Citation: Hua Kaimin, Liu Xiaofang, Wei Baiyin, Zhang Shunan, Wang Hui, Sun Yuhan. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200909. doi: 10.3866/PKU.WHXB202009098 shu

Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2

  • Corresponding author: Wang Hui, wanghh@sari.ac.cn Sun Yuhan, sunyh@sari.ac.cn
  • Received Date: 29 September 2020
    Revised Date: 20 October 2020
    Accepted Date: 20 October 2020
    Available Online: 23 October 2020

    Fund Project: the National Key Research and Development Program of China 2017YFB0602203Key Research Program of Chinese Academy of Sciences ZDRW-ZS-2018-1-3the National Natural Science Foundation of China 21905291the National Natural Science Foundation of China 21776296Strategic Priority Research Program of the Chinese Academy of Sciences XDA21090201the Shanghai Sailing Program, China 19YF1453000This work was supported by the National Natural Science Foundation of China (21776296, 21905291), the National Key Research and Development Program of China (2017YFB0602203), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21090201), Key Research Program of Chinese Academy of Sciences (ZDRW-ZS-2018-1-3), and the Shanghai Sailing Program, China (19YF1453000)

  • Ever-increasing energy demands due to rapid industrialization and urban population growth have drastically reduced petroleum reserves and increased greenhouse-gas production, and the latter has consequently contributed to climate change and environmental damage. Therefore, it is highly desirable to produce fuels and chemicals from non-petroleum feedstocks and to reduce the atmospheric concentrations of greenhouse gases. One solution has involved using carbon dioxide (CO2), a main greenhouse gas, as a C1 feedstock for producing industrial fuels and chemicals. However, this requires high energy input from reductants or reactants with relatively high free energy (e.g., H2 gas) because CO2 is a highly oxidized, thermodynamically stable form of carbon. H2 can be generated through water photolysis, making it an ideal reductant for hydrogenating CO2 to CO. In situ generation of CO such as this has been developed for various carbonylation reactions that produce high value-added chemicals and avoid deriving CO from fossil fuels. This is beneficial because CO is toxic, and when extracted from fossil fuels it requires tedious separation and transportation. This combination of CO2 and H2 allows for functional molecules to be synthesized as entries into the chemical industry value chain and would generate a carbon footprint much lower than that of conventional petrochemical pathways. Based on this, CO2/H2 carbonylations using homogeneous transition metal-based catalysts have attracted increasing attention. Through this process, alkenes have been converted to alcohols, carboxylic acids, amines, and aldehydes. Heterogeneous catalysis has also provided an innovative approach for the carbonylation of alkenes with CO2/H2. Based on these alkene carbonylations, the scope of CO2/H2 carbonylations has been expanded to include aryl halides, methanol, and methanol derivatives, which give the corresponding aryl aldehyde, acetic acid, and ethanol products. These carbonylations revealed indirect CO2-HCOOH-CO pathways and direct CO2 insertion pathways. The use of this process is ever-increasing and has expanded the scope of CO2 utilization to produce novel, high value-added or bulk chemicals, and has promoted sustainable chemistry. This review summarizes the recent advances in transition-metal-catalyzed carbonylations with CO2/H2 and discusses the perspectives and challenges of further research.
  • 加载中
    1. [1]

      Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975. doi: 10.1039/b700658f  doi: 10.1039/b700658f

    2. [2]

      Doney, S. C.; Fabry, V. J.; Feely, R. A.; Kleypas, J. A. Ann. Rev. Mar. Sci. 2009, 1, 169. doi: 10.1146/annurev.marine.010908.163834  doi: 10.1146/annurev.marine.010908.163834

    3. [3]

      Alberico, E.; Nielsen, M. Chem. Commun. 2015, 51, 6714. doi: 10.1039/c4cc09471a  doi: 10.1039/c4cc09471a

    4. [4]

      Porosoff, M. D.; Yan, B.; Chen, J. G. Energy Environ. Sci. 2016, 9, 62. doi: 10.1039/c5ee02657a  doi: 10.1039/c5ee02657a

    5. [5]

      Abanades, J. C.; Rubin, E. S.; Mazzotti, M.; Herzog, H. J. Energy Environ. Sci. 2017, 10, 2491. doi: 10.1039/C7EE02819A  doi: 10.1039/C7EE02819A

    6. [6]

      Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem. Int. Ed. 2016, 55, 7296. doi: 10.1002/anie.201507458  doi: 10.1002/anie.201507458

    7. [7]

      Jessop, P. G.; Ikariya, T.; Noyor, R. Chem. Rev. 1995, 95, 259. doi: 10.1021/cr00034a001  doi: 10.1021/cr00034a001

    8. [8]

      Leitner, W. Coord. Chem. Rev.1996, 153, 257. doi: 10.1016/0010-8545(95)01226-5  doi: 10.1016/0010-8545(95)01226-5

    9. [9]

      Song, Q. -W.; Zhou, Z. -H.; He, L. -N. Green Chem. 2017, 19, 3707. doi: 10.1039/c7gc00199a  doi: 10.1039/c7gc00199a

    10. [10]

      Zhou, W.; Guo, J. -K.; Shen, S.; Pan, J.; Tang, J.; Chen, L.; Au, C. -T.; Yin, S. -F. Acta Phys. -Chim. Sin. 2020, 36, 1906048.  doi: 10.3866/PKU.WHXB201906048

    11. [11]

      Bai, X. -F.; Chen, W.; Wang, B. -Y.; Feng, G. -H.; Wei, W.; Jiao, Z.; Sun, Y. Acta Phys.-Chim. Sin. 2017, 33 2388.  doi: 10.3866/PKU.WHXB201706131

    12. [12]

      Wang, X.; Xia, C.; Wu, L. Green Chem. 2018, 20, 5415. doi: 10.1039/c8gc03022g  doi: 10.1039/c8gc03022g

    13. [13]

      Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804. doi: 10.1021/acs.chemrev.6b00816  doi: 10.1021/acs.chemrev.6b00816

    14. [14]

      Li, X.; He, X.; Liu, X.; He, L. -N. Sci. China Chem. 2017, 60, 841. doi: 10.1007/s11426-016-0473-5  doi: 10.1007/s11426-016-0473-5

    15. [15]

      Gao, P.; Dang, S.; Li, S.; Bu, X.; Liu, Z.; Qiu, M.; Yang, C.; Wang, H.; Zhong, L.; Han, Y.; et al. ACS Catal. 2017, 8, 571. doi: 10.1021/acscatal.7b02649  doi: 10.1021/acscatal.7b02649

    16. [16]

      Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J.; et al. Nat. Chem. 2017, 9, 1019. doi: 10.1038/nchem.2794  doi: 10.1038/nchem.2794

    17. [17]

      Liao, P.; Zhang, C.; Zhang, L.; Yang, Y.; Zhong, L.; Wang, H.; Sun, Y. Catal. Today 2018, 311, 56. doi: 10.1016/j.cattod.2017.09.022  doi: 10.1016/j.cattod.2017.09.022

    18. [18]

      Yang, H.; Zhang, C.; Gao, P.; Wang, H.; Li, X.; Zhong, L.; Wei, W.; Sun, Y. Catal. Sci. Technol. 2017, 7, 4580. doi: 10.1039/c7cy01403a  doi: 10.1039/c7cy01403a

    19. [19]

      Cui, X.; Shi, F. Acta Phys. -Chim. Sin. 2021, 37, 2006080.  doi: 10.3866/PKU.WHXB202006080

    20. [20]

      Zhong, L.; Yu, F.; An, Y.; Zhao, Y.; Sun, Y.; Li, Z.; Lin, T.; Lin, Y.; Qi, X.; Dai, Y.; et al. Nature 2016, 538, 84. doi: 10.1038/nature19786  doi: 10.1038/nature19786

    21. [21]

      Kar, S.; Goeppert, A.; Prakash, G. K. S. Acc. Chem. Res. 2019, 52, 2892. doi: 10.1021/acs.accounts.9b00324  doi: 10.1021/acs.accounts.9b00324

    22. [22]

      Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. J. Mol. Catal. A: Chem. 1995, 104, 17. doi: 10.1016/1381-1169(95)00130-1  doi: 10.1016/1381-1169(95)00130-1

    23. [23]

      Zhang, X.; Cao, Y.; Chen, Q.; Shen, C.; He, L. Acta Phys. -Chim. Sin. 2021, 37, 2007052.  doi: 10.3866/PKU.WHXB202007052

    24. [24]

      Klankermayer, J.; Leitner, W. Science 2015, 350, 629. doi: 10.1126/science.aac7997  doi: 10.1126/science.aac7997

