Citation: Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu. Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 201102. doi: 10.3866/PKU.WHXB202011022 shu

Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity

  • Corresponding author: Difa Xu, xudifa@sina.com
  • Received Date: 6 November 2020
    Revised Date: 20 November 2020
    Accepted Date: 26 November 2020
    Available Online: 2 December 2020

    Fund Project: the Natural Science Foundation of China 52073034the Natural Science Foundation of China 21871030the Natural Science Foundation of Hunan Province of China 2018JJ2457the Natural Science Foundation of Hunan Province of China 2017JJ3340the Scientific Research Fund of Hunan Provincial Education Department of China 18A370

  • In environment remediation, photocatalytic oxidation is a promising technique for removing organic pollutants. Compared to adsorption, biodegradation, and chemical oxidation, photocatalytic oxidation can eliminate organic pollutants completely, conveniently, and cheaply in an environmentally friendly manner. Visible-light-driven photocatalytic oxidation is particularly advisable because of the high proportion of visible light energy in solar energy. Bismuth oxyiodide (BiOI) is a promising visible-light-driven photocatalyst for the oxidization of pollutants, not only because of its narrow band gap, but also for its relatively low valence band (VB), which is adequate for photogenerated holes to oxidize a variety of organic compounds. However, the shortcomings of BiOI powder, such the difficulty of recycling it, its low surface area, and fast carrier recombination, limit its practical applications. Meanwhile, the flexibility and hierarchical structure of photocatalysts are particularly advisable because these properties are beneficial for the convenient operation, recycling, and performance improvement of these materials. Herein, based on an electro-spun polyacrylonitrile (PAN) nanofiber substrate, a hierarchical BiOI/PAN fiber was prepared through an in situ reaction. In the as-prepared BiOI/PAN fibers, BiOI flakes were aligned vertically and uniformly around the PAN fibers. BiOI nuclei generated from pre-introduced Bi(Ⅲ) in the PAN fiber act as seeds for the growth of BiOI nanoplates, which is crucial for the formation of a hierarchical structure. Such a hierarchical structure can improve both the light absorption and carrier generation of the BiOI/PAN fibers, as demonstrated by UV-Vis diffuse reflectance spectra and photoluminescence emission. Therefore, the BiOI/PAN fibers exhibited higher photocatalytic activity than BiOI powder. When the BiOI/PAN fibers were decorated with pre-prepared graphene quantum dots (GQDs), a GQD-modified BiOI/PAN fibrous composite (GQD-BiOI/PAN) was fabricated. The morphology of the obtained GQD-BiOI/PAN fibers was nearly the same as that of the BiOI/PAN fibers. A step-scheme (S-scheme) heterojunction was formed between the GQDs and BiOI, which was confirmed by the fabrication method, photoluminescence emission, reactive radical tests, and XPS analysis. This kind of S-scheme heterojunction can not only effectively suppress the recombination of photogenerated holes, but can also reserve the more reductive electrons on the lowest unoccupied molecular orbital of GQDs and the more oxidative holes on the VB of BiOI, for the photocatalytic degradation of phenol. Because of the fibrous hierarchical structure and S-scheme heterojunction, GQD-BiOI/PAN outperformed BiOI nanoparticles and BiOI/PAN nanofibers in the photocatalytic oxidation of phenol under visible light. In addition, because of tight bonding, GQD-BiOI/PAN can be tailored and operated by hand, which is convenient for recycling. During recycling, no obvious loss of sample or decrease in photocatalytic activity was observed. This work provides a new pathway for the fabrication of flexible photocatalysts and a new insight into the enhancement of photocatalysts.
  • 加载中
    1. [1]

      Khin, M. M.; Nair, A. S.; Babu, V. J.; Murugan, R.; Ramakrishna, S. Energ. Environ. Sci. 2012, 5, 8075. doi: 10.1039/c2ee21818f  doi: 10.1039/c2ee21818f

    2. [2]

      Brillas, E.; Martínez-Huitle, C. A. Appl. Catal. B 2015, 166–167, 603. doi: 10.1016/j.apcatb.2014.11.016  doi: 10.1016/j.apcatb.2014.11.016

    3. [3]

      Ibrahim, R. K.; Hayyan, M.; Alsaadi, M. A.; Hayyan, A.; Ibrahim, S. Environ. Sci. Pollut. Res. Int. 2016, 23, 13754. doi: 10.1007/s11356-016-6457-z  doi: 10.1007/s11356-016-6457-z

    4. [4]

