Citation: Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 201100. doi: 10.3866/PKU.WHXB202011009 shu

Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell

  • Corresponding author: Minfang Han, hanminfang@tsinghua.edu.cn
  • Received Date: 3 November 2020
    Revised Date: 7 December 2020
    Accepted Date: 7 December 2020
    Available Online: 15 December 2020

    Fund Project: the National Key R&D Program of China 2017YFB0601903the Beijing Municipal Science and Technology Commission Z191100004619009the Tsinghua University Initiative Scientific Research Program 20193080038

  • Solid oxide fuel cell (SOFC) with high energy conversion efficiency, low pollutant emission, and good fuel adaptability has witnessed rapid development in recent years. However, the commercialization of SOFC remains limited by constraints of performance and stability. Electrochemical impedance spectroscopy (EIS) can distinguish ohmic impedance caused by ion transport from polarization impedance related to electrode reaction; it has been widely used in the research of performance and stability as an efficient on-line characterization technology. The physical/chemical processes involved in EIS overlap significantly and can be decomposed by the distribution of relaxation times (DRT) method which does not depend on prior assumptions. Since industrial large-size SOFC is vulnerable to the influence of inductance and disturbance when testing EIS, its EIS analysis is rarely studied and mostly based on the research results of cells with smaller electrode active area. To further elucidate the impedance spectrum of industrial large-size SOFC under actual working conditions, the EIS of industrial-size (10 cm × 10 cm) anode-supported planar SOFC was systematically tested over a broad temperature and anode/cathode gas composition range. First, the quality of the impedance data was examined by performing a Kramers-Kronig test. The residuals of real and imaginary data were within the range of ±1%, indicating good data quality. Then, the DRT method was adopted to parse the EIS data. By comparing and analyzing the DRT results under different conditions, the corresponding relationships between each characteristic peak in the DRT results and the specific electrode process in the SOFC were revealed. The characteristic frequencies were separated into 0.5-1, 1-30, 10-30, 1 × 102-1 × 103, and 1 × 104-3 × 104 Hz regions, corresponding to gas conversion within the anode, gas diffusion within the anode, oxygen surface exchange reaction within the cathode, charge-transfer reaction within the anode, and oxygen ionic transport process, respectively. In this study, the identification of each electrode process in industrial large-size SOFC is realized, indicate that the gas conversion process in large-size SOFC with larger active area and smaller flows cannot be ignored compared with the cells with smaller electrode active area. The method followed and the results obtained have a universal quality and can be applied to the in situ characterization, online monitoring, and degradation mechanism research of SOFC, thus laying a foundation for the optimization of the performance and stability.
  • 加载中
    1. [1]

      Hjalmarsson, P.; Sun, X.; Liu, Y. L.; Chen, M. J. Power Sources 2014, 262, 316. doi: 10.1016/j.jpowsour.2014.03.133  doi: 10.1016/j.jpowsour.2014.03.133

    2. [2]

      Fang, Q.; Frey, C. E.; Menzler, N. H.; Blum, L. J. Electrochem. Soc. 2018, 165 (2), F38. doi: 10.1149/2.0541802jes  doi: 10.1149/2.0541802jes

    3. [3]

      Hauch, A.; Brodersen, K.; Chen, M.; Mogensen, M. B. Solid State Ionics 2016, 293, 27. doi: 10.1016/j.ssi.2016.06.003  doi: 10.1016/j.ssi.2016.06.003

    4. [4]

      Lyu, Z.; Wang, Y.; Zhang, Y.; Han, M. Chem. Eng. J. 2020, 393, 124755. doi: 10.1016/j.cej.2020.124755  doi: 10.1016/j.cej.2020.124755

    5. [5]

      Barfod, R.; Hagen, A.; Ramousse, S.; Hendriksen, P. V.; Mogensen, M. Fuel Cells 2006, 6 (2), 141. doi: 10.1002/fuce.200500113  doi: 10.1002/fuce.200500113

    6. [6]