    25. [25]

      Morimoto, T.; Kakiuchi, K. Angew. Chem. Int. Ed. 2004, 43, 5580. doi: 10.1002/anie.200301736  doi: 10.1002/anie.200301736

    26. [26]

      Gual, A.; Godard, C.; Castillón, S.; Claver, C. Tetra. Asymm. 2010, 21, 1135. doi: 10.1016/j.tetasy.2010.05.037  doi: 10.1016/j.tetasy.2010.05.037

    27. [27]

      Wang, L.; Sun, W.; Liu, C. Chin. J. Chem. 2018, 36, 353. doi: 10.1002/cjoc.201700746  doi: 10.1002/cjoc.201700746

    28. [28]

      Wu, L.; Liu, Q.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 6310. doi: 10.1002/anie.201400793  doi: 10.1002/anie.201400793

    29. [29]

      Tominaga, K.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc. Chem. Commun. 1993, 7, 629. doi: 10.1039/c39930000629  doi: 10.1039/c39930000629

    30. [30]

      Tominaga, K.; Sasaki, Y.; Hagihara, K.; Watanabe, T.; Saito, M. Chem. Lett. 1994, 23, 1391. doi: 10.1246/cl.1994.1391  doi: 10.1246/cl.1994.1391

    31. [31]

      Tominaga K.; Sasaki, Y. Catal. Commun. 2000, 1, 1. doi: 10.1016/S1566-7367(00)00006-6  doi: 10.1016/S1566-7367(00)00006-6

    32. [32]

      Jööskelöinen, S.; Haukka, M. Appl. Catal. A: Gen. 2003, 247, 95. doi: 10.1016/s0926-860x(03)00063-2  doi: 10.1016/s0926-860x(03)00063-2

    33. [33]

      Kontkanen, M.-L.; Oresmaa, L.; Moreno, M. A.; Jönis, J.; Laurila, E.; Haukka, M. Appl. Catal. A: Gen. 2009, 365, 130. doi: 10.1016/j.apcata.2009.06.006  doi: 10.1016/j.apcata.2009.06.006

    34. [34]

      Tominaga, K.; Sasaki, Y. J. Mol. Catal. A: Chem. 2004, 220, 159. doi: 10.1016/j.molcata.2004.06.009  doi: 10.1016/j.molcata.2004.06.009

    35. [35]

      Tominaga, K.Catal. Today 2006, 115, 70. doi: 10.1016/j.cattod.2006.02.019  doi: 10.1016/j.cattod.2006.02.019

    36. [36]

      Ali, M.; Gual, A.; Ebeling, G.; Dupont, J. ChemCatChem 2014, 6, 2224. doi: 10.1002/cctc.201402226  doi: 10.1002/cctc.201402226

    37. [37]

      Liu, Q.; Wu, L.; Fleischer, I.; Selent, D.; Franke, R.; Jackstell, R.; Beller, M. Chem 2014, 20, 6888. doi: 10.1002/chem.201400358  doi: 10.1002/chem.201400358

    38. [38]

      Zhang, X.; Tian, X.; Shen, C.; Xia, C.; He, L. ChemCatChem 2019, 11, 1986. doi: 10.1002/cctc.201802091  doi: 10.1002/cctc.201802091

    39. [39]

      Ahlers, S. J.; Bentrup, U.; Linke, D.; Kondratenko, E. V. ChemSusChem 2014, 7, 2631. doi: 10.1002/cssc.201402212  doi: 10.1002/cssc.201402212

    40. [40]

      Ahlers, S. J.; Kraehnert, R.; Kreyenschulte, C.; Pohl, M. -M.; Linke, D.; Kondratenko, E. V. Catal. Today 2015, 258, 684. doi: 10.1016/j.cattod.2015.04.006  doi: 10.1016/j.cattod.2015.04.006

    41. [41]

      Ahlers, S. J.; Pohl, M.-M.; Radnik, J.; Linke, D.; Kondratenko, E. V. Appl. Catal. B: Environ. 2015, 176–177, 570. doi: 10.1016/j.apcatb.2015.04.034  doi: 10.1016/j.apcatb.2015.04.034

    42. [42]

      Mavlyankariev, S. A.; Ahlers, S. J.; Kondratenko, V. A.; Linke, D.; Kondratenko, E. V. ACS Catal. 2016, 6, 3317. doi: 10.1021/acscatal.6b00590  doi: 10.1021/acscatal.6b00590

