Citation: Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 200907. doi: 10.3866/PKU.WHXB202009073 shu

Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy

  • Corresponding author: Yuegang Zhang, yuegang.zhang@tsinghua.edu.cn
  • Received Date: 22 September 2020
    Revised Date: 22 October 2020
    Accepted Date: 26 October 2020
    Available Online: 2 November 2020

    Fund Project: the National Key R & D Program of China 2016YFB0100100the National Natural Science Foundation of China U1832218the National Natural Science Foundation of China 21433013

  • With the development of clean energy sources such as solar and wind power, large-scale energy storage technologies will play a significant role in the rational utilization of clean energy. Sodium ion batteries have garnered considerable attention for large-scale energy storage owing to their low cost and the presence of abundant sodium resources. It is particularly crucial to develop electrode materials for sodium battery with good rate capability and long cycle life. Orthogonal-phase niobium oxide (T-Nb2O5) exhibits good potential to be used as anode material for sodium-ion batteries owing to its high theoretical specific capacity (200 mAh·g−1) and high ionic diffusion coefficient. Furthermore, it demonstrates a better performance than that of graphite and exhibits a higher specific capacity than that of Li4TiO4 when used in sodium-ion batteries. However, its poor electrical conductivity has hindered its practical application. Recently, effective strategies such as coating with carbon materials or metal conductive particles have been developed to overcome this issue. Although the electrochemical performance of T-Nb2O5 has been improved, the sodiation mechanism of T-Nb2O5 is still unclear. It is considered to be similar to the lithium mechanism wherein lithium ions diffuse rapidly on the (001) planes, but exhibit difficulty in diffusing across the (001) planes. In this study, the electrochemical sodiation behaviors along the (001) lattice planes and the [001] direction of the T-Nb2O5 nanosheet are studied by in situ transmission electron microscopy (TEM). The results indicate that there are a large number of dislocations and domain boundaries in nanocrystals. Furthermore, it was observed that, sodium ions can diffuse across the (001) lattice planes through these defects, and then diffuse rapidly on the (001) planes. Meanwhile, we found a modulation structure in the [001] direction of the original nanosheet, in which alternating compressive and tensile strains were observed. These strain distributions can be regulated by the insertion of sodium ions, while the modulation structure is maintained. Moreover, the in situ TEM method used in this work can be applied to various energy materials.
  • 随着太阳能、风能等清洁能源的发展,高效大规模的能源储存技术对清洁能源合理利用起着重要作用1, 2。钠离子电池由于钠资源丰富、成本低廉的特点,具备在规模储能上应用的前景3, 4。发展具备高倍率性能和长循环寿命的钠电池电极材料尤为重要5-8

    T-Nb2O5因具备较高的理论比容量(200 mAh∙g−1)和高的离子扩散系数,且其倍率性能比石墨负极更优、比容量比Li4TiO4更高,已在钠离子电池负极里引起了广泛关注9-11。T-Nb2O5为ReO3层状结构,属于正交晶系(空间群:Pbam),单胞结构式可表示为Nb16.8O42。虽然其具体结构比较复杂,但通常可以近似简化为Nb离子全部分布在4h (xy,1/2)层,O离子分布在4h层和4g (xy,0)层。在ab面内,Nb离子与邻近O离子组成变形的八面体或十面体以共棱边的方式相连;在[001]方向,八面体或十面体通过4g层的桥联O共顶点相连12, 13。由于4g层的结构比较松散,锂离子可以在ab平面快速扩散12, 14-16

    T-Nb2O5的(001)晶面间距为0.393 nm,也可以实现钠离子在该面内的快速脱嵌,可应用于钠离子电池负极材料17-20。Yan等21将超细T-Nb2O5纳米晶负载在还原氧化石墨烯表面从而增加电极的导电性和反应位点,提高了钠离子电池的倍率性能和循环寿命;非原位X射线光电子能谱(XPS)研究发现T-Nb2O5在脱嵌钠过程中伴随着Nb5+/Nb4+氧化还原反应。Wang等22制备了T-Nb2O5纳米片/石墨烯材料作为钠离子电池负极,一方面石墨烯提高了电极的导电性;另一方面T-Nb2O5纳米片主要暴露的晶面垂直于(001)面,能提供更多钠离子进出晶体的通道和缩短钠离子扩散路径,从而提高了T-Nb2O5负极的倍率性能和循环寿命。

