Citation: Ye Yaokun, Hu Zongxiang, Liu Jiahua, Lin Weicheng, Chen Taowen, Zheng Jiaxin, Pan Feng. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201100. doi: 10.3866/PKU.WHXB202011003 shu

Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries

  • Corresponding author: Zheng Jiaxin, zhengjx@pkusz.edu.cn Pan Feng, panfeng@pkusz.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 2 November 2020
    Revised Date: 10 December 2020
    Accepted Date: 10 December 2020
    Available Online: 16 December 2020

    Fund Project: the Shenzhen Science and Technology Innovation Committee ZDSYS20170728102618the National Natural Science Foundation of China 21603007The project was supported by the National Key R&D Program of China (2016YFB0700600), the National Natural Science Foundation of China (21603007, 51672012), the Guangdong Key-lab Project (2017B0303010130), and the Shenzhen Science and Technology Innovation Committee (ZDSYS20170728102618)the National Natural Science Foundation of China 51672012the Guangdong Key-lab Project 2017B0303010130the National Key R&D Program of China 2016YFB0700600

  • In addition to their extensive commercial application in electronic devices such as cell phones and laptops, lithium-ion batteries (LIBs) are most suitable to fulfill the energy storage requirements of electric vehicles because of their recognized safety, portability, and high energy density. Cathodes are the most important part of LIBs, and various cathode materials have been widely investigated over the past decades. Polaron formation has been attracting increasing attention in the research of cathode materials, as it limits electron conduction. In particular, polarons are responsible for low electronic conductivity in cathode materials like olivine phosphate. Polaron is a typical crystal defect caused by the integrated motion of lattice distortion and its trapping electrons. Research on the mechanism of polaron formation will provide theoretical guidance for the design of high-electronic-conductivity cathode materials and improvement of the electrochemical performance of LIBs. Theoretical calculation is a direct and important method to study polaron formation in a specific crystal material, because the presence of polarons and their formation mechanisms can be effectively verified through this method. In this article, we first introduce the basic physical concept of polarons and their dynamical model according to the Marcus and Emin-Holstein-Austin-Mott theories. A comparison of the general properties of large and small polarons, summarized in this chapter, reveals that small polaron formation more likely occurs in cathode materials. Moreover, the theoretical characterization, electrical impact, control and challenges of polarons are reviewed. Although a universal necessary and suitable condition for the theoretical characterization of polarons has not yet been found, we still propose three criteria that are proven to be feasible and practical for the theoretical identification of polarons when applied in combination. Experimental characterizations are also introduced briefly for reference, because the comparison with the experiment is suggested to be necessary and mandatory. The electrical impact caused by polarons results in low electronic conductivity, which has been broadly reported in layered, olivine, and spinel cathode materials. Doping can weaken the influence of polarons and, thus, significantly enhance the electronic conductivity, thereby becoming the most prevalent strategy for tuning polarons. Although theoretical calculations have been widely and effectively conducted in the study of polarons, some challenges may still be faced because of the intrinsic shortcomings of the traditional density functional theory, which need to be addressed. Finally, further research on polarons from the perspective of basic theory and practical applications is prospected.
  • 加载中
    1. [1]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    2. [2]

      Whittingham, M. S. Chem. Rev. 2014, 114, 11414. doi: 10.1021/cr5003003  doi: 10.1021/cr5003003

    3. [3]

      Huang, K. L.; Wang, Z. X.; Liu, S. Q. Principle and Key Technology of Lithium Ion Battery; Chemical Industry Press: Beijing, 2007; pp. 60–288.

    4. [4]

      Goodenough, J. B. Acc. Chem. Res. 2011, 46, 1053. doi: 10.1021/ar2002705  doi: 10.1021/ar2002705

    5. [5]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    6. [6]

      Reimers, J. N.; Dahn, J. R. J. Electrochem. Soc. 2019, 139, 2091. doi: 10.1149/1.2221184  doi: 10.1149/1.2221184

    7. [7]

      Saravanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J. J. Mater. Chem. 2009, 19, 605. doi: 10.1039/b817242k  doi: 10.1039/b817242k

    8. [8]

      Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Chem. Mater. 2009, 21, 5300. doi: 10.1021/cm9024167  doi: 10.1021/cm9024167

    9. [9]

      Hu, J. T.; Zheng, J. X.; Pan, F. Acta Phys. -Chim. Sin. 2019, 35, 361.  doi: 10.3866/PKU.WHXB201805102

