Citation: Qin Jinli, Ren Longtao, Cao Xin, Zhao Yajun, Xu Haijun, Liu Wen, Sun Xiaoming. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2021, 37(1): 200902. doi: 10.3866/PKU.WHXB202009020 shu

Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode

  • Corresponding author: Xu Haijun, hjxu@buct.edu.cn Liu Wen, wenliu@mail.buct.edu.cn
  • Received Date: 4 September 2020
    Revised Date: 29 September 2020
    Accepted Date: 30 September 2020
    Available Online: 21 October 2020

    Fund Project: the Beijing University of Chemical Technology buctrc201901The project was supported by the National Natural Science Foundation of China (21771018, 21875004), the Beijing University of Chemical Technology (buctrc201901), the National Natural Science Foundation of China and Ministry of Foreign Affairs and International Cooperation, Italy (NSFC-MAECI 51861135202), the Natural Science Foundation of Beijing (2192037), the National Key Research and Development Project (2018YFB1502401, 2018YFA0702002), the Royal Society and the Newton Fund through the Newton Advanced Fellowship Award (NAF\R1\191294), the Program for Changjiang Scholars and Innovation Research Team in the University (IRT1205), the Fundamental Research Funds for the Central Universities, and the Long-term Subsidy mechanism from the Ministry of Finance and the Ministry of Education of Chinathe Royal Society and the Newton Fund through the Newton Advanced Fellowship Award NAF\R1\191294the National Natural Science Foundation of China 21771018the National Key Research and Development Project 2018YFB1502401the National Natural Science Foundation of China and Ministry of Foreign Affairs and International Cooperation, Italy NSFC-MAECI 51861135202the National Natural Science Foundation of China 21875004the National Key Research and Development Project 2018YFA0702002the Natural Science Foundation of Beijing 2192037the Program for Changjiang Scholars and Innovation Research Team in the University IRT1205

  • With the rapid development of electric vehicles and portable electronic devices, traditional lithium-ion batteries with graphite anodes cannot satisfy demands for increased energy density. Lithium metal, with a high theoretical specific capacity (3860 mAh·g-1), low density (0.534 g·cm-3), and the lowest potential (-3.040 V vs. standard hydrogen electrode), has received much attention as an ideal anode material for next-generation energy storage devices. However, the uncontrolled growth of lithium dendrites and low Coulombic efficiency caused by negative side reactions have severely hindered the development of lithium metal batteries. Here, we propose a strategy based on the synergistic effect between a porous copper foam and thiourea, which uses the "super-filling" effect of thiourea molecules to achieve the uniform deposition of lithium metal on the surface of the porous copper foam. The unique curvature enhance coverage mechanism of thiourea molecules can accelerate Li deposition rate in grooves and achieve "super-filling" growth. The porous copper foam was obtained through simple multi-step processing. Scanning electron microscopy images showed many small pores evenly distributed on the surface; these pores acted as nucleation sites for lithium deposition. With the effect of thiourea, lithium was preferentially deposited in the small pores and then filled to the top, and finally deposited uniformly on the surface of the porous copper foam. The morphologies of the different electrodes deposited with capacities of 1, 3, and 10 mAh·cm-2 demonstrated the synergistic effect between the porous copper foam and thiourea, which can inhibit the growth of lithium dendrites. Through this strategy, stable lithium plating/stripping over 500 h was achieved at a current density of 1 mA·cm-2 with a fixed capacity of 1 mAh·cm-2 while maintaining a voltage hysteresis below 20 mV. Meanwhile, greatly enhanced Coulombic efficiency and longer cycle life times were achieved: the Li||LiFePO4 full cell maintained 94% capacity after 300 cycles at 5C. Exploiting the synergy between the electrolyte and framework provides a novel approach for fabricating advanced lithium metal batteries. This work thus details a novel strategy for lithium anode protection that may also be extended to other metal anodes, thereby facilitating the development of next-generation energy storage devices.
  • 加载中
    1. [1]

      Yang, J.; Hu, C.; Jia, Y.; Pang, Y.; Wang, L.; Liu, W.; Sun, X. ACS Appl. Mater. Interfaces 2019, 11 (9), 8717. doi: 10.1021/acsami.9b00507  doi: 10.1021/acsami.9b00507

    2. [2]

      Fan, L.; Li, S.; Liu, L.; Zhang, W.; Gao, L.; Fu, Y.; Chen, F.; Li, J.; Zhuang, H. L.; Lu, Y. Adv. Energy Mater. 2018, 8 (33), 1802350. doi: 10.1002/aenm.201802350  doi: 10.1002/aenm.201802350

    3. [3]

      Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Liu, T.; Chen, D.; Yuan, S. S.; Wu, X. J.; Lu, J.; Zhou, Y. N. Adv. Energy Mater. 2019, 9 (35), 1901491. doi: 10.1002/aenm.201901491  doi: 10.1002/aenm.201901491

    4. [4]

      Wang, H.; Wang, Q.; Cao, X.; He, Y.; Wu, K.; Yang, J.; Zhou, H.; Liu, W.; Sun, X. Adv. Mater. 2020, 32 (37), 2001259. doi: 10.1002/adma.202001259  doi: 10.1002/adma.202001259

    5. [5]

      Wang, Q.; Yang, C.; Yang, J.; Wu, K.; Hu, C.; Lu, J.; Liu, W.; Sun, X.; Qiu, J.; Zhou, H. Adv. Mater. 2019, 31 (41), 1903248. doi: 10.1002/adma.201903248  doi: 10.1002/adma.201903248

