Citation: Ding Liang, Tang Tang, Hu Jin-Song. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 201004. doi: 10.3866/PKU.WHXB202010048 shu

Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts


  • Author Bio:

    Jin-Song Hu received his Ph.D. degree in Physical Chemistry at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2005. After that, he joined in ICCAS as an assistant professor and then was promoted as an associated professor in 2007. In 2008–2011, he worked in the research group of Charles M. Lieber at Harvard University. Then, he joined in ICCAS as a Full Professor. His current research interests focus on the development of non-precious electrocatalysts for electrochemical energy conversion and low-cost thin film solar cells
  • Corresponding author: Hu Jin-Song, hujs@iccas.ac.cn
  • Received Date: 22 October 2020
    Revised Date: 14 November 2020
    Accepted Date: 16 November 2020
    Available Online: 25 November 2020

    Fund Project: the National Natural Science Foundation of China 21773263the National Natural Science Foundation of China 21972147The project was supported by the National Key Research and Development Program of China (2016YFB0101202) and the National Natural Science Foundation of China (21773263, 21972147)the National Key Research and Development Program of China 2016YFB0101202

  • Proton-exchange membrane fuel cells (PEMFCs) directly transform chemical energy into electrical energy with high energy density and zero carbon emissions, thereby offering a clean energy alternative for fossil fuels and vehicle electrification. However, the existing PEMFCs rely on Pt-based catalysts, especially at the cathode side wherein the sluggish oxygen reduction reaction (ORR) takes place, resulting in high cost and limiting their commercial applications. Therefore, there is a strong interest in developing platinum group metal-free (PGM-free) PEMFCs. Although impressive advancements have been made since metal-nitrogen-carbon (M-N-C) catalysts have been developed as promising candidates for low-cost cathode catalysts, PGM-free PEMFCs still suffer from insufficient activity and durability. Owing to the intricate structure of the tri-phase interface and mass transport limitation, the M-N-C catalysts with high ORR activity in rotating disk electrode (RDE) tests still suffer from unexpected problems such as showing low activity and undesired rapid degradation process in real fuel cell conditions. Therefore, a comprehensive understanding of the active sites and influences of the M-N-C catalyst structure and cathode structure on the PEMFC performance will promote the development of PGM-free PEMFCs. Herein, with an aim to increase the activity and durability of PEMFCs based on M-N-C catalysts, we summarize the recent progress in understanding the active sites of M-N-C catalysts and the relationships between the structures of catalysts/catalyst layers and device performances. At the catalyst level, multiple delicately designed synthetic strategies suggest that attractive device performances can be obtained by tailoring the intrinsic activity and density of the catalyst active sites while engineering the porosity of catalysts to improve the utilization of active sites. Additionally, integrating the catalyst ink into the cathode catalyst layers in PGM-free PEMFC is pivotal for transforming the impressive ORR performance of catalysts in the RDE test to fuel cell performance. Accordingly, the recent advances in the enhancement of mass transfer and charge transport to achieve remarkable fuel cell performance were also included by rationally designing ionomer contents, catalyst morphology, and fabrication process of cathodic catalyst layers. Moreover, durability is the Achilles heel of PEMFCs with M-N-C catalysts, which is currently far behind the commercial requirements. The possible degradation mechanisms and the recent progress in seeking the corresponding solutions are also discussed in this review, including the decomposition of metal species, protonation of nitrogen sites, corrosion of carbon support, and micropore flooding. Based on these insights, the perspective is proposed by articulating open challenges and opportunities in materials innovations and device engineering with an aim to achieve practical M-N-C based PEMFCs.
  • 加载中
    1. [1]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    2. [2]

      Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. Appl. Energy 2011, 88, 981. doi: 10.1016/j.apenergy.2010.09.030  doi: 10.1016/j.apenergy.2010.09.030

    3. [3]

      Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. Energy Environ. Sci. 2011, 4, 3167. doi: 10.1039/C0EE00558D  doi: 10.1039/C0EE00558D

    4. [4]

      Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. Int. J. Hydrogen Energy 2010, 35, 9349. doi: 10.1016/j.ijhydene.2010.05.017  doi: 10.1016/j.ijhydene.2010.05.017

    5. [5]

      Pachauri, R. K.; Chauhan, Y. K. Renew. Sustain. Energy Rev. 2015, 43, 1301. doi: 10.1016/j.rser.2014.11.098  doi: 10.1016/j.rser.2014.11.098

    6. [6]

      Garland, N. L.; Papageorgopoulos, D. C.; Stanford, J. M. Energy Procedia 2012, 28, 2. doi: 10.1016/j.egypro.2012.08.034  doi: 10.1016/j.egypro.2012.08.034

    7. [7]

      Mustain, W. E.; Chatenet, M.; Page, M.; Kim, Y. S. Energy Environ. Sci. 2020, 13, 2805. doi: 10.1039/D0EE01133A  doi: 10.1039/D0EE01133A

    8. [8]

      Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. doi: 10.1021/cr020730k  doi: 10.1021/cr020730k

    9. [9]

      Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1  doi: 10.1038/s41560-018-0108-1

    10. [10]

      Staffell, I.; Scamman, D.; Velazquez-Abad, A.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. Energy Environ. Sci. 2019, 12, 463. doi: 10.1039/C8EE01157E  doi: 10.1039/C8EE01157E

    11. [11]

      Shin, D. W.; Guiver, M. D.; Lee, Y. M. Chem. Rev. 2017, 117, 4759. doi: 10.1021/acs.chemrev.6b00586  doi: 10.1021/acs.chemrev.6b00586

    12. [12]

      Zhang, M.; Li, J. J.; Pan, M.; Xu, D. S. Acta Phys. -Chim. Sin. 2011, 27, 1685.  doi: 10.3866/PKU.WHXB20110726

    13. [13]

      Tang, X. L.; Zhang, S. H.; Yu, J.; Lü, C. X.; Chi, Y. Q.; Sun, J. W.; Song, Y.; Yuan, D.; Ma, Z. L.; Zhang, L. X. Acta Phys. -Chim. Sin. 2020, 36, 1906070.  doi: 10.3866/PKU.WHXB201906070

    14. [14]

      Jaouen, F.; Jones, D.; Coutard, N.; Artero, V.; Strasser, P.; Kucernak, A. Johnson Matthey Technol. Rev. 2018, 62, 231. doi: 10.1595/205651318X696828  doi: 10.1595/205651318X696828

    15. [15]

      Wang, J.; Ding, W.; Wei, Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2009094.  doi: 10.3866/PKU.WHXB202009094

    16. [16]

      Tang, T.; Jiang, W. J.; Liu, X. Z.; Deng, J.; Niu, S.; Wang, B.; Jin, S. F.; Zhang, Q.; Gu, L.; Hu, J. S.; et al. J. Am. Chem. Soc. 2020, 142, 7116. doi: 10.1021/jacs.0c01349  doi: 10.1021/jacs.0c01349

    17. [17]

      Tang, T.; Ding, L.; Jiang, Z.; Hu, J. S.; Wan, L. J. Sci. China Chem. 2020, 63, 665. doi: 10.1007/s11426-020-9835-8  doi: 10.1007/s11426-020-9835-8

    18. [18]

      Jiang, W. J.; Hu, W. L.; Zhang, Q. H.; Zhao, T. T.; Luo, H.; Zhang, X.; Gu, L.; Hu, J. S.; Wan, L. J. Chem. Commun. 2018, 54, 1307. doi: 10.1039/C7CC08149A  doi: 10.1039/C7CC08149A

    19. [19]

      Zhang, Y.; Jiang, W. J.; Guo, L.; Zhang, X.; Hu, J. S.; Wei, Z.; Wan, L. J. ACS Appl. Mat. Interfaces 2015, 7, 11508. doi: 10.1021/acsami.5b02467  doi: 10.1021/acsami.5b02467

    20. [20]