    现有的研究大多通过增加T-Nb2O5电极的导电性和暴露特定晶面来改善其电化学性能,然而对钠离子在T-Nb2O5中脱嵌机理尚未有系统的研究。通常认为钠离子与锂离子相似,在T-Nb2O5的(001)面内可以快速移动,而在[001]方向,由于扩散能垒大,钠离子的扩散路径尚不清楚,特别是缺乏实验方法直接观察到这个过程。为了解决这个问题,本研究通过恒电流模式下原位电化学位透射电子显微镜(TEM)方法,研究了钠离子在T-Nb2O5纳米片的(001)面内及[001]方向的扩散行为,观测缺陷的存在对[001]方向离子扩散的影响。

    图 1a为所合成的T-Nb2O5纳米片X射线衍射图(XRD),可以确认纳米片属于具有层状结构的T- T-Nb2O5相(JCPDS No. 30-0873,空间群:Pbam)。值得指出的是,{001}峰测量出来晶面间距为0.397 nm,比标准卡片给出值(0.393 nm)大0.004 nm,说明合成的纳米片的{001}面间距更大了,而大的晶面间距可能更利于钠离子的脱嵌。图 1b展示了T-Nb2O5原子结构模型,可以看到Nb离子所在的4h (xy,1/2)层原子排布紧密,而疏松的4g (xy,0)层则只有O离子占据。这些原子面沿[001]形成了一层疏松原子一层紧密原子排布的“疏-密”层状结构。图 1c和图S1a–b (Supporting Information)表明纳米片边缘平直,尺寸从几百纳米到几微米,厚度约为20–50 nm。图 1d的选区电子衍射图(Selected area Electron Diffraction Pattern,SAEDP)可标定为T-Nb2O5的[610]带轴的电子衍射,其中(001)晶面间距为0.397 nm,符合XRD测量结果,再次证明了所合成的纳米片为T-Nb2O5。我们还发现沿[001]方向的衍射点出现了卫星点(图 1d–e),这是因为T-Nb2O5纳米片沿[001]方向发生了晶格调制,调制矢量长度q* ≈ 0.10c*,其中c*为(001)倒易矢量长度,即发生了约10倍(001)面间距的调制。从图 1f的高分辨TEM (HRTEM)照片可以观察到(001)面的层状结构。对HRTEM图片做模拟分析(图S2–S3),可以确定图 1f中亮点层为Nb所在的4h层,而暗点层则为4g层。从HRTEM中还可以看到(001)面间距不完全相等(图S3b–e),部分晶面间距大于0.393 nm,而另一部分晶面间距则小于0.393 nm,表明纳米片中存在应变。用几何相位分析(Geometric Phase Analysis,GPA)方法23对HRTEM图做应变分析(图 1g),发现纳米片在[001]方向(即晶体的z方向)上存在交替分布的压应变和张应变区域,其周期与该方向上的晶格调制周期相当。这说明纳米片在[001]方向上的应变分布可能和晶格调制有关。XPS结果(图S1c)显示纳米片中存在少量的Nb4+,这意味着T-Nb2O5纳米片内还存在氧空位24。考虑到Nb4+的半径(0.083 nm)比Nb5+的半径(0.076 nm)大,所以可能是Nb4+/Nb5+在[001]方向上发生了调制25,导致在Nb4+富集区(001)晶面间距变大,表现为张应变;Nb5+富集区则会受到两端张应变的挤压,出现压应变,(001)晶面间距变小26。此外,纳米片内还存在大量的缺陷结构,如位错和畴界(图S4)。

    图 1

    图 1.  (a) T-Nb2O5纳米片XRD图,(b) T-Nb2O5结构示意图;(c)纳米片TEM形貌图及对应黄色圈内的电子衍射图(d, e);(f)是(c)图中红线框部分对应的HRTEM图;(g)用GPA分析(c)图对应区域得到的沿z方向(即[001]方向)的应变分布图
    Figure 1.  (a) XRD pattern of T-NB2O5 nanosheets; (b) Atomic structural model of T-NB2O5; (c) TEM image of a nanosheet and the corresponding electron diffraction pattern (d, e); (f) HRTEM image of red rectangle area in (c), and the corresponding strain mapping using GPA method (g).