    10. [10]

      Xiao, W.; Xin, C.; Li, S.; Jie, J.; Gu, Y.; Zheng, J.; Pan, F. J. Mater. Chem. A 2018, 6, 9893. doi: 10.1039/c8ta01428k  doi: 10.1039/c8ta01428k

    11. [11]

      David, W. I. F.; Thackeray, M. M.; Picciotto, L. A.; Goodenough, J. B. J. Solid State Chem. 1986, 67, 316. doi: 10.1016/0022-4596(87)90369-0  doi: 10.1016/0022-4596(87)90369-0

    12. [12]

      Mishra, S. K.; Ceder, G. Phys. Rev. B 1999, 59, 6120. doi: 10.1103/PhysRevB.59.6120  doi: 10.1103/PhysRevB.59.6120

    13. [13]

      Maxisch, T.; Zhou, F.; Ceder, G. Phys. Rev. B 2006, 73, 104301. doi: 10.1103/PhysRevB.73.104301  doi: 10.1103/PhysRevB.73.104301

    14. [14]

      Kong, F.; Longo, R. C.; Park, M.-S.; Yoon, J.; Yeon, D.-H.; Park, J.-H.; Wang, W.-H.; Kc, S.; Doo, S.-G.; Cho, K. J. Mater. Chem. A 2015, 3, 8489. doi: 10.1039/c5ta01445j  doi: 10.1039/c5ta01445j

    15. [15]

      Zheng, J.; Teng, G.; Yang, J.; Xu, M.; Yao, Q.; Zhuo, Z.; Yang, W.; Liu, Q.; Pan, F. J. Phys. Chem. Lett. 2018, 9, 6262. doi: 10.1021/acs.jpclett.8b02725  doi: 10.1021/acs.jpclett.8b02725

    16. [16]

      Gu, Y.; Weng, M.; Teng, G.; Zeng, H.; Jie, J.; Xiao, W.; Zheng, J.; Pan, F. Phys. Chem. Chem. Phys. 2019, 21, 4578. doi: 10.1039/c8cp06083e  doi: 10.1039/c8cp06083e

    17. [17]

      Hoang, K. J. Mater. Chem. 2014, 2, 18271. doi: 10.1039/c4ta04116j  doi: 10.1039/c4ta04116j

    18. [18]

      Wang, Z.; Brock, C.; Matt, A.; Bevan, K. H. Phys. Rev. B 2017, 96, 125150. doi: 10.1103/PhysRevB.96.125150  doi: 10.1103/PhysRevB.96.125150

    19. [19]

      Feng, T.; Li, L.; Shi, Q.; Dong, S.; Li, B.; Li, K.; Li, G. Phys. Chem. Chem. Phys. 2020, 22, 2054. doi: 10.1039/c9cp05768d  doi: 10.1039/c9cp05768d

    20. [20]

      Meng, Y. S.; Arroyo-de Dompablo, M. E. Energy Environ. Sci. 2009, 2, 589. doi: 10.1039/b901825e  doi: 10.1039/b901825e

    21. [21]

      Meng, Y. S.; Elena Arroyo-de Dompablo, M. Acc. Chem. Res. 2013, 46, 1171. doi: 10.1021/ar2002396  doi: 10.1021/ar2002396

    22. [22]

      Stoneham, A. M.; Gavartin, J.; Shluger, A. L.; Kimmel, A. V.; Ramo, D. M.; Rønnow, H. M.; Aeppli, G.; Renner, C. J. Phys. Condens. Matter 2007, 19, 255208. doi: 10.1088/0953-8984/19/25/255208  doi: 10.1088/0953-8984/19/25/255208

    23. [23]

      Li, Z. Z. Solid Theory, 2nd ed.; Higher Education Press: Beijing, 2017; pp. 343–367.

    24. [24]

      Geneste, G.; Amadon, B.; Torrent, M.; Dezanneau, G. Phys. Rev. B 2017, 96, 134123. doi: 10.1103/PhysRevB.96.134123  doi: 10.1103/PhysRevB.96.134123

    25. [25]

      Deskins, N. A.; Dupuis, M. Phys. Rev. B. 2007, 75, 195212. doi: 10.1103/PhysRevB.75.195212  doi: 10.1103/PhysRevB.75.195212

    26. [26]

      Reticcioli, M.; Diebold, U.; Kresse, G.; Franchini, C. Small Polarons in Transition Metal Oxides. Springer: Cham, 2020; pp. 1035–1073.