      Xu, X. L.; Xia, Z. X.; Zhang, X. M.; Sun, R. L.; Sun, X. J.; Li, H. Q.; Wu, C. C.; Wang, J. H.; Wang, S. L.; Sun, G. Q. Appl. Catal. B 2019, 259, 118042. doi: 10.1016/j.apcatb.2019.118042  doi: 10.1016/j.apcatb.2019.118042

    21. [21]

      Banham, D.; Ye, S. Y. ACS Energy Lett. 2017, 2, 629. doi: 10.1021/acsenergylett.6b00644  doi: 10.1021/acsenergylett.6b00644

    22. [22]

      Reshetenko, T.; Serov, A.; Artyushkova, K.; Matanovic, I.; Sarah, S.; Atanassov, P. J. Power Sources 2016, 324, 556. doi: 10.1016/j.jpowsour.2016.05.090  doi: 10.1016/j.jpowsour.2016.05.090

    23. [23]

      Feng, Y. J.; Gago, A.; Timperman, L.; Alonso-Vante, N. Electrochim. Acta 2011, 56, 1009. doi: 10.1016/j.electacta.2010.09.085  doi: 10.1016/j.electacta.2010.09.085

    24. [24]

      Jasinski, R. Nature 1964, 201, 1212. doi: 10.1038/2011212a0  doi: 10.1038/2011212a0

    25. [25]

      Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Nat. Commun. 2011, 2, 416. doi: 10.1038/ncomms1427  doi: 10.1038/ncomms1427

    26. [26]

      Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G.; et al. Nat. Catal. 2018, 1, 935. doi: 10.1038/s41929-018-0164-8  doi: 10.1038/s41929-018-0164-8

    27. [27]

      He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J.; et al. Energy Environ. Sci. 2019, 12, 250. doi: 10.1039/C8EE02694G  doi: 10.1039/C8EE02694G

    28. [28]

      Fu, X. G.; Li, N.; Ren, B. H.; Jiang, G. P.; Liu, Y. R.; Hassan, F. M.; Su, D.; Zhu, J. B.; Yang, L.; Bai, Z. Y.; et al. Adv. Energy Mater. 2019, 9, 1803737. doi: 10.1002/aenm.201803737  doi: 10.1002/aenm.201803737

    29. [29]

      Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Science 2017, 357, 479. doi: 10.1126/science.aan2255  doi: 10.1126/science.aan2255

    30. [30]

      Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. J.; Xiang, Z. H.; Cao, D. P. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6626. doi: 10.1073/pnas.1800771115  doi: 10.1073/pnas.1800771115

    31. [31]

      Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P.; et al. Angew. Chem. Int. Ed. 2015, 54, 9907. doi: 10.1002/anie.201503159  doi: 10.1002/anie.201503159

    32. [32]

      Zhang, C.; Wang, Y. C.; An, B.; Huang, R. Y.; Wang, C.; Zhou, Z. Y.; Lin, W. B. Adv. Mater. 2017, 29, 1604556. doi: 10.1002/adma.201604556  doi: 10.1002/adma.201604556

    33. [33]

      Wang, X. X.; Cullen, D. A.; Pan, Y.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H.; et al. Adv. Mater. 2018, 30, 1706758. doi: 10.1002/adma.201706758  doi: 10.1002/adma.201706758

    34. [34]

      Tian, J.; Morozan, A.; Sougrati, M. T.; Lefèvre, M.; Chenitz, R.; Dodelet, J. P.; Jones, D.; Jaouen, F. Angew. Chem. Int. Ed. 2013, 52, 6867. doi: 10.1002/anie.201303025  doi: 10.1002/anie.201303025

    35. [35]

      Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443. doi: 10.1126/science.1200832  doi: 10.1126/science.1200832

    36. [36]

      Yuan, S. W.; Shui, J. L.; Grabstanowicz, L.; Chen, C.; Commet, S.; Reprogle, B.; Xu, T.; Yu, L. P.; Liu, D. J. Angew. Chem. Int. Ed. 2013, 52, 8349. doi: 10.1002/anie.201302924  doi: 10.1002/anie.201302924

