Citation: Qin Jinli, Ren Longtao, Cao Xin, Zhao Yajun, Xu Haijun, Liu Wen, Sun Xiaoming. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200902. doi: 10.3866/PKU.WHXB202009020 shu

Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode

  • Corresponding author: Xu Haijun, hjxu@buct.edu.cn Liu Wen, wenliu@mail.buct.edu.cn
  • Received Date: 4 September 2020
    Revised Date: 29 September 2020
    Accepted Date: 30 September 2020
    Available Online: 21 October 2020

    Fund Project: the Beijing University of Chemical Technology buctrc201901The project was supported by the National Natural Science Foundation of China (21771018, 21875004), the Beijing University of Chemical Technology (buctrc201901), the National Natural Science Foundation of China and Ministry of Foreign Affairs and International Cooperation, Italy (NSFC-MAECI 51861135202), the Natural Science Foundation of Beijing (2192037), the National Key Research and Development Project (2018YFB1502401, 2018YFA0702002), the Royal Society and the Newton Fund through the Newton Advanced Fellowship Award (NAF\R1\191294), the Program for Changjiang Scholars and Innovation Research Team in the University (IRT1205), the Fundamental Research Funds for the Central Universities, and the Long-term Subsidy mechanism from the Ministry of Finance and the Ministry of Education of Chinathe Royal Society and the Newton Fund through the Newton Advanced Fellowship Award NAF\R1\191294the National Natural Science Foundation of China 21771018the National Key Research and Development Project 2018YFB1502401the National Natural Science Foundation of China and Ministry of Foreign Affairs and International Cooperation, Italy NSFC-MAECI 51861135202the National Natural Science Foundation of China 21875004the National Key Research and Development Project 2018YFA0702002the Natural Science Foundation of Beijing 2192037the Program for Changjiang Scholars and Innovation Research Team in the University IRT1205

  • With the rapid development of electric vehicles and portable electronic devices, traditional lithium-ion batteries with graphite anodes cannot satisfy demands for increased energy density. Lithium metal, with a high theoretical specific capacity (3860 mAh·g-1), low density (0.534 g·cm-3), and the lowest potential (-3.040 V vs. standard hydrogen electrode), has received much attention as an ideal anode material for next-generation energy storage devices. However, the uncontrolled growth of lithium dendrites and low Coulombic efficiency caused by negative side reactions have severely hindered the development of lithium metal batteries. Here, we propose a strategy based on the synergistic effect between a porous copper foam and thiourea, which uses the "super-filling" effect of thiourea molecules to achieve the uniform deposition of lithium metal on the surface of the porous copper foam. The unique curvature enhance coverage mechanism of thiourea molecules can accelerate Li deposition rate in grooves and achieve "super-filling" growth. The porous copper foam was obtained through simple multi-step processing. Scanning electron microscopy images showed many small pores evenly distributed on the surface; these pores acted as nucleation sites for lithium deposition. With the effect of thiourea, lithium was preferentially deposited in the small pores and then filled to the top, and finally deposited uniformly on the surface of the porous copper foam. The morphologies of the different electrodes deposited with capacities of 1, 3, and 10 mAh·cm-2 demonstrated the synergistic effect between the porous copper foam and thiourea, which can inhibit the growth of lithium dendrites. Through this strategy, stable lithium plating/stripping over 500 h was achieved at a current density of 1 mA·cm-2 with a fixed capacity of 1 mAh·cm-2 while maintaining a voltage hysteresis below 20 mV. Meanwhile, greatly enhanced Coulombic efficiency and longer cycle life times were achieved: the Li||LiFePO4 full cell maintained 94% capacity after 300 cycles at 5C. Exploiting the synergy between the electrolyte and framework provides a novel approach for fabricating advanced lithium metal batteries. This work thus details a novel strategy for lithium anode protection that may also be extended to other metal anodes, thereby facilitating the development of next-generation energy storage devices.
  • 加载中
    1. [1]

      Yang, J.; Hu, C.; Jia, Y.; Pang, Y.; Wang, L.; Liu, W.; Sun, X. ACS Appl. Mater. Interfaces 2019, 11 (9), 8717. doi: 10.1021/acsami.9b00507  doi: 10.1021/acsami.9b00507

    2. [2]

      Fan, L.; Li, S.; Liu, L.; Zhang, W.; Gao, L.; Fu, Y.; Chen, F.; Li, J.; Zhuang, H. L.; Lu, Y. Adv. Energy Mater. 2018, 8 (33), 1802350. doi: 10.1002/aenm.201802350  doi: 10.1002/aenm.201802350

    3. [3]

      Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Liu, T.; Chen, D.; Yuan, S. S.; Wu, X. J.; Lu, J.; Zhou, Y. N. Adv. Energy Mater. 2019, 9 (35), 1901491. doi: 10.1002/aenm.201901491  doi: 10.1002/aenm.201901491

    4. [4]

      Wang, H.; Wang, Q.; Cao, X.; He, Y.; Wu, K.; Yang, J.; Zhou, H.; Liu, W.; Sun, X. Adv. Mater. 2020, 32 (37), 2001259. doi: 10.1002/adma.202001259  doi: 10.1002/adma.202001259

    5. [5]

      Wang, Q.; Yang, C.; Yang, J.; Wu, K.; Hu, C.; Lu, J.; Liu, W.; Sun, X.; Qiu, J.; Zhou, H. Adv. Mater. 2019, 31 (41), 1903248. doi: 10.1002/adma.201903248  doi: 10.1002/adma.201903248

    6. [6]