    43. [43]

      Heyl, D.; Kreyenschulte, C.; Kondratenko, V. A.; Bentrup, U.; Kondratenko, E. V.; Bruckner, A. ChemSusChem 2019, 12, 651. doi: 10.1002/cssc.201801937  doi: 10.1002/cssc.201801937

    44. [44]

      Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900. doi: 10.1021/ja3045053  doi: 10.1021/ja3045053

    45. [45]

      Gaydou, M.; Moragas, T.; Julia-Hernandez, F.; Martin, R. J. Am. Chem. Soc. 2017, 139, 12161. doi: 10.1021/jacs.7b07637  doi: 10.1021/jacs.7b07637

    46. [46]

      Gui, Y. Y.; Hu, N.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011. doi: 10.1021/jacs.7b10149  doi: 10.1021/jacs.7b10149

    47. [47]

      Wu, X. F.; Zheng, F. Top Curr. Chem. 2017, 375, 4. doi: 10.1007/s41061-016-0091-6  doi: 10.1007/s41061-016-0091-6

    48. [48]

      Ostapowicz, T. G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner, W. Angew. Chem. Int. Ed. 2013, 52, 12119. doi: 10.1002/anie.201304529  doi: 10.1002/anie.201304529

    49. [49]

      Wang, Y.; Qian, Q.; Zhang, J.; Bediako, B. B. A.; Wang, Z.; Liu, H.; Han, B. Nat. Commun. 2019, 10, 5395. doi: 10.1038/s41467-019-13463-0  doi: 10.1038/s41467-019-13463-0

    50. [50]

      Pugh, R. I.; Pringle, P. G.; Drent, E. Chem. Commun. 2001, 1476. doi: 10.1039/b103754b  doi: 10.1039/b103754b

    51. [51]

      Jimenez Rodriguez, C.; Foster, D. F.; Eastham, G. R.; Cole-Hamilton, D. J. Chem. Commun. 2004, 1720. doi: 10.1039/b404783d  doi: 10.1039/b404783d

    52. [52]

      Konrad, T. M.; Fuentes, J. A.; Slawin, A. M. Z.; Clarke, M. L. Angew. Chem. Int. Ed. 2010, 49, 9197. doi: 10.1002/anie.201004415  doi: 10.1002/anie.201004415

    53. [53]

      Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Nat. Commun. 2014, 5, 3091. doi: 10.1038/ncomms4091  doi: 10.1038/ncomms4091

    54. [54]

      Zhang, X.; Shen, C.; Xia, C.; Tian, X.; He, L. Green Chem. 2018, 20, 5533. doi: 10.1039/c8gc02289e  doi: 10.1039/c8gc02289e

    55. [55]

      Zhang, Y.; Dai, X.; Wang, H.; Shi, F. Acta Phys. -Chim. Sin. 2018, 34, 845.  doi: 10.3866/PKU.WHXB201701081

    56. [56]

      Li, R.; Zhao, Y.; Wang, H.; Xiang, J.; Wu, Y.; Yu, B., Han, B.; Liu, Z. Chem. Sci. 2019, 10, 9822. doi: 10.1039/c9sc03242h  doi: 10.1039/c9sc03242h

    57. [57]

      Srivastava, V. K.; Eilbracht, P. Catal. Commun. 2009, 10, 1791. doi: 10.1016/j.catcom.2009.05.019  doi: 10.1016/j.catcom.2009.05.019

    58. [58]

      Ali, M.; Gual, A.; Ebeling, G.; Dupont, J. ChemSusChem. 2016, 9, 2129. doi: 10.1002/cssc.201600385  doi: 10.1002/cssc.201600385

    59. [59]

      Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem. Int. Ed. 2017, 56, 310. doi: 10.1002/anie.201608628  doi: 10.1002/anie.201608628

    60. [60]

      Xie, Z.; Xu, Y.; Xie, M.; Chen, X.; Lee, J. H.; Stavitski, E.; Kattel, S.; Chen, J. G. Nat. Commun. 2020, 11, 1887. doi: 10.1038/s41467-020-15849-x  doi: 10.1038/s41467-020-15849-x

    61. [61]

      Kantlehner, W. Eur. J. Org. Chem. 2003, 2003, 2530. doi: 10.1002/ejoc.200200653  doi: 10.1002/ejoc.200200653

