Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution
- Corresponding author: Quanlong Xu, xuql@wzu.edu.cn Jiajie Fan, fanjiajie@zzu.edu.cn Dekun Ma, dkma@wzu.edu.cn †These authors contribute equally.
 
	            Citation:
	            
		            Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution[J]. Acta Physico-Chimica Sinica,
							;2021, 37(6): 200908.
						
							doi:
								10.3866/PKU.WHXB202009080
						
					
				
					
				
	        
	                
				Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660
												 doi: 10.1002/adma.201807660
											
										
				Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Mater. Today 2018, 21, 1042. doi: 10.1016/j.mattod.2018.04.008
												 doi: 10.1016/j.mattod.2018.04.008
											
										
				Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
												 doi: 10.1016/j.chempr.2020.06.010
											
										
				Cui, L.; Song, J.; McGuire, A.F.; Kang, S.; Fang, X.; Wang, J.; Yin, C.; Li, X.; Wang, Y.; Cui, B. ACS Nano 2018, 12, 5551. doi: 10.1021/acsnano.8b01271
												 doi: 10.1021/acsnano.8b01271
											
										
				Li, J.; Wu, D.; Iocozzia, J.; Du, H.; Liu, X.; Yuan, Y.; Zhou, W.; Li, Z.; Xue, Z.; Lin, Z. Angew. Chem. Int. Ed. 2019, 58, 1985. doi: 10.1002/anie.201813117
												 doi: 10.1002/anie.201813117
											
										
				Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal. 2021, 42, 115. doi: 10.1016/S1872-2067(20)63598-7
												 doi: 10.1016/S1872-2067(20)63598-7
											
										
				Zhu, B.; Cheng, B.; Zhang, L.; Yu, J. Carbon Energy 2019, 1, 32. doi: 10.1002/cey2.1
												 doi: 10.1002/cey2.1
											
										
				Xia, P.; Liu, M.; Cheng, B.; Yu, J.; Zhang, L. ACS Sustain. Chem. Eng. 2018, 6, 8945. doi: 10.1021/acssuschemeng.8b01300
												 doi: 10.1021/acssuschemeng.8b01300
											
										
				Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075
												 doi: 10.1021/acs.chemrev.6b00075
											
										
				Xiang, Q.; Li, F.; Zhang, D.; Liao, Y.; Zhou, H. Appl. Surf. Sci. 2019, 495, 143520. doi: 10.1016/j.apsusc.2019.07.262
												 doi: 10.1016/j.apsusc.2019.07.262
											
										
				Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1, doi: 10.1016/j.jmst.2020.04.028
												 doi: 10.1016/j.jmst.2020.04.028
											
										
				Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030
												 doi: 10.1016/j.apsusc.2016.07.030
											
										
				Li, Y.; Jin, Z.; Zhang, L. Chin. J. Catal. 2019, 40, 90. doi: 10.1016/S1872-2067(18)63173-0
												 doi: 10.1016/S1872-2067(18)63173-0
											
										
				Tian, B.; Wu, Y.; Lu, G. Appl. Catal. B. 2021,  280, 119410. doi: 10.1016/j.apcatb.2020.119410
												 doi: 10.1016/j.apcatb.2020.119410
											
										
				Gao, Y.; Chen, F.; Chen, Z. J. Mater. Sci. Technol. 2020, 56, 227. doi: 10.1016/j.jmst.2020.02.050
												 doi: 10.1016/j.jmst.2020.02.050
											
										
				Li, Y.; Li, X.; Zhang, H. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033
												 doi: 10.1016/j.jmst.2020.03.033
											
										
				Wang, Y.; Shen, S. Acta Phys. -Chim. Sin. 2020, 36, 1905080.
												 doi: 10.3866/PKU.WHXB201905080
											
										
				Huang, J.; Du, J.; Du, H.; Xu, G.; Yuan, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905056.
												 doi: 10.3866/PKU.WHXB201905056
											
										
				Man, L.; Xu, Q.; Li, W.; Chen, W.; Zheng, W.; Ma, D. Appl. Surf. Sci. 2020, 512, 145647. doi: 10.1016/j.apsusc.2020.145647
												 doi: 10.1016/j.apsusc.2020.145647
											
										
				Sun, K.; Shen, J.; Liu, Q. Chin. J. Catal. 2020, 41, 72. doi: 10.1016/S1872-2067(19)63430-3
												 doi: 10.1016/S1872-2067(19)63430-3
											