    37. [37]

      Sa, Y. J.; Seo, D. J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S.; et al. J. Am. Chem. Soc. 2016, 138, 15046. doi: 10.1021/jacs.6b09470  doi: 10.1021/jacs.6b09470

    38. [38]

      Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. T.; et al. Adv. Energy Mater. 2019, 9, 1802856. doi: 10.1002/aenm.201802856  doi: 10.1002/aenm.201802856

    39. [39]

      Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Nat. Catal. 2019, 2, 259. doi: 10.1038/s41929-019-0237-3  doi: 10.1038/s41929-019-0237-3

    40. [40]

      Shui, J. L.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D. J. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 10629. doi: 10.1073/pnas.1507159112  doi: 10.1073/pnas.1507159112

    41. [41]

      Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q.; et al. J. Am. Chem. Soc. 2017, 139, 17281. doi: 10.1021/jacs.7b10385  doi: 10.1021/jacs.7b10385

    42. [42]

      Deng, Y. J.; Chi, B.; Tian, X. L.; Cui, Z. M.; Liu, E.; Jia, Q. Y.; Fan, W. J.; Wang, G. H.; Dang, D.; Li, M. S.; et al. J. Mater. Chem. A 2019, 7, 5020. doi: 10.1039/C8TA11785C  doi: 10.1039/C8TA11785C

    43. [43]

      Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Mukerjee, S. Nat. Commun. 2015, 6, 7343. doi: 10.1038/ncomms8343  doi: 10.1038/ncomms8343

    44. [44]

      Fu, X. G.; Zamani, P.; Choi, J. Y.; Hassan, F. M.; Jiang, G. P.; Higgins, D. C.; Zhang, Y. N.; Hoque, M. A.; Chen, Z. W. Adv. Mater. 2017, 29, 1604456. doi: 10.1002/adma.201604456  doi: 10.1002/adma.201604456

    45. [45]

      Zamani, P.; Higgins, D. C.; Hassan, F. M.; Fu, X. G.; Choi, J. Y.; Hoque, M. A.; Jiang, G. P.; Chen, Z. W. Nano Energy 2016, 26, 267. doi: 10.1016/j.nanoen.2016.05.035  doi: 10.1016/j.nanoen.2016.05.035

    46. [46]

      Mamtani, K.; Jain, D.; Zemlyanov, D.; Celik, G.; Luthman, J.; Renkes, G.; Co, A. C.; Ozkan, U. S. ACS Catal. 2016, 6, 7249. doi: 10.1021/acscatal.6b01786  doi: 10.1021/acscatal.6b01786

    47. [47]

      Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 3570. doi: 10.1021/jacs.6b00757  doi: 10.1021/jacs.6b00757

    48. [48]

      Litster, S.; McLean, G. J. Power Sources 2004, 130, 61. doi: 10.1016/j.jpowsour.2003.12.055  doi: 10.1016/j.jpowsour.2003.12.055

    49. [49]

      Owejan, J. P.; Owejan, J. E.; Gu, W. B. J. Electrochem. Soc. 2013, 160, F824. doi: 10.1149/2.072308jes  doi: 10.1149/2.072308jes

    50. [50]

      Stariha, S.; Artyushkova, K.; Workman, M. J.; Serov, A.; McKinney, S.; Halevi, B.; Atanassov, P. J. Power Sources 2016, 326, 43. doi: 10.1016/j.jpowsour.2016.06.098  doi: 10.1016/j.jpowsour.2016.06.098

    51. [51]

      Banham, D.; Ye, S. Y.; Pei, K.; Ozaki, J. i.; Kishimoto, T.; Imashiro, Y. J. Power Sources 2015, 285, 334. doi: 10.1016/j.jpowsour.2015.03.047  doi: 10.1016/j.jpowsour.2015.03.047

    52. [52]