      Niu, C.; Pan, H.; Xu, W.; Xiao, J.; Zhang, J. G.; Luo, L.; Wang, C.; Mei, D.; Meng, J.; Wang, X.; et al. Nat. Nanotechnol. 2019, 14 (6), 594. doi: 10.1038/s41565-019-0427-9  doi: 10.1038/s41565-019-0427-9

    7. [7]

      Zhang, W.; Fan, L.; Tong, Z.; Miao, J.; Shen, Z.; Li, S.; Chen, F.; Qiu, Y.; Lu, Y. Small Methods 2019, 3 (11), 1900325. doi: 10.1002/smtd.201900325  doi: 10.1002/smtd.201900325

    8. [8]

      Xue, P.; Sun, C.; Li, H.; Liang, J.; Lai, C. Adv. Sci. 2019, 6 (18), 1900943. doi: 10.1002/advs.201900943  doi: 10.1002/advs.201900943

    9. [9]

      Sun, X.; Zhang, X.; Ma, Q.; Guan, X.; Wang, W.; Luo, J. Angew. Chem. Int. Ed. 2020, 59 (17), 6665. doi: 10.1002/anie.201912217  doi: 10.1002/anie.201912217

    10. [10]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1365.  doi: 10.3866/PKU.WHXB201903008

    11. [11]

      Liu, Y.; Zheng, L.; Gu, W.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2021, 37, 2004058.  doi: 10.3866/PKU.WHXB202004058

    12. [12]

      Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotechnol. 2018, 13 (4), 337. doi: 10.1038/s41565-018-0061-y  doi: 10.1038/s41565-018-0061-y

    13. [13]

      Liang, Z.; Yan, K.; Zhou, G.; Pei, A.; Zhao, J.; Sun, Y.; Xie, J.; Li, Y.; Shi, F.; Liu, Y.; et al. Sci. Adv. 2019, 5 (3), eaau5655. doi: 10.1126/sciadv.aau5655  doi: 10.1126/sciadv.aau5655

    14. [14]

      Li, J.; Zou, P.; Chiang, S. W.; Yao, W.; Wang, Y.; Liu, P.; Liang, C.; Kang, F.; Yang, C. Energy Storage Mater. 2020, 24, 700. doi: 10.1016/j.ensm.2019.06.019  doi: 10.1016/j.ensm.2019.06.019

    15. [15]

      Wang, Q.; Yang, C.; Yang, J.; Wu, K.; Qi, L.; Tang, H.; Zhang, Z.; Liu, W.; Zhou, H. Energy Storage Mater. 2018, 15, 249. doi: 10.1016/j.ensm.2018.04.030  doi: 10.1016/j.ensm.2018.04.030

    16. [16]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    17. [17]

      Zhang, R.; Shen, X.; Cheng, X. B.; Zhang, Q. Energy Storage Mater. 2019, 23, 556. doi: 10.1016/j.ensm.2019.03.029  doi: 10.1016/j.ensm.2019.03.029

    18. [18]

      Cheng, Y.; Ke, X.; Chen, Y.; Huang, X.; Shi, Z.; Guo, Z. Nano Energy 2019, 63, 103854. doi: 10.1016/j.nanoen.2019.103854  doi: 10.1016/j.nanoen.2019.103854

    19. [19]

      Pu, K. C.; Zhang, X.; Qu, X. L.; Hu, J. J.; Li, H. W.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Rare Metals 2020, 39 (6), 616. doi: 10.1007/s12598-020-01432-2  doi: 10.1007/s12598-020-01432-2

    20. [20]

      Liu, Y.; Zhang, S.; Qin, X.; Kang, F.; Chen, G.; Li, B. Nano Lett. 2019, 19 (7), 4601. doi: 10.1021/acs.nanolett.9b01567  doi: 10.1021/acs.nanolett.9b01567

    21. [21]

      Wang, M.; Peng, Z.; Lin, H.; Li, Z.; Liu, J.; Ren, Z.; He, H.; Wang, D. Acta Phys. -Chim. Sin. 2021, 37, 2007016.  doi: 10.3866/PKU.WHXB202007016

    22. [22]

      Zuo, T. T.; Yin, Y. X.; Wang, S. H.; Wang, P. F.; Yang, X.; Liu, J.; Yang, C. P.; Guo, Y. G. Nano Lett. 2018, 18 (1), 297. doi: 10.1021/acs.nanolett.7b04136  doi: 10.1021/acs.nanolett.7b04136

    23. [23]

      Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560 (7718), 345. doi: 10.1038/s41586-018-0397-3  doi: 10.1038/s41586-018-0397-3

    24. [24]

      Li, K.; Hu, Z.; Ma, J.; Chen, S.; Mu, D.; Zhang, J. Adv. Mater. 2019, 31 (33), 1902399. doi: 10.1002/adma.201902399  doi: 10.1002/adma.201902399

    25. [25]

      Zhu, J.; Chen, J.; Luo, Y.; Sun, S.; Qin, L.; Xu, H.; Zhang, P.; Zhang, W.; Tian, W.; Sun, Z. Energy Storage Mater. 2019, 23, 539. doi: 10.1016/j.ensm.2019.04.005  doi: 10.1016/j.ensm.2019.04.005

    26. [26]

      Ke, X.; Liang, Y.; Ou, L.; Liu, H.; Chen, Y.; Wu, W.; Cheng, Y.; Guo, Z.; Lai, Y.; Liu, P.; Shi, Z. Energy Storage Mater. 2019, 23, 547. doi: 10.1016/j.ensm.2019.04.003  doi: 10.1016/j.ensm.2019.04.003

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    7. [7]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    11. [11]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    14. [14]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    18. [18]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    19. [19]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(11)
  • Abstract views(1823)
  • HTML views(507)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return