    通常认为,离子的嵌入会引起T-Nb2O5的晶格膨胀27。我们首先通过非原位XRD表征了T-Nb2O5纳米片在嵌钠过程中的结构变化。图 2a为T-Nb2O5/Na3V2(PO4)3扣式电池在1C倍率下的恒电流充电曲线。图 2b–d为在不同截止电压下拆开扣式电池测试的非原位XRD图,所有的XRD图均经过Cu(111)峰矫正,同时用T-Nb2O5的(180)峰进行归一化处理。我们用EDS能谱检测了纳米片在嵌钠反应前后的钠含量,进一步证实了钠的嵌入(图S5)。如图 2b–d所示,在纳米片嵌钠过程中未发现XRD衍射峰消失或新衍射峰生成;各衍射峰出现展宽,可能是因为在嵌钠过程中纳米片结晶度降低17。{180}和{181}衍射峰向低角度移动,其中{180}峰从28.40°移动到了28.15°,对应的晶面间距由0.3140 nm扩大到0.3167 nm,与文献报道的T-Nb2O5嵌锂和嵌钠的反应现象一致16, 17,说明纳米片嵌钠时这些晶面参与了反应。{001}衍射峰从22.36°移动到22.30°,对应的晶面间距由0.3973 nm扩大到0.3983 nm,{001}面膨胀程度比{180}面膨胀程度小。这可能是原始纳米片的大{001}面间距,有效地缓解了在嵌钠反应中导致的{001}面间距增大问题。

    图 2

    图 2.  (a) T-Nb2O5/Na3V2(PO4)3全电池1C倍率下充电曲线;(b)不同截止电压测试的非原位XRD图;(c–d)从图b中截取的不同角度的放大图
    Figure 2.  (a) Charge curve of the T-Nb2O5/Na3V2(PO4)3 full cell at 1C; (b) ex situ XRD patterns obtained at various states of charge, and (c–d) magnified XRD patterns from (b).

    我们使用原位TEM进一步研究了纳米片在嵌钠过程中(001)面晶格变化情况。原位TEM表征所使用的自制的原位电化学TEM电池如图 3所示28,先将T-Nb2O5纳米片分散到微栅铜网上作为负极,微栅铜网上负载约10−7 g纳米片,然后再加载隔膜、磷酸钒钠(Na3V2(PO4)3)正极和离子液体电解液。电解液和铜网上的碳膜分别为纳米片提供了离子通路和电子通道,使得T-Nb2O5纳米片能够进行电化学反应。最后将构建的TEM电池转移到原位TEM样品杆上,实现恒电流模式下的原位电化学TEM观察。

    图 3

    图 3.  原位电化学TEM电池示意图
    Figure 3.  Schematic illustration of an in situ electrochemical TEM cell.

    图 4a–c为0.2 μA电流充电时在t = 0、180、320 s等时刻沿T-Nb2O5纳米片[710]带轴拍摄的HRTEM图,橙色小箭头标记出了图片的定位参考点,参照参考点选取了同一区域(橙色小框),分别放大为图 4d–f。原位TEM观测到的动态过程见支撑视频1。从视频中可以看出,随着嵌钠反应的进行,从视场的左下角出现衬度加深的嵌钠反应前沿;随着反应的进行,反应前沿往右上角移动,即沿着[001]方向移动。我们用EDS能谱检测了纳米片在嵌钠反应前后的钠含量,进一步证实了钠的嵌入(图S6)。图 4g–i图 4a–c中沿T-Nb2O5的[001]方向(即晶体的z方向)的应变分布图。垂直于[001]方向(定义为y方向)的应变分布图见图S7。在t = 0 s时,(001)晶面间距不等,有些区域为0.391 nm,而有些区域为0.399 nm (图 4d)。同时,沿z方向存在交替分布的压应变和张应变(图 4g),这和我们在图 1中的分析一致。值得指出的是,同一区域在y方向应变分布图中存在一条明显的应变条纹(图S7d),在这条应变条纹周围有位错和畴界富集(如图 4d的黄色虚线和橙色位错符号(⊥)所示);说明该应变条纹可能是由于位错或畴界的富集,导致晶格发生畸变引起的。为了方便后面的讨论,我们将这条应变条纹线定义为y应变线(y strain line)。当t = 180 s时(图 4b),反应前沿覆盖了橙色框区域,此区域内的(001)晶面间距均有变大(图 4e),分别从0.391 nm增加到0.393 nm和从0.399 nm增加到0.403 nm;相对于图 4d图 4e中位错和畴界的形状和位置也发生了变化,说明随着钠离子的嵌入,纳米片中的原子发生了扩散,使得位错和畴界移动或变形。另外,我们在恒压充电模式下,也观察到在嵌钠过程中出现类似的畴界的移动和变形现象(图S8)。将图S7d的y应变线叠加到图 4h中,发现y应变线附近富集z方向张应变,这说明了钠在这个地方先沿[001]方向扩散,进而再通过邻近的(001)面内迁移向晶体内部扩散。这可能是因为y应变线周围的晶格缺陷降低了钠离子在[001]方向的扩散能垒29,使得钠离子可以在[001]方向扩散。在y应变线下方衬度加深区域全部表现为z方向的张应变,表明钠离子在这个区域沿着(001)面大量嵌入,导致了(001)晶面膨胀;而在y应变线上方则仍然是存在张/压应变分布,说明此区域未发生或只有少量钠嵌入,(001)晶面间距未发生大改变。从这可以看出钠离子在(001)面内也并不完全是发生均匀的扩散30。当t = 320 s时(图 4c),恒流充电电压达到3 V (图S6f),表示纳米片的嵌钠反应结束。此时各区域(001)晶面间距约为0.397 nm (图 4f),同时z方向的应变变小(图 4i)。这可能是因为反应中期不均匀嵌入的钠离子在后续的反应中均匀化于(001)面30,调节了[001]方向的应变分布。