										
				Xiao, N.; Li, S.; Liu, S. Chin. J. Catal. 2019, 40, 352. doi: 10.1016/S1872-2067(18)63180-8
												 doi: 10.1016/S1872-2067(18)63180-8
											
										
				Liu, M.; Xia, P.; Zhang, L.; Cheng, B.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6, 10472. doi: 10.1021/acssuschemeng.8b01835
												 doi: 10.1021/acssuschemeng.8b01835
											
										
				Luo, J.; Lin, Z.; Zhao, Y. Chin. J. Catal. 2020, 41, 122. doi: 10.1016/S1872-2067(19)63490-X
												 doi: 10.1016/S1872-2067(19)63490-X
											
										
				Li, Y.; Zhou, M.; Cheng, B. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028
												 doi: 10.1016/j.jmst.2020.04.028
											
										
				Wang, L.; Zhu, C.; Yin, L.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001.
												 doi: 10.3866/PKU.WHXB201907001
											
										
				Chang, W.; Xue, W.; Liu, E.; Fan, J.; Zhao, B. Chem. Eng. J. 2019, 362, 392. doi: 10.1016/j.cej.2019.01.021
												 doi: 10.1016/j.cej.2019.01.021
											
										
				Li, Y.; Zhang, D.; Feng, X. Chin. J. Catal. 2020, 41, 21. doi: 10.1016/S1872-2067(19)63427-3
												 doi: 10.1016/S1872-2067(19)63427-3
											
										
				Liu, M.; Wageh, S.; Al-Ghamdi, A.; Xia, P.; Cheng, B.; Zhang, L.; Yu, J. Chem. Commun.2019, 55, 14023. doi: 10.1039/c9cc07647f
												 doi: 10.1039/c9cc07647f
											
										
				Yang, Y.; Wang, S.; Li, Y.; Wang, J.; Wang, L. Chem. Asian J. 2017, 12, 1421. doi: 10.1002/asia.201700540
												 doi: 10.1002/asia.201700540
											
										
				Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033
												 doi: 10.1016/j.jmst.2020.03.033
											
										
				Curti, M.; Schneider, J.; Bahnemann, D. W.; Mendive, C. B. J. Phys. Chem. Lett. 2015, 6, 3903. doi: 10.1021/acs.jpclett.5b01353
												 doi: 10.1021/acs.jpclett.5b01353
											
										
				Chen, B.; Zhou, L.; Tian, Y.; Yu, J.; Lei, J.; Wang, L.; Liu, Y.; Zhang, J. Phys. Chem. Chem. Phys. 2019,  21, 12818. doi: 10.1039/c9cp01495k
												 doi: 10.1039/c9cp01495k
											
										
				Armstrong, E.; O'Dwyer, C. J. Mater. Chem. C 2015, 3, 6109. doi: 10.1039/c5tc01083g
												 doi: 10.1039/c5tc01083g
											
										
				Low, J.; Zhang, L.; Zhu, B.; Liu, Z.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6, 15653. doi: 10.1021/acssuschemeng.8b04150
												 doi: 10.1021/acssuschemeng.8b04150
											
										
				Jiao, J.; Wei, Y.; Zhao, Z.; Liu, J.; Li, J.; Duan, A.; Jiang, G. Ind. Eng. Chem. Res. 2014,  53, 17345. doi: 10.1021/ie503333b
												 doi: 10.1021/ie503333b
											
										
				Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H.; Wang, L. Adv. Mater. 2019, 31, 1801369. doi: 10.1002/adma.201801369
												 doi: 10.1002/adma.201801369
											
										
				Hwang, S.; Lee, S.; Yu, J. Appl. Surf. Sci. 2007, 253, 5656. doi: 10.1016/j.apsusc.2006.12.032
												 doi: 10.1016/j.apsusc.2006.12.032
											
										
				Lin, B.; Li, J.; Xu, B.; Yan, X.; Yang, B.; Wei, J.; Yang, G. Appl. Catal. B 2019, 243, 94. doi: 10.1016/j.apcatb.2018.10.029
												 doi: 10.1016/j.apcatb.2018.10.029
											
										
				Lin, B.; Yang, G.; Wang, L. Angew. Chem. Int. Ed. 2019, 58, 4587. doi: 10.1002/anie.201814360
												 doi: 10.1002/anie.201814360
											
										
				Sun, L.; Yang, M.; Huang, J.; Yu, D.; Hong, W.; Chen, X. Adv. Funct. Mater. 2016, 26, 4943. doi: 10.1002/adfm.201600894
												 doi: 10.1002/adfm.201600894
											