    62. [62]

      Crawford, L. P.; Richardson, S. K. General and Synthetic Methods; Royal Society of Chemistry Publ: London, UK, 1994; p. 37. doi: 10.1039/9781847556288-00037

    63. [63]

      Sergeev, A. G.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2008, 130, 15549. doi: 10.1021/ja804997z  doi: 10.1021/ja804997z

    64. [64]

      Natte, K.; Dumrath, A.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 10090. doi: 10.1002/anie.201404833  doi: 10.1002/anie.201404833

    65. [65]

      Sun, G.; Lv, X.; Zhang, Y.; Lei, M.; Hu, L. Org. Lett. 2017, 19, 4235. doi: 10.1021/acs.orglett.7b01882  doi: 10.1021/acs.orglett.7b01882

    66. [66]

      Yu, B.; Zhao, Y.; Zhang, H.; Xu, J.; Hao, L.; Gao, X.; Liu, Z. Chem. Commun. 2014, 50, 2330. doi: 10.1039/c3cc49365b  doi: 10.1039/c3cc49365b

    67. [67]

      Yu, B.; Yang, Z.; Zhao, Y.; Hao, L.; Zhang, H.; Gao, X.; Han, B.; Liu, Z. Chem 2016, 22, 1097. doi: 10.1002/chem.201504320  doi: 10.1002/chem.201504320

    68. [68]

      Liu, Z.; Yang, Z.; Yu, B.; Yu, X.; Zhang, H.; Zhao, Y.; Yang, P.; Liu, Z. Org. Lett. 2018, 20, 5130. doi: 10.1021/acs.orglett.8b02027  doi: 10.1021/acs.orglett.8b02027

    69. [69]

      Shao, Z.; Liu, X.; Zhang, S.; Wang, H.; Sun, Y. Acta Phys. -Chim. Sin. 2021, 37, 1911053.  doi: 10.3866/PKU.WHXB201911053

    70. [70]

      Maitlis, P.; Haynes, A.; Sunley, G. J.; Howard, M. J. J. Chem. Soc. Dalton. 1996, 11, 2187. doi: 10.1039/dt9960002187  doi: 10.1039/dt9960002187

    71. [71]

      Budiman, A. W.; Nam, J. S.; Park, J. H.; Mukti, R. I.; Chang, T. S.; Bae, J. W.; Choi, M. J. Catal. Surv. Asia 2016, 20, 173. doi: 10.1007/s10563-016-9215-9  doi: 10.1007/s10563-016-9215-9

    72. [72]

      Peng, J. -B.; Wu, F. -P.; Wu, X. -F. Chem. Rev. 2018, 119, 2090. doi: 10.1021/acs.chemrev.8b00068  doi: 10.1021/acs.chemrev.8b00068

    73. [73]

      Li, J.; Wang, L.; Cao, Y.; Zhang, C.; He, P.; Li, H. Chin. J. Chem. Eng. 2018, 26, 2266. doi: 10.1016/j.cjche.2018.07.008  doi: 10.1016/j.cjche.2018.07.008

    74. [74]

      Chen, C.; Yan, X.; Liu, S.; Wu, Y.; Wan, Q.; Sun, X.; Zhu, Q.; Liu, H.; Ma, J.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2020, 59, 16459. doi: 10.1002/anie.202006847  doi: 10.1002/anie.202006847

    75. [75]

      Prieto, G. ChemSusChem2016, 10, 1056. doi: 10.1002/cssc.v10.6  doi: 10.1002/cssc.v10.6

    76. [76]

      Luk, H. T.; Mondelli, C.; Ferre, D. C.; Stewart, J. A.; Perez-Ramirez, J. Chem. Soc. Rev. 2017, 46, 1358. doi: 10.1039/c6cs00324a  doi: 10.1039/c6cs00324a

    77. [77]

      Wu, J. F.; Yu, S. M.; Wang, W. D.; Fan, Y. X.; Bai, S.; Zhang, C. W.; Gao, Q.; Huang, J.; Wang, W. J. Am. Chem. Soc. 2013, 135, 13567. doi: 10.1021/ja406978q  doi: 10.1021/ja406978q

    78. [78]