    图 4

    图 4.  (a–c) 0.2 μA恒电流充电时T-Nb2O5纳米片在0、180、320 s的HRTEM图,橙色箭头为每幅图定位参考点;(d–f)为(a-c)中橙色框的放大图;(g–i) GPA方法对图(a–c)沿[001]方向做的应变分布图
    Figure 4.  (a–c) Time-lapse HRTEM images of a T-Nb2O5 nanosheet during 0.2 µA galvanostatic charge; (d–f) the corresponding magnified HRTEM of the orange rectangle in (a–c); (g–i) the corresponding strain mapping around [001] direction using GPA method.

    Scale bar: (a–c) 10 nm; (d–f) 2 nm.

    为了分析嵌钠反应对纳米片的晶格调制影响。我们对图 4a–c分别做快速傅里叶转化,如图S9所示,纳米片在嵌钠前后都有卫星点,卫星点矢量长度q*都保持约为0.10c*,其中c*为(001)倒易矢量长度,即纳米片仍然保持约10倍(001)晶面间距的调制。前文描述过调制是因为纳米片中的Nb4+/Nb5+在[001]方向上发生调制而引起的。按照这种模型,当钠嵌入饱和后会把纳米片中的Nb5+都还原成Nb4+,调制结构会消失。但我们从快速傅里叶转化图中仍旧观察到卫星点(图S9),只是卫星点的强度相对减弱。这可能是原始纳米片中调制的Nb4+附近也伴随有氧空位,而部分氧空位在嵌钠的过程中仍旧保留在原来的位置,维持了纳米片的调制结构31。所以钠离子嵌入到T-Nb2O5纳米片虽然会调节其中的应变分布,但仍保留一些原有的调制结构。

    由于T-Nb2O5为层状结构,锂离子和钠离子可以在(001)面内快速地二维扩散,而在[001]方向传输一般较难。但是图 4的结果显示钠离子可以通过晶体缺陷在[001]方向扩散。为了确认这个结论,我们在低倍原位TEM实验中进一步观察了钠离子在T-Nb2O5中的扩散行为。图 5显示T-Nb2O5纳米片在0.1 μA恒电流嵌钠过程的0,600,1000和1400 s等时刻的原位TEM图(原位TEM视频见支撑视频2)。通过标定图 5a虚线圈内的电子衍射图(图S10d),确定了纳米片的两个边分别为T-Nb2O5的(001)面和(150)面,图S10还显示了原位电化学芯片的0.1 μA恒流充电曲线以及充电前后T-Nb2O5纳米片(图 5a中黄色虚线圆圈位置)的钠元素含量变化,证实了嵌钠反应的发生。从支撑视频2和图 5中我们可以看到纳米片嵌钠时出现一个由左到右移动的反应前沿(图 5中红色虚线)。反应前沿的衬度明显加深,这是因为钠离子的嵌入导致材料内部的应力发生变化而引起的衬度变化32。先前的研究表明离子在(001)面内的扩散能垒和空间位阻都比较小,所以(001)面是离子的快速二维扩散通道;而在垂直于(001)面的方向的离子传输阻力大14。按照这种模型,钠离子应该快速地在某一层(001)面内扩散开,然后再跨越到下一层(001)面内继续扩散,即反应前沿应该平行于(001)面。而从支撑视频2和图 5观察到的反应前沿平行于(151)面,而不是(001)面,且反应前沿前进方向垂直于(151)面(黄色箭头)。这可能是因为纳米片内存在大量的缺陷结构,如位错和畴界(图S4),这些缺陷结构为钠离子提供了很多[001]方向的扩散通道,钠离子通过这种方式的扩散速率与其在(001)面内的扩散速率相当33, 34。通过缺陷的钠离子扩散导致了在图 5中观测到的反应前沿朝垂直于(151)面的方向而不是[001]方向前进。

    图 5

    图 5.  (a–d) T-Nb2O5纳米片在0.1 μA恒电流嵌钠过程的0,600,1000和1400 s时刻的TEM图
    Figure 5.  (a–d) Time-lapse (0, 600, 1000, 1400 s) TEM images of a T-Nb2O5 nanosheet during 0.1 µA galvanostatic charge test.