										
				Lei, J.; Chen, B.; Lv, W.; Zhou, L.; Wang, L.; Liu, Y.; Zhang, J. ACS Sustain. Chem. Eng. 2019, 7, 16467. doi: 10.1021/acssuschemeng.9b03678
												 doi: 10.1021/acssuschemeng.9b03678
											
										
				Xu, Q.; Zhu, B.; Cheng, B.; Yu, J.; Zhou, M.; Ho, W. Appl. Catal. B 2019, 255, 117770. doi: 10.1016/j.apcatb.2019.117770
												 doi: 10.1016/j.apcatb.2019.117770
											
										
				Xu, Q.; Ma, D.; Yang, S.; Tian, Z.; Cheng, B.; Fan, J. Appl. Surf. Sci. 2019, 495, 143555. doi: 10.1016/j.apsusc.2019.143555
												 doi: 10.1016/j.apsusc.2019.143555
											
										
				Tian, N.; Huang, H.; Liu, C.; Dong, F.; Zhang, T.; Du, X.; Yu, S.; Zhang, Y. J. Mater. Chem. A 2015, 3, 17120. doi: 10.1039/c5ta03669k
												 doi: 10.1039/c5ta03669k
											
										
				Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B. Nano Energy 2018, 47, 266. doi: 10.1016/j.nanoen.2018.02.052
												 doi: 10.1016/j.nanoen.2018.02.052
											
										
				Wang, H.; Sun, X.; Li, D.; Zhang, X.; Chen, S.; Shao, W.; Tian, Y.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 2468. doi: 10.1021/jacs.6b12878
												 doi: 10.1021/jacs.6b12878
											
										
				Li, X.; Wang, B.; Yin, W.; Di, J.; Xia, J.; Zhu, W.; Li, H. Acta Phys. -Chim. Sin. 2020, 36, 1902001.
												 doi: 10.3866/PKU.WHXB201902001
											
										
				Niu, P.; Liu, G.; Cheng, H. J. Phys. Chem. C 2012, 116, 11013. doi: 10.1021/jp301026y
												 doi: 10.1021/jp301026y
											
										
				Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. ACS Catal. 2016, 6, 2462. doi: 10.1021/acscatal.5b02922
												 doi: 10.1021/acscatal.5b02922
											
										
				Cho, Y.; Kim, S.; Park, B.; Lee, C. L.; Kim, J. K.; Lee, K. S.; Choi, I. Y.; Kim, J. K.; Zhang, K.; Oh, S. H.; et al. Nano Lett. 2018, 18, 4257. doi: 10.1021/acs.nanolett.8b01245
												 doi: 10.1021/acs.nanolett.8b01245
											
										
				Zhong, Y.; Djurisic, A. B.; Hsu, Y.; Wong, K.; Brauer, G.; Ling, C.; Chan, W. J. Phys. Chem. C 2008, 112, 16286. doi: 10.1021/jp804132u
												 doi: 10.1021/jp804132u
											
										
				Yu, Y.; Tang, Y.; Yuan, J.; Wu, Q.; Zheng, W.; Cao, Y. J. Phys. Chem. C 2014, 118, 13545. doi: 10.1021/jp412375z
												 doi: 10.1021/jp412375z
											
										
				Zheng, Y.; Lin, L.; Ye, X.; Guo, F.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 11926. doi: 10.1002/anie.201407319
												 doi: 10.1002/anie.201407319
											
										
				Xia, P.; Cheng, B.; Jiang, J.; Tang, H. Appl. Surf. Sci. 2019, 487, 335. doi: 10.1016/j.apsusc.2019.05.064
												 doi: 10.1016/j.apsusc.2019.05.064
											
										
				Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Adv. Energy Mater. 2016, 6, 1601273. doi: 10.1002/aenm.201601273
												 doi: 10.1002/aenm.201601273
											
										
				Tu, W.; Xu, Y.; Wang, J.; Zhang, B.; Zhou, T.; Yin, S.; Wu, S.; Li, C.; Huang, Y.; Zhou, Y.; et al. ACS Sustain. Chem. Eng. 2017, 5, 7260. doi: 10.1021/acssuschemeng.7b01477
												 doi: 10.1021/acssuschemeng.7b01477
											
										
				Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P.; Yu, J.; Yu, Y. ACS Catal. 2016, 6, 6444. doi: 10.1021/acscatal.6b01455
												 doi: 10.1021/acscatal.6b01455
											
										
						
						
						
	                Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
Jiayao Wang , Guixu Pan , Ning Wang , Shihan Wang , Yaolin Zhu , Yunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208