      Reddy, P. A. K.; Reddy, P. V. L.; Kwon, E.; Kim, K.; Akter, T.; Kalagara, S. Environ. Int. 2016, 91, 94. doi: 10.1016/j.envint.2016.02.012  doi: 10.1016/j.envint.2016.02.012

    5. [5]

      Wang, J.; Wang, S. J. Environ. Manage. 2016, 182, 620. doi: 10.1016/j.jenvman.2016.07.049  doi: 10.1016/j.jenvman.2016.07.049

    6. [6]

      Wang, Y.; Zhang, S.; Ge, Y.; Wang, C.; Hu, J.; Liu, H. Acta Phys. -Chim. Sin. 2020, 36, 1905083.  doi: 10.3866/PKU.WHXB201905083

    7. [7]

      Wang, S.; Yun, J.; Luo, B.; Butburee, T.; Peerakiatkhajohn, P.; Thaweesak, S.; Xiao, M.; Wang, L. J. Mater. Sci. Technol. 2017, 33, 1. doi: 10.1016/j.jmst.2016.11.017  doi: 10.1016/j.jmst.2016.11.017

    8. [8]

      He, R.; Xu, D.; Cheng, B.; Yu, J.; Ho, W. Nanoscale Horiz. 2018, 3, 464. doi: 10.1039/c8nh00062j  doi: 10.1039/c8nh00062j

    9. [9]

      He, R.; Cao, S.; Zhou, P.; Yu, J. Chin. J. Catal. 2014, 35, 989. doi: 10.1016/S1872-2067(14)60075-9  doi: 10.1016/S1872-2067(14)60075-9

    10. [10]

      Xiang, X.; Zhu, B.; Cheng, B.; Yu, J.; Lv, H. Small 2020, 16, 2001024. doi: 10.1002/smll.202001024  doi: 10.1002/smll.202001024

    11. [11]

      Liu, X.; Gu, S.; Zhao, Y.; Zhou, G.; Li, W. J. Mater. Sci. Technol. 2020, 56, 45. doi: 10.1016/j.jmst.2020.04.023  doi: 10.1016/j.jmst.2020.04.023

    12. [12]

      Yang, Y.; Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Cheng, M.; Wang, J.; Chen, F.; Zhou, C.; Xiong, W. Adv. Colloid Interface Sci. 2018, 254, 76. doi: 10.1016/j.cis.2018.03.004  doi: 10.1016/j.cis.2018.03.004

    13. [13]

      He, R.; Zhang, J.; Yu, J.; Cao, S. J. Colloid Interface Sci. 2016, 478, 201. doi: 10.1016/j.jcis.2016.06.012  doi: 10.1016/j.jcis.2016.06.012

    14. [14]

      Di, J.; Xia, J.; Li, H.; Guo, S.; Dai, S. Nano Energy 2017, 41, 172. doi: 10.1016/j.nanoen.2017.09.008  doi: 10.1016/j.nanoen.2017.09.008

    15. [15]

      Cheng, H.; Huang, B.; Dai, Y. Nanoscale 2014, 6, 2009. doi: 10.1039/c3nr05529a  doi: 10.1039/c3nr05529a

    16. [16]

      Anwer, H.; Mahmood, A.; Lee, J.; Kim, K.; Park, J.; Yip, A. C. K. Nano Res. 2019, 12, 955. doi: 10.1007/s12274-019-2287-0  doi: 10.1007/s12274-019-2287-0

    17. [17]

      Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P. J. Ind. Eng. Chem. 2019, 78, 1. doi: 10.1016/j.jiec.2019.06.022  doi: 10.1016/j.jiec.2019.06.022

    18. [18]

      Xing, Z.; Zhang, J.; Cui, J.; Yin, J.; Zhao, T.; Kuang, J.; Xiu, Z.; Wan, N.; Zhou, W. Appl. Catal. B 2018, 225, 452. doi: 10.1016/j.apcatb.2017.12.005  doi: 10.1016/j.apcatb.2017.12.005

    19. [19]

      Komeily-Nia, Z.; Montazer, M.; Heidarian, P.; Nasri-Nasrabadi, B. Polym. Adv. Technol. 2019, 30, 235. doi: 10.1002/pat.4480  doi: 10.1002/pat.4480

    20. [20]

      Liao, C.; Ma, Z.; Dong, G.; Qiu, J. J. Am. Ceram. Soc. 2015, 98, 957. doi: 10.1111/jace.13388  doi: 10.1111/jace.13388

    21. [21]