    27. [27]

      Lany, S.; Zunger, A. Phys. Rev. B 2009, 80, 085202. doi: 10.1103/PhysRevB.80.085202  doi: 10.1103/PhysRevB.80.085202

    28. [28]

      Zheng, J.; Ye, Y.; Pan, F. Natl. Sci. Rev. 2020, 7, 242. doi: 10.1093/nsr/nwz178  doi: 10.1093/nsr/nwz178

    29. [29]

      Li, S.; Liu, J.; Liu, B. Chem. Mater. 2017, 29, 2202. doi: 10.1021/acs.chemmater.6b05022  doi: 10.1021/acs.chemmater.6b05022

    30. [30]

      Wang, X.; Xiao, R.; Li, H.; Chen, L. J. Materiomics 2017, 3, 178. doi: 10.1016/j.jmat.2017.02.002  doi: 10.1016/j.jmat.2017.02.002

    31. [31]

      Zuo, C.; Hu, Z.; Qi, R.; Liu, J.; Li, Z.; Lu, J.; Dong, C.; Yang, K.; Huang, W.; Chen, C.; et al. Adv. Energy Mater. 2020, 10, 2000363. doi: 10.1002/aenm.202000363  doi: 10.1002/aenm.202000363

    32. [32]

      Setvin, M.; Franchini, C.; Hao, X.; Schmid, M.; Janotti, A.; Kaltak, M.; Van de Walle, C. G.; Kresse, G.; Diebold, U. Phys. Rev. Lett. 2014, 113, 086402. doi: 10.1103/PhysRevLett.113.086402  doi: 10.1103/PhysRevLett.113.086402

    33. [33]

      Sezen, H.; Buchholz, M.; Nefedov, A.; Natzeck, C.; Heissler, S.; Di Valentin, C.; Woll, C. Sci. Rep. 2014, 4, 3808. doi: 10.1038/srep03808  doi: 10.1038/srep03808

    34. [34]

      Yang, S.; Brant, A. T.; Giles, N. C.; Halliburton, L. E. Phys. Rev. B 2013, 87, 125201. doi: 10.1103/PhysRevB.87.125201  doi: 10.1103/PhysRevB.87.125201

    35. [35]

      Guo, C.; Meng, X.; Fu, H.; Wang, Q.; Wang, H.; Tian, Y.; Peng, J.; Ma, R.; Weng, Y.; Meng, S.; et al. Phys. Rev. Lett. 2020, 124, 206801. doi: 10.1103/PhysRevLett.124.206801  doi: 10.1103/PhysRevLett.124.206801

    36. [36]

      Marianetti, C. A.; Kotliar, G.; Ceder, G. Nat. Mater. 2004, 3, 627. doi: 10.1038/nmat1178  doi: 10.1038/nmat1178

    37. [37]

      Daheron, L.; Dedryvere, R.; Martinez, H.; Menetrier, M.; Denage, C.; Delmas, C.; Gonbeau, D. Chem. Mater. 2008, 20, 583. doi: 10.1021/cm702546s  doi: 10.1021/cm702546s

    38. [38]

      Park, M.; Zhang, X.; Chung, M.; Less, G. B.; Sastry, A. M. J. Power Sources 2010, 195, 7904. doi: 10.1016/j.jpowsour.2010.06.060  doi: 10.1016/j.jpowsour.2010.06.060

    39. [39]

      Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571  doi: 10.1149/1.1837571

    40. [40]

      Li, H.; Wang, Z.; Chen, L.; Huang, X. Adv. Mater. 2009, 21, 4593. doi: 10.1002/adma.200901710  doi: 10.1002/adma.200901710

    41. [41]

      Ouyang, C.; Shi, S.; Wang, Z.; Huang, X.; Chen, L. Phys. Rev. B 2004, 69, 104303. doi: 10.1103/PhysRevB.69.104303  doi: 10.1103/PhysRevB.69.104303

    42. [42]

      Hoang, K.; Johannes, M. Chem. Mater. 2011, 23, 3003. doi: 10.1021/cm200725j  doi: 10.1021/cm200725j

    43. [43]

      Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. doi: 10.1038/nmat732  doi: 10.1038/nmat732

    44. [44]

      Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Mater. Res. Bull. 1983, 18, 461. doi: 10.1016/0025-5408(83)90138-1  doi: 10.1016/0025-5408(83)90138-1

    45. [45]

      Iguchi, E.; Nakamura, N.; Aoki, A. Philos. Mag. B 2009, 78, 65. doi: 10.1080/13642819808206727  doi: 10.1080/13642819808206727

    46. [46]

      Marzec, J.; Swierczek, K.; Przewoznik, J.; Molenda, J.; Simon, D. R.; Kelder, E. M.; Schoonman, J. Solid State Ion. 2002, 146, 225. doi: 10.1016/s0167-2738(01)01022-0  doi: 10.1016/s0167-2738(01)01022-0

    47. [47]

      Massarotti, V.; Capsoni, D.; Bini, M.; Chiodelli, G.; Azzoni, C. B.; Mozzati, M. C.; Paleari, A. J. Solid State Chem. 1999, 147, 509. doi: 10.1006/jssc.1999.8406  doi: 10.1006/jssc.1999.8406

    48. [48]

      Ouyang, C.; Du, Y.; Shi, S.; Lei, M. Phys. Lett. A 2009, 373, 2796. doi: 10.1016/j.physleta.2009.05.071  doi: 10.1016/j.physleta.2009.05.071

    49. [49]

      Mandal, S.; Rojas, R. M.; Amarilla, J. M.; Calle, P.; Kosova, N. V.; Anufrienko, V. F.; Rojo, J. M. Chem. Mater. 2002, 14, 1598. doi: 10.1021/cm011219v  doi: 10.1021/cm011219v

    50. [50]

      Lazarraga, M. G.; Pascual, L.; Gadjov, H.; Kovacheva, D.; Petrov, K.; Amarilla, J. M.; Rojas, R. M.; Martin-Luengo, M. A.; Rojo, J. M. J. Mater. Chem. 2004, 14, 1640. doi: 10.1039/b314157h  doi: 10.1039/b314157h

    51. [51]

      Pham, H.; Wang, L. Phys. Chem. Chem. Phys. 2015, 17, 541. doi: 10.1039/C4CP04209C  doi: 10.1039/C4CP04209C

    52. [52]

      Ong, S. P.; Mo, Y.; Ceder, G. Phys. Rev. B 2012, 85, 081105. doi: 10.1103/PhysRevB.85.081105  doi: 10.1103/PhysRevB.85.081105

    53. [53]

      Liu, Z.; Balbuena, P. B.; Mukherjee, P. P. J. Phys. Chem. C 2017, 121, 17169. doi: 10.1021/acs.jpcc.7b06869  doi: 10.1021/acs.jpcc.7b06869

    54. [54]

      Liu, T.; Cui, M.; Dupuis M. J. Phys. Chem. C 2020, 124, 23038. doi: 10.1021/acs.jpcc.0c07408  doi: 10.1021/acs.jpcc.0c07408

    55. [55]

      Johannes, M. D.; Hoang K.; Allen, J. L.; Gaskell, K. Phys. Rev. B 2012, 85, 115106. doi: 10.1103/PhysRevB.85.115106  doi: 10.1103/PhysRevB.85.115106

    56. [56]

      Zhou, F.; Marianetti, C. A.; Cococcioni, M.; Morgan, D.; Ceder, G. Phys. Rev. B 2004, 69, 201101. doi: 10.1103/PhysRevB.69.201101  doi: 10.1103/PhysRevB.69.201101

    57. [57]

      Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.; Persson, K. A.; Ceder, G. Phys. Rev. B 2011, 84, 045115. doi: 10.1103/PhysRevB.84.045115  doi: 10.1103/PhysRevB.84.045115

    58. [58]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060  doi: 10.1063/1.1564060

    59. [59]

      Weng, M.; Li, S.; Zheng, J.; Pan, F.; Wang, L. W. J. Phys. Chem. Lett. 2018, 9, 281. doi: 10.1021/acs.jpclett.7b03041  doi: 10.1021/acs.jpclett.7b03041

    60. [60]

      Sun, J.; Ruzsinszky, A.; Perdew, J. P. Phys. Rev. Lett. 2015, 115, 036402. doi: 10.1103/PhysRevLett.115.036402  doi: 10.1103/PhysRevLett.115.036402

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(64)
  • Abstract views(2301)
  • HTML views(742)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return