      Shao, Y. Y.; Dodelet, J. P.; Wu, G.; Zelenay, P. Adv. Mater. 2019, 31, 1807615. doi: 10.1002/adma.201807615  doi: 10.1002/adma.201807615

    53. [53]

      Thompson, S. T.; Papageorgopoulos, D. Nat. Catal. 2019, 2, 558. doi: 10.1038/s41929-019-0291-x  doi: 10.1038/s41929-019-0291-x

    54. [54]

      Gasteiger, H. A.; Marković, N. M. Science 2009, 324, 48. doi: 10.1126/science.1172083  doi: 10.1126/science.1172083

    55. [55]

      Martinez, U.; Komini Babu, S.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay, P. Adv. Mater. 2019, 31, 1806545. doi: 10.1002/adma.201806545  doi: 10.1002/adma.201806545

    56. [56]

      Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X.; et al. Energy Environ. Sci. 2016, 9, 2418. doi: 10.1039/C6EE01160H  doi: 10.1039/C6EE01160H

    57. [57]

      Workman, M. J.; Serov, A.; Tsui, L. k.; Atanassov, P.; Artyushkova, K. ACS Energy Lett. 2017, 2, 1489. doi: 10.1021/acsenergylett.7b00391  doi: 10.1021/acsenergylett.7b00391

    58. [58]

      Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 472.  doi: 10.3866/PKU.WHXB201806131

    59. [59]

      Li, Z.; Wei, L.; Jiang, W. J.; Hu, Z.; Luo, H.; Zhao, W.; Xu, T.; Wu, W.; Wu, M.; Hu, J. S. Appl. Catal., B 2019, 251, 240. doi: 10.1016/j.apcatb.2019.03.046  doi: 10.1016/j.apcatb.2019.03.046

    60. [60]

      Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z.; et al. J. Am. Chem. Soc. 2019, 141. doi: 10.1021/jacs.9b08362  doi: 10.1021/jacs.9b08362

    61. [61]

      Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefèvre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S.; et al. Phys. Chem. Chem. Phys. 2012, 14, 11673. doi: 10.1039/C2CP41957B  doi: 10.1039/C2CP41957B

    62. [62]

      Kramm, U. I.; Lefèvre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J. P. J. Am. Chem. Soc. 2014, 136, 978. doi: 10.1021/ja410076f  doi: 10.1021/ja410076f

    63. [63]

      Jaouen, F.; Lefèvre, M.; Dodelet, J. P.; Cai, M. J. Phys. Chem. B 2006, 110, 5553. doi: 10.1021/jp057135h  doi: 10.1021/jp057135h

    64. [64]

      Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324, 71. doi: 10.1126/science.1170051  doi: 10.1126/science.1170051

    65. [65]

      Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L.; et al. Nat. Commun. 2019, 10, 1278. doi: 10.1038/s41467-019-09290-y  doi: 10.1038/s41467-019-09290-y

    66. [66]

      Qu, Y. T.; Wang, L. G.; Li, Z. J.; Li, P.; Zhang, Q. H.; Lin, Y.; Zhou, F. Y.; Wang, H. J.; Yang, Z. K.; Hu, Y. D.; et al. Adv. Mater. 2019, 31, 1904496. doi: 10.1002/adma.201904496  doi: 10.1002/adma.201904496

    67. [67]

      Zion, N.; Cullen, D. A.; Zelenay, P.; Elbaz, L. Angew. Chem. Int. Ed. 2020, 59, 2483. doi: 10.1002/anie.201913521  doi: 10.1002/anie.201913521

    68. [68]

      Zhang, Y.; Ma, Y. L.; Chen, Y. Y.; Zhao, L.; Huang, L. B.; Luo, H.; Jiang, W. J.; Zhang, X.; Niu, S.; Gao, D. J.; et al. ACS Appl. Mat. Interfaces 2017, 9, 36857. doi: 10.1021/acsami.7b11748  doi: 10.1021/acsami.7b11748

    69. [69]