      He, R.; Lou, Z.; Gui, J.; Tang, B.; Xu, D. Appl. Surf. Sci. 2020, 504, 144370. doi: 10.1016/j.apsusc.2019.144370  doi: 10.1016/j.apsusc.2019.144370

    22. [22]

      Zhang, Q.; Bai, J.; Li, G.; Li, C. J. Solid State Chem. 2019, 270, 129. doi: 10.1016/j.jssc.2018.11.015  doi: 10.1016/j.jssc.2018.11.015

    23. [23]

      Li, H.; Su, Z.; Hu, S.; Yan, Y. Appl. Catal. B 2017, 207, 134. doi: 10.1016/j.apcatb.2017.02.013  doi: 10.1016/j.apcatb.2017.02.013

    24. [24]

      Fu, J.; Zhu, B.; You, W.; Jaroniec, M.; Yu, J. Appl. Catal. B 2018, 220, 148. doi: 10.1016/j.apcatb.2017.08.034  doi: 10.1016/j.apcatb.2017.08.034

    25. [25]

      Karim, S. A.; Mohamed, A.; Abdel-Mottaleb, M. M.; Osman, T. A.; Khattab, A. J. Alloy. Compd. 2019, 772, 650. doi: 10.1016/j.jallcom.2018.09.155  doi: 10.1016/j.jallcom.2018.09.155

    26. [26]

      Mohamed, A.; Nasser, W. S.; Kamel, B. M.; Hashem, T. Eur. Polym. J. 2019, 113, 192. doi: 10.1016/j.eurpolymj.2019.01.062  doi: 10.1016/j.eurpolymj.2019.01.062

    27. [27]

      Prasanth, R.; Aravindan, V.; Srinivasan, M. J. Power Sources 2012, 202, 299. doi: 10.1016/j.jpowsour.2011.11.057  doi: 10.1016/j.jpowsour.2011.11.057

    28. [28]

      Wang, K.; Shao, C.; Li, X.; Miao, F.; Lu, N.; Liu, Y. J. Sol-Gel Sci. Technol. 2016, 80, 783. doi: 10.1007/s10971-016-4161-6  doi: 10.1007/s10971-016-4161-6

    29. [29]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    30. [30]

      He, R.; Cheng, K.; Wei, Z.; Zhang, S.; Xu, D. Appl. Surf. Sci. 2019, 465, 964. doi: 10.1016/j.apsusc.2018.09.217  doi: 10.1016/j.apsusc.2018.09.217

    31. [31]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    32. [32]

      Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/S1872-2067(19)63481-9  doi: 10.1016/S1872-2067(19)63481-9

    33. [33]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    34. [34]

      Li, X.; Xiong, J.; Gao, X.; Ma, J.; Chen, Z.; Kang, B.; Liu, J.; Li, H.; Feng, Z.; Huang, J. J. Hazard. Mater. 2020, 387, 121690. doi: 10.1016/j.jhazmat.2019.121690  doi: 10.1016/j.jhazmat.2019.121690

    35. [35]

      Wang, J.; Zhang, Q.; Deng, F.; Luo, X.; Dionysiou, D. D. Chem. Eng. J. 2020, 379, 122264. doi: 10.1016/j.cej.2019.122264  doi: 10.1016/j.cej.2019.122264

    36. [36]

      He, R.; Liu, H.; Liu, H.; Xu, D.; Zhang, L. J. Mater. Sci. Technol. 2020, 52, 145. doi: 10.1016/j.jmst.2020.03.027  doi: 10.1016/j.jmst.2020.03.027

    37. [37]

      Li, Z.; Wu, Z.; He, R.; Wan, L.; Zhang, S. J. Mater. Sci. Technol. 2020, 56, 151. doi: 10.1016/j.jmst.2020.02.061  doi: 10.1016/j.jmst.2020.02.061

    38. [38]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    39. [39]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    40. [40]

      Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    41. [41]

      Ge, H.; Xu, F.; Cheng, B.; Yu, J.; Ho, W. ChemCatChem 2019, 11, 6301. doi: 10.1002/cctc.201901486  doi: 10.1002/cctc.201901486

    42. [42]

      Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Adv. Mater. 2019, 31, 1808283. doi: 10.1002/adma.201808283  doi: 10.1002/adma.201808283

    43. [43]

      Yeh, T.; Chen, S.; Teng, H. Nano Energy 2015, 12, 476. doi: 10.1016/j.nanoen.2015.01.021  doi: 10.1016/j.nanoen.2015.01.021

    44. [44]