    Scale bar: 200 nm.

    本工作用原位TEM研究了T-Nb2O5纳米片在恒电流充电模式下的储钠机制。发现钠离子可以通过纳米片中的位错、畴界等缺陷在[001]方向传输,这对设计适合用于钠离子电池的T-Nb2O5材料结构提供了理论指导。同时,我们还发现随着钠离子的嵌入,可以有效的调节纳米片的[001]方向的应变分布。另外,本工作使用的原位TEM方法更接近于真实电池测试条件,可以有效地将电化学曲线和材料的电化学反应过程相联系,在原位TEM电化学表征方面有重要应用前景。


    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.
    1. [1]

      Sivaram, V.; Dabiri, J. O.; Hart, D. M. Joule 2018, 2, 1639. doi: 10.1016/j.joule.2018.07.025  doi: 10.1016/j.joule.2018.07.025

    2. [2]

      Bullich-Massagué, E.; Cifuentes-García, F. J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. Appl. Energy 2020, 274, 115213. doi: 10.1016/j.apenergy.2020.115213  doi: 10.1016/j.apenergy.2020.115213

    3. [3]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21  doi: 10.6023/a13080830

    4. [4]

      Hirsh, H. S.; Li, Y.; Tan, D. H. S.; Zhang, M.; Zhao, E.; Meng, Y. S. Adv. Energy Mater. 2020, 10, 2001274. doi: 10.1002/aenm.202001274  doi: 10.1002/aenm.202001274

    5. [5]

      Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sin. 2017, 75, 154  doi: 10.6023/a16060275

    6. [6]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003  doi: 10.3866/PKU.WHXB201905003

    7. [7]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phy. -Chim. Sin. 2017, 33, 103  doi: 10.3866/pku.whxb201608303

    8. [8]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi: 10.1038/ncomms3365  doi: 10.1038/ncomms3365

    9. [9]

      Ding, H.; Song, Z.; Zhang, H.; Zhang, H.; Li, X. Mater. Today Nano 2020, 11, 100082. doi: 10.1016/j.mtnano.2020.100082  doi: 10.1016/j.mtnano.2020.100082

    10. [10]

      Deng, Q.; Fu, Y.; Zhu, C.; Yu, Y. Small 2019, 15, e1804884. doi: 10.1002/smll.201804884  doi: 10.1002/smll.201804884

    11. [11]

      Yang, H.; Xu, R.; Gong, Y.; Yao, Y.; Gu, L.; Yu, Y. Nano Energy 2018, 48, 448. doi: 10.1016/j.nanoen.2018.04.006  doi: 10.1016/j.nanoen.2018.04.006

    12. [12]

      Chen, D.; Wang, J. H.; Chou, T. F.; Zhao, B.; El-Sayed, M. A.; Liu, M. J. Am. Chem. Soc. 2017, 139, 7071. doi: 10.1021/jacs.7b03141  doi: 10.1021/jacs.7b03141

    13. [13]

      Kumagai, N.; Koishikawa, Y.; Komaba, S.; Koshibab, N. J. Electrochem. Soc. 1999, 156, 3203. doi: 10.1149/1.1392455  doi: 10.1149/1.1392455

    14. [14]

      Lubimtsev, A. A.; Kent, P. R. C.; Sumpter, B. G.; Ganesh, P. J. Mater. Chem. A 2013, 1, 14951. doi: 10.1039/c3ta13316h  doi: 10.1039/c3ta13316h

    15. [15]

      Meng, J.; He, Q.; Xu, L.; Zhang, X.; Liu, F.; Wang, X.; Li, Q.; Xu, X.; Zhang, G.; Niu, C.; et al. Adv. Energy Mater. 2019, 9, 1802695. doi: 10.1002/aenm.201802695  doi: 10.1002/aenm.201802695

    16. [16]

      Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718. doi: 10.1149/2.040405jes  doi: 10.1149/2.040405jes

    17. [17]

      Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K. Nano Energy 2015, 16, 62. doi: 10.1016/j.nanoen.2015.05.015  doi: 10.1016/j.nanoen.2015.05.015