      Lee, S. H.; Kim, J.; Chung, D. Y.; Yoo, J. M.; Lee, H. S.; Kim, M. J.; Mun, B. S.; Kwon, S. G.; Sung, Y. E.; Hyeon, T. J. Am. Chem. Soc. 2019, 141, 2035. doi: 10.1021/jacs.8b11129  doi: 10.1021/jacs.8b11129

    70. [70]

      Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. J. Appl. Electrochem. 1989, 19, 19. doi: 10.1007/BF01039385  doi: 10.1007/BF01039385

    71. [71]

      Rojas-Carbonell, S.; Artyushkova, K.; Serov, A.; Santoro, C.; Matanovic, I.; Atanassov, P. ACS Catal. 2018, 8, 3041. doi: 10.1021/acscatal.7b03991  doi: 10.1021/acscatal.7b03991

    72. [72]

      Li, Z.; Sun, H.; Wei, L.; Jiang, W. J.; Wu, M.; Hu, J. S. ACS Appl. Mat. Interfaces 2017, 9, 5272. doi: 10.1021/acsami.6b15154  doi: 10.1021/acsami.6b15154

    73. [73]

      Amiinu, I. S.; Liu, X.; Pu, Z.; Li, W.; Li, Q.; Zhang, J.; Tang, H.; Zhang, H.; Mu, S. Adv. Funct. Mater. 2018, 28, 1704638. doi: 10.1002/adfm.201704638  doi: 10.1002/adfm.201704638

    74. [74]

      Luo, H.; Jiang, W. J.; Niu, S.; Zhang, X.; Zhang, Y.; Yuan, L. P.; He, C.; Hu, J. S. Small 2020, 16, 2001171. doi: 10.1002/smll.202001171  doi: 10.1002/smll.202001171

    75. [75]

      He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H.; et al. Adv. Mater. 2020, 32, 2003577. doi: 10.1002/adma.202003577  doi: 10.1002/adma.202003577

    76. [76]

      Banham, D.; Choi, J. Y.; Kishimoto, T.; Ye, S. Y. Adv. Mater. 2019, 31, 1804846. doi: 10.1002/adma.201804846  doi: 10.1002/adma.201804846

    77. [77]

      Stariha, S.; Artyushkova, K.; Serov, A.; Atanassov, P. Int. J. Hydrogen Energy 2015, 40, 14676. doi: 10.1016/j.ijhydene.2015.05.185  doi: 10.1016/j.ijhydene.2015.05.185

    78. [78]

      Yin, X.; Lin, L.; Chung, H. T.; Babu, S. K.; Martinez, U.; Purdy, G. M.; Zelenay, P. ECS Trans. 2017, 77, 1273. doi: 10.1149/07711.1273ecst  doi: 10.1149/07711.1273ecst

    79. [79]

      Malko, D.; Lopes, T.; Ticianelli, E. A.; Kucernak, A. J. Power Sources 2016, 323, 189. doi: 10.1016/j.jpowsour.2016.05.035  doi: 10.1016/j.jpowsour.2016.05.035

    80. [80]

      Banham, D.; Kishimoto, T.; Sato, T.; Kobayashi, Y.; Narizuka, K.; Ozaki, J. i.; Zhou, Y. J.; Marquez, E.; Bai, K.; Ye, S. Y. J. Power Sources 2017, 344, 39. doi: 10.1016/j.jpowsour.2017.01.086  doi: 10.1016/j.jpowsour.2017.01.086

    81. [81]

      Banham, D.; Kishimoto, T.; Zhou, Y. J.; Sato, T.; Bai, K.; Ozaki, J. i.; Imashiro, Y.; Ye, S. Y. Sci. Adv. 2018, 4, eaar7180. doi: 10.1126/sciadv.aar7180  doi: 10.1126/sciadv.aar7180

    82. [82]

      Komini Babu, S.; Chung, H. T.; Zelenay, P.; Litster, S. ACS Appl. Mat. Interfaces 2016, 8, 32764. doi: 10.1021/acsami.6b08844  doi: 10.1021/acsami.6b08844

    83. [83]