      Jensen, S. R. H. J.; Hauch, A.; Hendriksen, P. V.; Mogensen, M. J. Electrochem. Soc. 2009, 156 (6), B757. doi: 10.1149/1.3116247  doi: 10.1149/1.3116247

    7. [7]

      Schichlein, H.; Müller, A. C.; Voigts, M.; Krügel, A.; Ivers-Tiffée, E. J. Appl. Electrochem. 2002, 32 (8), 875. doi: 10.1023/a:1020599525160  doi: 10.1023/a:1020599525160

    8. [8]

      Leonide, A.; Sonn, V.; Weber, A.; Ivers-Tiffée, E. J. Electrochem. Soc. 2008, 155 (1), B36. doi: 10.1149/1.2801372  doi: 10.1149/1.2801372

    9. [9]

      Endler, C.; Leonide, A.; Weber, A.; Tietz, F.; Ivers-Tiffée, E. J. Electrochem. Soc. 2010, 157 (2), B292. doi: 10.1149/1.3270047  doi: 10.1149/1.3270047

    10. [10]

      Kromp, A.; Leonide, A.; Weber, A.; Ivers-Tiffée, E. J. Electrochem. Soc. 2011, 158 (8), B980. doi: 10.1149/1.3597177  doi: 10.1149/1.3597177

    11. [11]

      Caliandro, P.; Nakajo, A.; Diethelm, S.; Van herle, J. J. Power Sources 2019, 436, 226838. doi: 10.1016/j.jpowsour.2019.226838  doi: 10.1016/j.jpowsour.2019.226838

    12. [12]

      Shi, W. Y.; Jia, C.; Zhang, Y. L.; Lü, Z. W.; Han, M. F. Acta Phys. -Chim. Sin. 2019, 35 (5), 509.  doi: 10.3866/PKU.WHXB201806071

    13. [13]

      Vinke, I. C.; de Haart, L. G. J.; Eichel, R. A. ECS Trans. 2019, 91 (1), 589. doi: 10.1149/09101.0589ecst  doi: 10.1149/09101.0589ecs

    14. [14]

      Fang, Q.; Blum, L.; Menzler, N. H. J. Electrochem. Soc. 2015, 162 (8), F907. doi: 10.1149/2.0941508jes  doi: 10.1149/2.0941508jes

    15. [15]

      Sun, X.; Hendriksen, P. V.; Mogensen, M. B.; Chen, M. Fuel Cells 2019, 19 (6), 740. doi: 10.1002/fuce.201900081  doi: 10.1002/fuce.201900081

    16. [16]

      Jia, C.; Chen, M.; Han, M. Int. J. Appl. Ceram. Technol. 2017, 14 (5), 1006. doi: 10.1111/ijac.12748  doi: 10.1111/ijac.12748

    17. [17]

      Sonn, V.; Leonide, A.; Ivers-Tiffée, E. J. Electrochem. Soc. 2008, 155 (7), B675. doi: 10.1149/1.2908860  doi: 10.1149/1.2908860

    18. [18]

      Bessler, W. G.; Gewies, S. J. Electrochem. Soc. 2007, 154 (6), B548. doi: 10.1149/1.2720639  doi: 10.1149/1.2720639

    19. [19]

      Fan, H.; Keane, M.; Singh, P.; Han, M. J. Power Sources 2014, 268, 634. doi: 10.1016/j.jpowsour.2014.03.080  doi: 10.1016/j.jpowsour.2014.03.080

    20. [20]

      Shi, W.; Lyu, Z.; Han, M. ECS Trans. 2019, 91 (1), 791. doi: 10.1149/09101.0791ecst  doi: 10.1149/09101.0791ecst

    21. [21]

      Bessler, W.; Warnatz, J.; Goodwin, D. Solid State Ionics 2007, 177 (39-40), 3371. doi: 10.1016/j.ssi.2006.10.020  doi: 10.1016/j.ssi.2006.10.020

    22. [22]