    18. [18]

      Li, H.; Zhu, Y.; Dong, S.; Shen, L.; Chen, Z.; Zhang, X.; Yu, G. Chem. Mater. 2016, 28, 5753. doi: 10.1021/acs.chemmater.6b01988  doi: 10.1021/acs.chemmater.6b01988

    19. [19]

      Han, X.; Russo, P. A.; Goubard-Bretesché, N.; Patanè, S.; Santangelo, S.; Zhang, R.; Pinna, N. Adv. Energy Mater. 2019, 9, 1902813. doi: 10.1002/aenm.201902813  doi: 10.1002/aenm.201902813

    20. [20]

      Han, X.; Russo, P. A.; Triolo, C.; Santangelo, S.; Goubard-Bretesché, N.; Pinna, N. ChemElectroChem 2020, 7, 1689. doi: 10.1002/celc.202000181  doi: 10.1002/celc.202000181

    21. [21]

      Yan, L.; Chen, G.; Sarker, S.; Richins, S.; Wang, H.; Xu, W.; Rui, X.; Luo, H. ACS Appl. Mater. Inter. 2016, 8, 22213. doi: 10.1021/acsami.6b06516  doi: 10.1021/acsami.6b06516

    22. [22]

      Wang, L.; Bi, X.; Yang, S. Adv. Mater. 2016, 28, 7672. doi: 10.1002/adma.201601723  doi: 10.1002/adma.201601723

    23. [23]

      Hÿtcha, M. J.; Snoeckb, E.; Kilaasc, R. Ultramicroscopy 1998, 74, 131. doi: 10.1016/S0304-3991(98)00035-7  doi: 10.1016/S0304-3991(98)00035-7

    24. [24]

      Liu, Z.; Dong, W.; Wang, J.; Dong, C.; Lin, Y.; Chen, I. W.; Huang, F. iScience 2020, 23, 100767. doi: 10.1016/j.isci.2019.100767  doi: 10.1016/j.isci.2019.100767

    25. [25]

      Daniels, P.; Tamazyan, R.; Kuntscher, C. A.; Dressel, M.; Lichtenbergc, F.; Smaalen, S. V. Acta Cryst. 2002, B58, 970. doi: 10.1107/s010876810201741x  doi: 10.1107/s010876810201741x

    26. [26]

      Kruk, I.; Zajdel, P.; van Beek, W.; Bakaimi, I.; Lappas, A.; Stock, C.; Green, M. A. J. Am. Chem. Soc. 2011, 133, 13950. doi: 10.1021/ja109707q  doi: 10.1021/ja109707q

    27. [27]

      Kodama, R.; Terada, Y.; Nakai, I.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2006, 153, A583. doi: 10.1149/1.2163788  doi: 10.1149/1.2163788

    28. [28]

      Xu, G.; Zhang, X.; Liu, M.; Li, H.; Zhao, M.; Li, Q.; Zhang, J.; Zhang, Y. Small 2020, 16, 1906499. doi: 10.1002/smll.201906499  doi: 10.1002/smll.201906499

    29. [29]

      Benedek, P.; Forslund, O. K.; Nocerino, E.; Yazdani, N.; Matsubara, N.; Sassa, Y.; Juranyi, F.; Medarde, M.; Telling, M.; Mansson, M.; et al. ACS Appl. Mater. Inter. 2020, 12, 16243. doi: 10.1021/acsami.9b21470  doi: 10.1021/acsami.9b21470

    30. [30]

      Zhang, W.; Yu, H. C.; Wu, L.; Liu, H.; Abdellah, A.; Qiu, B.; Bai, J.; Orvananos, B.; Strobridge, F. C.; Zhou, X.; et al. Sci. Adv. 2018, 4, eaao2608. doi: 10.1126/sciadv.aao2608  doi: 10.1126/sciadv.aao2608

    31. [31]

      Zhang, N.; Zhu, Y.; Li, D.; Pan, D.; Tang, Y.; Han, M.; Ma, J.; Wu, B.; Zhang, Z.; Ma, X. ACS Appl. Mater. Inter. 2018, 10, 38230. doi: 10.1021/acsami.8b13674  doi: 10.1021/acsami.8b13674

    32. [32]

      Wang, L.; Xu, Z.; Wang, W.; Bai, X. J. Am. Chem. Soc. 2014, 136, 6693. doi: 10.1021/ja501686w  doi: 10.1021/ja501686w

    33. [33]