      Uddin, A.; Dunsmore, L.; Zhang, H. G.; Hu, L. M.; Wu, G.; Litster, S. ACS Appl. Mat. Interfaces 2020, 12, 2216. doi: 10.1021/acsami.9b13945  doi: 10.1021/acsami.9b13945

    84. [84]

      Liu, J. J.; Talarposhti, M. R.; Asset, T.; Sabarirajan, D. C.; Parkinson, D. Y.; Atanassov, P.; Zenyuk, I. V. ACS Appl. Energy Mater. 2019, 2, 3542. doi: 10.1021/acsaem.9b00292  doi: 10.1021/acsaem.9b00292

    85. [85]

      Osmieri, L.; Wang, G. X.; Cetinbas, F. C.; Khandavalli, S.; Park, J.; Medina, S.; Mauger, S. A.; Ulsh, M.; Pylypenko, S.; Myers, D. J.; et al. Nano Energy 2020, 75, 104943. doi: 10.1016/j.nanoen.2020.104943  doi: 10.1016/j.nanoen.2020.104943

    86. [86]

      Osmieri, L.; Mauger, S.; Ulsh, M.; Neyerlin, K. C.; Bender, G. J. Power Sources 2020, 452, 227829. doi: 10.1016/j.jpowsour.2020.227829  doi: 10.1016/j.jpowsour.2020.227829

    87. [87]

      He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Chem. Soc. Rev. 2020, 49, 3484. doi: 10.1039/C9CS00903E  doi: 10.1039/C9CS00903E

    88. [88]

      Chenitz, R.; Kramm, U. I.; Lefèvre, M.; Glibin, V.; Zhang, G. X.; Sun, S. H.; Dodelet, J. P. Energy Environ. Sci. 2018, 11, 365. doi: 10.1039/C7EE02302B  doi: 10.1039/C7EE02302B

    89. [89]

      Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D.; et al. J. Am. Chem. Soc. 2017, 139, 14143. doi: 10.1021/jacs.7b06514  doi: 10.1021/jacs.7b06514

    90. [90]

      Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Nat. Mater. 2015, 14, 937. doi: 10.1038/nmat4367  doi: 10.1038/nmat4367

    91. [91]

      Makharia, R.; Mathias, M. F.; Baker, D. R. J. Electrochem. Soc. 2005, 152, 189. doi: 10.1149/1.1888367  doi: 10.1149/1.1888367

    92. [92]

      Choi, C. H.; Baldizzone, C.; Polymeros, G.; Pizzutilo, E.; Kasian, O.; Schuppert, A. K.; Ranjbar Sahraie, N.; Sougrati, M. T.; Mayrhofer, K. J. J.; Jaouen, F. ACS Catal. 2016, 6, 3136. doi: 10.1021/acscatal.6b00643  doi: 10.1021/acscatal.6b00643

    93. [93]

      Liu, G.; Li, X. G.; Popov, B. ECS Trans. 2009, 25, 1251. doi: 10.1149/1.3210680  doi: 10.1149/1.3210680

    94. [94]

      Herranz, J.; Jaouen, F.; Lefèvre, M.; Kramm, U. I.; Proietti, E.; Dodelet, J. P.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Bertrand, P.; et al. J. Phys. Chem. C 2011, 115, 16087. doi: 10.1021/jp2042526  doi: 10.1021/jp2042526

    95. [95]

      Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Marković, N. M. Nat. Chem. 2010, 2, 880. doi: 10.1038/nchem.771  doi: 10.1038/nchem.771

    96. [96]

      Goellner, V.; Baldizzone, C.; Schuppert, A.; Sougrati, M. T.; Mayrhofer, K.; Jaouen, F. Phys. Chem. Chem. Phys. 2014, 16, 18454. doi: 10.1039/C4CP02882A  doi: 10.1039/C4CP02882A

    97. [97]

      Meyers, J. P.; Darling, R. M. J. Electrochem. Soc. 2006, 153, A1432. doi: 10.1149/1.2203811  doi: 10.1149/1.2203811

