1021/acsnano.0c01478
												 doi: 10.1021/acsnano.0c01478
											
										
				Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. ACS Nano 2012,  6, 3243. doi: 10.1021/nn300726r
												 doi: 10.1021/nn300726r
											
										
				Li, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2017,  121, 25949. doi: 10.1021/acs.jpcc.7b09622
												 doi: 10.1021/acs.jpcc.7b09622
											
										
				Wu, P.; Jiang, H.; Zhang, W.; Li, Z.; Hou, Z.; Yang, J. J. Am. Chem. Soc. 2012,  134, 6045. doi: 10.1021/ja301791x
												 doi: 10.1021/ja301791x
											
										
				Yazyev, O. V.; Chen, Y. P. Nat. Nanotechnol. 2014,  9, 755. doi: 10.1038/nnano.2014.166
												 doi: 10.1038/nnano.2014.166
											
										
				Meng, L. J.; Jiang, J.; Wang, J. L.; Ding, F. J. Phys. Chem. C 2013,  118, 720. doi: 10.1021/jp409471a
												 doi: 10.1021/jp409471a
											
										
				Wang, L.; Zhang, X. Y.; Chan, H. L. W.; Yan, F.; Ding, F. J. Am. Chem. Soc. 2013,  135, 4476. doi: 10.1021/ja312687a
												 doi: 10.1021/ja312687a
											
										
				Yuan, Q.; Song, G.; Sun, D.; Ding, F. Sci. Rep.  2014,  4, 6541. doi: 10.1038/srep06541
												 doi: 10.1038/srep06541
											
										
				Dong, J.; Zhang, L.; Dai, X.; Ding, F. Nat. Commun.  2020,  11, 5862. doi: 10.1038/s41467-020-19752-3
												 doi: 10.1038/s41467-020-19752-3
											
										
				Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Phys. Rev. Lett. 2015,  114, 115502. doi: 0.1103/PhysRevLett.114.115502
										
				Wang, C.; Liu, Y.; Li, L.; Tan, H. Nanoscale 2014,  6, 5703. doi: 10.1039/c4nr00423j
												 doi: 10.1039/c4nr00423j
											
										
				Bronsgeest, M. S.; Bendiab, N.; Mathur, S.; Kimouche, A.; Johnson, H. T.; Coraux, J.; Pochet, P. Nano Lett. 2015,  15, 5098. doi: 10.1021/acs.nanolett.5b01246
												 doi: 10.1021/acs.nanolett.5b01246
											
										
				de Lima, A. L.; Mussnich, L. A.; Manhabosco, T. M.; Chacham, H.; Batista, R. J.; de Oliveira, A. B. Nanotechnology 2015,  26, 045707. doi: 10.1088/0957-4484/26/4/045707
												 doi: 10.1088/0957-4484/26/4/045707
											
										
				Shaina, P. R.; George, L.; Yadav, V.; Jaiswal, M. J. Phys. -Condes. Matter 2016,  28, 085301. doi: 10.1088/0953-8984/28/8/085301
												 doi: 10.1088/0953-8984/28/8/085301
											
										
				Deng, B.; Wu, J.; Zhang, S.; Qi, Y.; Zheng, L.; Yang, H.; Tang, J.; Tong, L.; Zhang, J.; Liu, Z.;  et al.  Small 2018,  14, 1800725. doi: 10.1002/smll.201800725
												 doi: 10.1002/smll.201800725
											
										
				Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Nano Lett. 2012,  12, 3431. doi: 10.1021/nl300563h
												 doi: 10.1021/nl300563h
											
										
				Nicholl, R. J. T.; Conley, H. J.; Lavrik, N. V.; Vlassiouk, I.; Puzyrev, Y. S.; Sreenivas, V. P.; Pantelides, S. T.; Bolotin, K. I. Nat. Commun.  2015,  6. doi: 10.1038/ncomms9789
												 doi: 10.1038/ncomms9789
											
										
				Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C.; Li, J.; Liu, M.; Wu, J.; Qi, Y.; Dang, W.;  et al.  ACS Nano 2017,  11, 12337. doi: 10.1021/acsnano.7b06196
												 doi: 10.1021/acsnano.7b06196
											
										
				Li, B. -W.; Luo, D.; Zhu, L. Y.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R. S. Adv. Mater. 2018,  30, 1706504. doi: 10.1002/adma.201706504
												 doi: 10.1002/adma.201706504
											
										
				Pang, Z. Q.; Deng, B.; Liu, Z. F.; Peng, H.; Wei, Y. Carbon 2019,  143, 736. doi: 10.1016/j.carbon.2018.11.059
												 doi: 10.1016/j.carbon.2018.11.059
											
										
				Yi, D.; Luo, D.; Wang, Z. -J.; Dong, J. C.; Zhang, X.; Willinger, M. G.; Ruoff, R. S.; Ding, F. Phys. Rev. Lett. 2018,  120, 246101. doi: 10.1103/PhysRevLett.120.246101
												 doi: 10.1103/PhysRevLett.120.246101
											
										
						
						
						
	                Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
Xianfei Chen , Wentao Zhang , Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401