      Roushani, M.; Mavaei, M.; Daneshfar, A.; Rajabi, H. R. J. Mater. Sci.: Mater. Electron. 2017, 28, 5135. doi: 10.1007/s10854-016-6169-7  doi: 10.1007/s10854-016-6169-7

    45. [45]

      Ye, R.; Peng, Z.; Metzger, A.; Lin, J.; Mann, J. A.; Huang, K.; Xiang, C.; Fan, X.; Samuel, E. L. G.; Alemany, L. B.; et al. ACS Appl. Mater. Interface. 2015, 7, 7041. doi: 10.1021/acsami.5b01419  doi: 10.1021/acsami.5b01419

    46. [46]

      Yan, M.; Hua, Y.; Zhu, F.; Gu, W.; Jiang, J.; Shen, H.; Shi, W. Appl. Catal. B 2017, 202, 518. doi: 10.1016/j.apcatb.2016.09.039  doi: 10.1016/j.apcatb.2016.09.039

    47. [47]

      Yuan, A.; Lei, H.; Xi, F.; Liu, J.; Qin, L.; Chen, Z.; Dong, X. J. Colloid Interface Sci. 2019, 548, 56. doi: 10.1016/j.jcis.2019.04.027  doi: 10.1016/j.jcis.2019.04.027

    48. [48]

      Yan, Y.; Chen, J.; Li, N.; Tian, J.; Li, K.; Jiang, J.; Liu, J.; Tian, Q.; Chen, P. ACS Nano 2018, 12, 3523. doi: 10.1021/acsnano.8b00498  doi: 10.1021/acsnano.8b00498

    49. [49]

      Hu, C.; Mu, Y.; Li, M.; Qiu, J. Acta Phys. -Chim. Sin. 2019, 35, 572.  doi: 10.3866/PKU.WHXB201806060

    50. [50]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; et al. Nano Lett. 2012, 12, 844. doi: 10.1021/nl2038979  doi: 10.1021/nl2038979

    51. [51]

      Zhou, Q.; Song, Y.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. ACS Sustain. Chem. Eng. 2020, 8, 7921. doi: 10.1021/acssuschemeng.0c01548  doi: 10.1021/acssuschemeng.0c01548

    52. [52]

      Sun, X.; Li, H.; Ou, N.; Lyu, B.; Gui, B.; Tian, S.; Qian, D.; Wang, X.; Yang, J. Molecules 2019, 24, 344. doi: 10.3390/molecules24020344  doi: 10.3390/molecules24020344

    53. [53]

      Zhu, S.; Zhao, X.; Song, Y.; Lu, S.; Yang, B. Nano Today 2016, 11, 128. doi: 10.1016/j.nantod.2015.09.002  doi: 10.1016/j.nantod.2015.09.002

    54. [54]

      Sharma, S.; Dutta, V.; Singh, P.; Raizada, P.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A.; Thakur, V. K. J. Clean. Prod. 2019, 228, 755. doi: 10.1016/j.jclepro.2019.04.292  doi: 10.1016/j.jclepro.2019.04.292

    55. [55]

      Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G. Carbon 2012, 50, 4738. doi: 10.1016/j.carbon.2012.06.002  doi: 10.1016/j.carbon.2012.06.002

    56. [56]

      Babu, V. J.; Bhavatharini, R. S. R.; Ramakrishna, S. RSC Adv. 2014, 4, 19251. doi: 10.1039/C4RA00579A  doi: 10.1039/C4RA00579A

    57. [57]

      Zhou, X.; Shao, C.; Yang, S.; Li, X.; Guo, X.; Wang, X.; Li, X.; Liu, Y. ACS Sustain. Chem. Eng. 2018, 6, 2316. doi: 10.1021/acssuschemeng.7b03760  doi: 10.1021/acssuschemeng.7b03760

    58. [58]

      Zhang, Y.; Park, M.; Kim, H. Y.; Ding, B.; Park, S. Appl. Surf. Sci. 2016, 384, 192. doi: 10.1016/j.apsusc.2016.05.039  doi: 10.1016/j.apsusc.2016.05.039

    59. [59]

      Li, S.; Zhou, S.; Xu, H.; Xiao, L.; Wang, Y.; Shen, H.; Wang, H.; Yuan, Q. J. Mater. Sci. 2016, 51, 6801. doi: 10.1007/s10853-016-9967-7  doi: 10.1007/s10853-016-9967-7

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    6. [6]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    7. [7]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    8. [8]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    9. [9]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(33)
  • Abstract views(739)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return