      Navickas, E.; Chen, Y.; Lu, Q.; Wallisch, W.; Huber, T. M.; Bernardi, J.; Stoger-Pollach, M.; Friedbacher, G.; Hutter, H.; Yildiz, B.; Fleig, J. ACS Nano 2017, 11, 11475. doi: 10.1021/acsnano.7b06228  doi: 10.1021/acsnano.7b06228

    34. [34]

      Yang, S.; Yan, B.; Lu, L.; Zeng, K. RSC Adv. 2016, 6, 94000. doi: 10.1039/c6ra17681j  doi: 10.1039/c6ra17681j

    1. [1]

      Sivaram, V.; Dabiri, J. O.; Hart, D. M. Joule 2018, 2, 1639. doi: 10.1016/j.joule.2018.07.025  doi: 10.1016/j.joule.2018.07.025

    2. [2]

      Bullich-Massagué, E.; Cifuentes-García, F. J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. Appl. Energy 2020, 274, 115213. doi: 10.1016/j.apenergy.2020.115213  doi: 10.1016/j.apenergy.2020.115213

    3. [3]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21  doi: 10.6023/a13080830

    4. [4]

      Hirsh, H. S.; Li, Y.; Tan, D. H. S.; Zhang, M.; Zhao, E.; Meng, Y. S. Adv. Energy Mater. 2020, 10, 2001274. doi: 10.1002/aenm.202001274  doi: 10.1002/aenm.202001274

    5. [5]

      Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sin. 2017, 75, 154  doi: 10.6023/a16060275

    6. [6]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003  doi: 10.3866/PKU.WHXB201905003

    7. [7]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phy. -Chim. Sin. 2017, 33, 103  doi: 10.3866/pku.whxb201608303

    8. [8]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi: 10.1038/ncomms3365  doi: 10.1038/ncomms3365

    9. [9]

      Ding, H.; Song, Z.; Zhang, H.; Zhang, H.; Li, X. Mater. Today Nano 2020, 11, 100082. doi: 10.1016/j.mtnano.2020.100082  doi: 10.1016/j.mtnano.2020.100082

    10. [10]

      Deng, Q.; Fu, Y.; Zhu, C.; Yu, Y. Small 2019, 15, e1804884. doi: 10.1002/smll.201804884  doi: 10.1002/smll.201804884

    11. [11]

      Yang, H.; Xu, R.; Gong, Y.; Yao, Y.; Gu, L.; Yu, Y. Nano Energy 2018, 48, 448. doi: 10.1016/j.nanoen.2018.04.006  doi: 10.1016/j.nanoen.2018.04.006

    12. [12]

      Chen, D.; Wang, J. H.; Chou, T. F.; Zhao, B.; El-Sayed, M. A.; Liu, M. J. Am. Chem. Soc. 2017, 139, 7071. doi: 10.1021/jacs.7b03141  doi: 10.1021/jacs.7b03141

    13. [13]

      Kumagai, N.; Koishikawa, Y.; Komaba, S.; Koshibab, N. J. Electrochem. Soc. 1999, 156, 3203. doi: 10.1149/1.1392455  doi: 10.1149/1.1392455

    14. [14]

      Lubimtsev, A. A.; Kent, P. R. C.; Sumpter, B. G.; Ganesh, P. J. Mater. Chem. A 2013, 1, 14951. doi: 10.1039/c3ta13316h  doi: 10.1039/c3ta13316h

    15. [15]

      Meng, J.; He, Q.; Xu, L.; Zhang, X.; Liu, F.; Wang, X.; Li, Q.; Xu, X.; Zhang, G.; Niu, C.; et al. Adv. Energy Mater. 2019, 9, 1802695. doi: 10.1002/aenm.201802695  doi: 10.1002/aenm.201802695

    16. [16]

      Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718. doi: 10.1149/2.040405jes  doi: 10.1149/2.040405jes

    17. [17]

      Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K. Nano Energy 2015, 16, 62. doi: 10.1016/j.nanoen.2015.05.015  doi: 10.1016/j.nanoen.2015.05.015

    18. [18]

      Li, H.; Zhu, Y.; Dong, S.; Shen, L.; Chen, Z.; Zhang, X.; Yu, G. Chem. Mater. 2016, 28, 5753. doi: 10.1021/acs.chemmater.6b01988  doi: 10.1021/acs.chemmater.6b01988

    19. [19]

      Han, X.; Russo, P. A.; Goubard-Bretesché, N.; Patanè, S.; Santangelo, S.; Zhang, R.; Pinna, N. Adv. Energy Mater. 2019, 9, 1902813. doi: 10.1002/aenm.201902813  doi: 10.1002/aenm.201902813