      Shri Prakash, B.; Senthil Kumar, S.; Aruna, S. T. Renew. Sust. Energy Rev. 2014, 36, 149. doi: 10.1016/j.rser.2014.04.043  doi: 10.1016/j.rser.2014.04.043

    23. [23]

      Simrick, N. J.; Bieberle-Hütter, A.; Ryll, T. M.; Kilner, J. A.; Atkinson, A.; Rupp, J. L. M. Solid State Ionics 2012, 206, 7. doi: 10.1016/j.ssi.2011.10.029  doi: 10.1016/j.ssi.2011.10.029

    24. [24]

      Endler-Schuck, C.; Joos, J.; Niedrig, C.; Weber, A.; Ivers-Tiffée, E. Solid State Ionics 2015, 269, 67. doi: 10.1016/j.ssi.2014.11.018  doi: 10.1016/j.ssi.2014.11.018

    25. [25]

      Boukamp, B. Solid State Ionics 2004, 169 (1-4), 65. doi: 10.1016/j.ssi.2003.07.002  doi: 10.1016/j.ssi.2003.07.002

    26. [26]

      Schönleber, M.; Klotz, D.; Ivers-Tiffée, E. Electrochim. Acta 2014, 131, 20. doi: 10.1016/j.electacta.2014.01.034  doi: 10.1016/j.electacta.2014.01.034

    27. [27]

      Dittrich, L.; Nohl, M.; Jaekel, E. E.; Foit, S.; de Haart, L. G. J.; Eichel, R. A. J. Electrochem. Soc. 2019, 166 (13), F971. doi: 10.1149/2.0581913jes  doi: 10.1149/2.0581913jes

    28. [28]

      Tong, X.; Ovtar, S.; Brodersen, K.; Hendriksen, P. V.; Chen, M. J. Power Sources 2020, 451, 227742. doi: 10.1016/j.jpowsour.2020.227742  doi: 10.1016/j.jpowsour.2020.227742

    29. [29]

      Wang, J.; Huang, Q. A.; Li, W. H.; Wamg, J.; Zhuang, Q. C.; Zhang, J. J. J. Electrochem. 2020, 26, 607.  doi: 10.13208/j.electrochem.200641

    30. [30]

      Primdahl, S.; Mogensen, M. J. Electrochem. Soc. 1998, 145 (7), 2431. doi: 10.1149/1.1838654  doi: 10.1149/1.1838654

    31. [31]

      Leonide, A.; Apel, Y.; Ivers-Tiffee, E. ECS Trans. 2009, 19 (20), 81. doi: 10.1149/1.3247567  doi: 10.1149/1.3247567

    32. [32]

      Primdahl, S.; Mogensen, M. J. Electrochem. Soc. 1999, 146 (8), 2827. doi: 10.1149/1.1392015  doi: 10.1149/1.1392015

    33. [33]

      Hong, J.; Bhardwaj, A.; Bae, H.; Kim, I. H.; Song, S. J. J. Electrochem. Soc. 2020, 167 (11), 114504. doi: 10.1149/1945-7111/aba00f  doi: 10.1149/1945-7111/aba00f

    34. [34]

      Gewies, S.; Bessler, W. G. J. Electrochem. Soc. 2008, 155 (9), B937. doi: 10.1149/1.2943411  doi: 10.1149/1.2943411

    35. [35]

      Sumi, H.; Shimada, H.; Yamaguchi, Y.; Yamaguchi, T.; Fujishiro, Y. Electrochim. Acta 2020, 339, 135913. doi: 10.1016/j.electacta.2020.135913  doi: 10.1016/j.electacta.2020.135913

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Fei Nie Jiawei Liu Chunxin Zhao Hongbo Cui Yan Li Bin Cui . Construction of a Chemical Experimental Demonstration Center Supporting the Cultivation of Top-Notch Innovative Talents under the “Grand Ideological and Political” Framework: A Case Study of Northwest University. University Chemistry, 2024, 39(7): 32-39. doi: 10.12461/PKU.DXHX202404122

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(45)
  • Abstract views(1294)
  • HTML views(365)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return