    98. [98]

      Wang, Y. C.; Zhu, P. F.; Yang, H.; Huang, L.; Wu, Q. H.; Rauf, M.; Zhang, J. Y.; Dong, J.; Wang, K.; Zhou, Z. Y.; et al. ChemElectroChem 2018, 5, 1914. doi: 10.1002/celc.201700939  doi: 10.1002/celc.201700939

    99. [99]

      Choi, C. H.; Baldizzone, C.; Grote, J. P.; Schuppert, A. K.; Jaouen, F.; Mayrhofer, K. J. J. Angew. Chem. Int. Ed. 2015, 54, 12753. doi: 10.1002/anie.201504903  doi: 10.1002/anie.201504903

    100. [100]

      Schulenburg, H.; Stankov, S.; Schünemann, V.; Radnik, J.; Dorbandt, I.; Fiechter, S.; Bogdanoff, P.; Tributsch, H. J. Phys. Chem. B 2003, 107, 9034. doi: 10.1021/jp030349j  doi: 10.1021/jp030349j

    101. [101]

      Choi, C. H.; Lim, H. K.; Chung, M. W.; Chon, G.; Ranjbar Sahraie, N.; Altin, A.; Sougrati, M. T.; Stievano, L.; Oh, H. S.; Park, E. S.; et al. Energy Environ. Sci. 2018, 11, 3176. doi: 10.1039/C8EE01855C  doi: 10.1039/C8EE01855C

    102. [102]

      Wu, G.; More, K. L.; Xu, P.; Wang, H.; Ferrandon, M.; Kropf, A. J.; Myers, D. J.; Ma, S. G.; Johnston, C. M.; Zelenay, P. Chem. Commun. 2013, 49, 3291. doi: 10.1039/C3CC39121C  doi: 10.1039/C3CC39121C

    103. [103]

      Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Adv. Funct. Mater. 2019, 29, 1906174. doi: 10.1002/adfm.201906174  doi: 10.1002/adfm.201906174

    104. [104]

      Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Angew. Chem. Int. Ed. 2018, 57, 9038. doi: 10.1002/anie.201804958  doi: 10.1002/anie.201804958

    105. [105]

      Wei, H. W.; Su, X. G.; Liu, J. G.; Tian, J.; Wang, Z. W.; Sun, K.; Rui, Z. Y.; Yang, W. W.; Zou, Z. G. Electrochem. Commun. 2018, 88, 19. doi: 10.1016/j.elecom.2018.01.011  doi: 10.1016/j.elecom.2018.01.011

    106. [106]

      Zhang, G. X.; Chenitz, R.; Lefèvre, M.; Sun, S. H.; Dodelet, J. P. Nano Energy 2016, 29, 111. doi: 10.1016/j.nanoen.2016.02.038  doi: 10.1016/j.nanoen.2016.02.038

    107. [107]

      Choi, J. Y.; Yang, L. J.; Kishimoto, T.; Fu, X. G.; Ye, S. Y.; Chen, Z. W.; Banham, D. Energy Environ. Sci. 2017, 10, 296. doi: 10.1039/C6EE03005J  doi: 10.1039/C6EE03005J

    108. [108]

      Mittermeier, T.; Weiß, A.; Hasché, F.; Hübner, G.; Gasteiger, H. A. J. Electrochem. Soc. 2016, 164, F127. doi: 10.1149/2.1061702jes  doi: 10.1149/2.1061702jes

    109. [109]

      Yang, L. J.; Larouche, N.; Chenitz, R.; Zhang, G.; Lefèvre, M.; Dodelet, J. P. Electrochim. Acta 2015, 159, 184. doi: 10.1016/j.electacta.2015.01.201  doi: 10.1016/j.electacta.2015.01.201

  • 加载中
    1. [1]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    2. [2]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    7. [7]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    8. [8]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    9. [9]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    10. [10]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    13. [13]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    18. [18]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    19. [19]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    20. [20]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

Metrics
  • PDF Downloads(23)
  • Abstract views(607)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return