    20. [20]

      Han, X.; Russo, P. A.; Triolo, C.; Santangelo, S.; Goubard-Bretesché, N.; Pinna, N. ChemElectroChem 2020, 7, 1689. doi: 10.1002/celc.202000181  doi: 10.1002/celc.202000181

    21. [21]

      Yan, L.; Chen, G.; Sarker, S.; Richins, S.; Wang, H.; Xu, W.; Rui, X.; Luo, H. ACS Appl. Mater. Inter. 2016, 8, 22213. doi: 10.1021/acsami.6b06516  doi: 10.1021/acsami.6b06516

    22. [22]

      Wang, L.; Bi, X.; Yang, S. Adv. Mater. 2016, 28, 7672. doi: 10.1002/adma.201601723  doi: 10.1002/adma.201601723

    23. [23]

      Hÿtcha, M. J.; Snoeckb, E.; Kilaasc, R. Ultramicroscopy 1998, 74, 131. doi: 10.1016/S0304-3991(98)00035-7  doi: 10.1016/S0304-3991(98)00035-7

    24. [24]

      Liu, Z.; Dong, W.; Wang, J.; Dong, C.; Lin, Y.; Chen, I. W.; Huang, F. iScience 2020, 23, 100767. doi: 10.1016/j.isci.2019.100767  doi: 10.1016/j.isci.2019.100767

    25. [25]

      Daniels, P.; Tamazyan, R.; Kuntscher, C. A.; Dressel, M.; Lichtenbergc, F.; Smaalen, S. V. Acta Cryst. 2002, B58, 970. doi: 10.1107/s010876810201741x  doi: 10.1107/s010876810201741x

    26. [26]

      Kruk, I.; Zajdel, P.; van Beek, W.; Bakaimi, I.; Lappas, A.; Stock, C.; Green, M. A. J. Am. Chem. Soc. 2011, 133, 13950. doi: 10.1021/ja109707q  doi: 10.1021/ja109707q

    27. [27]

      Kodama, R.; Terada, Y.; Nakai, I.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2006, 153, A583. doi: 10.1149/1.2163788  doi: 10.1149/1.2163788

    28. [28]

      Xu, G.; Zhang, X.; Liu, M.; Li, H.; Zhao, M.; Li, Q.; Zhang, J.; Zhang, Y. Small 2020, 16, 1906499. doi: 10.1002/smll.201906499  doi: 10.1002/smll.201906499

    29. [29]

      Benedek, P.; Forslund, O. K.; Nocerino, E.; Yazdani, N.; Matsubara, N.; Sassa, Y.; Juranyi, F.; Medarde, M.; Telling, M.; Mansson, M.; et al. ACS Appl. Mater. Inter. 2020, 12, 16243. doi: 10.1021/acsami.9b21470  doi: 10.1021/acsami.9b21470

    30. [30]

      Zhang, W.; Yu, H. C.; Wu, L.; Liu, H.; Abdellah, A.; Qiu, B.; Bai, J.; Orvananos, B.; Strobridge, F. C.; Zhou, X.; et al. Sci. Adv. 2018, 4, eaao2608. doi: 10.1126/sciadv.aao2608  doi: 10.1126/sciadv.aao2608

    31. [31]

      Zhang, N.; Zhu, Y.; Li, D.; Pan, D.; Tang, Y.; Han, M.; Ma, J.; Wu, B.; Zhang, Z.; Ma, X. ACS Appl. Mater. Inter. 2018, 10, 38230. doi: 10.1021/acsami.8b13674  doi: 10.1021/acsami.8b13674

    32. [32]

      Wang, L.; Xu, Z.; Wang, W.; Bai, X. J. Am. Chem. Soc. 2014, 136, 6693. doi: 10.1021/ja501686w  doi: 10.1021/ja501686w

    33. [33]

      Navickas, E.; Chen, Y.; Lu, Q.; Wallisch, W.; Huber, T. M.; Bernardi, J.; Stoger-Pollach, M.; Friedbacher, G.; Hutter, H.; Yildiz, B.; Fleig, J. ACS Nano 2017, 11, 11475. doi: 10.1021/acsnano.7b06228  doi: 10.1021/acsnano.7b06228

    34. [34]

      Yang, S.; Yan, B.; Lu, L.; Zeng, K. RSC Adv. 2016, 6, 94000. doi: 10.1039/c6ra17681j  doi: 10.1039/c6ra17681j

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    10. [10]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

Metrics
  • PDF Downloads(21)
  • Abstract views(1001)
  • HTML views(224)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return