      Fukuoka, A.; Gotoh, N.; Kobayashi, N.; Hirano, M.; Komiya, S. Chem. Lett. 1995, 24, 567. doi: 10.1246/cl.1995.567  doi: 10.1246/cl.1995.567

    79. [79]

      Qian, Q.; Zhang, J.; Cui, M.; Han, B. Nat. Commun. 2016, 7, 11481. doi: 10.1038/ncomms11481  doi: 10.1038/ncomms11481

    80. [80]

      Cui, M.; Qian, Q.; Zhang, J.; Chen, C.; Han, B. Green Chem. 2017, 19, 3558. doi: 10.1039/c7gc01391d  doi: 10.1039/c7gc01391d

    81. [81]

      Wang, H.; Zhao, Y.; Ke, Z.; Yu, B.; Li, R.; Wu, Y.; Wang, Z.; Han, J.; Liu, Z. Chem. Commun. 2019, 55, 3069. doi: 10.1039/c9cc00819e  doi: 10.1039/c9cc00819e

    82. [82]

      Shen, X.; Meng, Q.; Dong, M.; Xiang, J.; Li, S.; Liu, H.; Han, B. ChemSusChem 2019, 12, 5149. doi: 10.1002/cssc.201902404  doi: 10.1002/cssc.201902404

    83. [83]

      Gao, Y.; Liu, S.; Zhao, Z.; Tao, H.; Sun, Z. Acta Phys. -Chim. Sin. 2018, 34, 858.  doi: 10.3866/PKU.WHXB201802061

    84. [84]

      Schmitz, M.; Erken, C.; Ohligschlöger, A.; Schnoor, J. K.; Westhues, N. F.; Klankermayer, J.; Leitner, W.; Liauw, M. A. Chem. Ing. Tech. 2018, 90, 1476. doi: 10.1002/cite.201800053  doi: 10.1002/cite.201800053

    85. [85]

      Wang, H.; Zhao, Y.; Wu, Y.; Li, R.; Zhang, H.; Yu, B.; Zhang, F.; Xiang, J.; Wang, Z.; Liu, Z. ChemSusChem. 2019, 12, 4390. doi: 10.1002/cssc.201901820  doi: 10.1002/cssc.201901820

    86. [86]

      Zhang, S.; Liu, X.; Shao, Z.; Wang, H.; Sun, Y. J. Catal. 2020, 382, 86. doi: 10.1016/j.jcat.2019.11.038  doi: 10.1016/j.jcat.2019.11.038

    87. [87]

      Tominaga, K.; Sasaki, Y.; Watanabe, T.; Saito, M. Advances in Chemical Conversions for Mitigating Carbon Dioxide. In Studies in Surface Science and Catalysis; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T. Eds.; Elsevier Science Publ: Amsterdam, Japan, 1998; Vol. 114, pp. 495–498.

    88. [88]

      Zhang, J.; Qian, Q.; Cui, M.; Chen, C.; Liu, S.; Han, B. Green Chem. 2017, 19, 4396. doi: 10.1039/c7gc01887h  doi: 10.1039/c7gc01887h

    89. [89]

      Qian, Q.; Cui, M.; Zhang, J.; Xiang, J.; Song, J.; Yang, G.; Han, B. Green Chem. 2018, 20, 206. doi: 10.1039/c7gc02807e  doi: 10.1039/c7gc02807e

    90. [90]

      Asare Bediako, B. B.; Qian, Q.; Zhang, J.; Wang, Y.; Shen, X.; Shi, J.; Cui, M.; Yang, G.; Wang, Z.; Tong, S.; et al. Green Chem. 2019, 21, 4152. doi: 10.1039/c9gc01185d  doi: 10.1039/c9gc01185d

    91. [91]

      Wang, Y.; Zhang, J.; Qian, Q.; Asare Bediako, B. B.; Cui, M.; Yang, G.; Yan, J.; Han, B. Green Chem. 2019, 21, 589. doi: 10.1039/c8gc03320j  doi: 10.1039/c8gc03320j

    92. [92]

      Zhang, J.; Qian, Q.; Wang, Y.; Asare Bediako, B. B.; Yan, J.; Han, B. Chem Sci. 2019, 10, 10640. doi: 10.1039/c9sc03386f  doi: 10.1039/c9sc03386f

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    6. [6]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    12. [12]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    13. [13]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

Metrics
  • PDF Downloads(39)
  • Abstract views(1544)
  • HTML views(526)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return