    6. [6]

      Niu, C.; Pan, H.; Xu, W.; Xiao, J.; Zhang, J. G.; Luo, L.; Wang, C.; Mei, D.; Meng, J.; Wang, X.; et al. Nat. Nanotechnol. 2019, 14 (6), 594. doi: 10.1038/s41565-019-0427-9  doi: 10.1038/s41565-019-0427-9

    7. [7]

      Zhang, W.; Fan, L.; Tong, Z.; Miao, J.; Shen, Z.; Li, S.; Chen, F.; Qiu, Y.; Lu, Y. Small Methods 2019, 3 (11), 1900325. doi: 10.1002/smtd.201900325  doi: 10.1002/smtd.201900325

    8. [8]

      Xue, P.; Sun, C.; Li, H.; Liang, J.; Lai, C. Adv. Sci. 2019, 6 (18), 1900943. doi: 10.1002/advs.201900943  doi: 10.1002/advs.201900943

    9. [9]

      Sun, X.; Zhang, X.; Ma, Q.; Guan, X.; Wang, W.; Luo, J. Angew. Chem. Int. Ed. 2020, 59 (17), 6665. doi: 10.1002/anie.201912217  doi: 10.1002/anie.201912217

    10. [10]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1365.  doi: 10.3866/PKU.WHXB201903008

    11. [11]

      Liu, Y.; Zheng, L.; Gu, W.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2021, 37, 2004058.  doi: 10.3866/PKU.WHXB202004058

    12. [12]

      Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotechnol. 2018, 13 (4), 337. doi: 10.1038/s41565-018-0061-y  doi: 10.1038/s41565-018-0061-y

    13. [13]

      Liang, Z.; Yan, K.; Zhou, G.; Pei, A.; Zhao, J.; Sun, Y.; Xie, J.; Li, Y.; Shi, F.; Liu, Y.; et al. Sci. Adv. 2019, 5 (3), eaau5655. doi: 10.1126/sciadv.aau5655  doi: 10.1126/sciadv.aau5655

    14. [14]

      Li, J.; Zou, P.; Chiang, S. W.; Yao, W.; Wang, Y.; Liu, P.; Liang, C.; Kang, F.; Yang, C. Energy Storage Mater. 2020, 24, 700. doi: 10.1016/j.ensm.2019.06.019  doi: 10.1016/j.ensm.2019.06.019

    15. [15]

      Wang, Q.; Yang, C.; Yang, J.; Wu, K.; Qi, L.; Tang, H.; Zhang, Z.; Liu, W.; Zhou, H. Energy Storage Mater. 2018, 15, 249. doi: 10.1016/j.ensm.2018.04.030  doi: 10.1016/j.ensm.2018.04.030

    16. [16]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    17. [17]

      Zhang, R.; Shen, X.; Cheng, X. B.; Zhang, Q. Energy Storage Mater. 2019, 23, 556. doi: 10.1016/j.ensm.2019.03.029  doi: 10.1016/j.ensm.2019.03.029

    18. [18]

      Cheng, Y.; Ke, X.; Chen, Y.; Huang, X.; Shi, Z.; Guo, Z. Nano Energy 2019, 63, 103854. doi: 10.1016/j.nanoen.2019.103854  doi: 10.1016/j.nanoen.2019.103854

    19. [19]

      Pu, K. C.; Zhang, X.; Qu, X. L.; Hu, J. J.; Li, H. W.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Rare Metals 2020, 39 (6), 616. doi: 10.1007/s12598-020-01432-2  doi: 10.1007/s12598-020-01432-2

    20. [20]

      Liu, Y.; Zhang, S.; Qin, X.; Kang, F.; Chen, G.; Li, B. Nano Lett. 2019, 19 (7), 4601. doi: 10.1021/acs.nanolett.9b01567  doi: 10.1021/acs.nanolett.9b01567

    21. [21]

      Wang, M.; Peng, Z.; Lin, H.; Li, Z.; Liu, J.; Ren, Z.; He, H.; Wang, D. Acta Phys. -Chim. Sin. 2021, 37, 2007016.  doi: 10.3866/PKU.WHXB202007016

    22. [22]

      Zuo, T. T.; Yin, Y. X.; Wang, S. H.; Wang, P. F.; Yang, X.; Liu, J.; Yang, C. P.; Guo, Y. G. Nano Lett. 2018, 18 (1), 297. doi: 10.1021/acs.nanolett.7b04136  doi: 10.1021/acs.nanolett.7b04136

    23. [23]

      Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Nature 2018, 560 (7718), 345. doi: 10.1038/s41586-018-0397-3  doi: 10.1038/s41586-018-0397-3

    24. [24]

      Li, K.; Hu, Z.; Ma, J.; Chen, S.; Mu, D.; Zhang, J. Adv. Mater. 2019, 31 (33), 1902399. doi: 10.1002/adma.201902399  doi: 10.1002/adma.201902399

    25. [25]

      Zhu, J.; Chen, J.; Luo, Y.; Sun, S.; Qin, L.; Xu, H.; Zhang, P.; Zhang, W.; Tian, W.; Sun, Z. Energy Storage Mater. 2019, 23, 539. doi: 10.1016/j.ensm.2019.04.005  doi: 10.1016/j.ensm.2019.04.005

    26. [26]

      Ke, X.; Liang, Y.; Ou, L.; Liu, H.; Chen, Y.; Wu, W.; Cheng, Y.; Guo, Z.; Lai, Y.; Liu, P.; Shi, Z. Energy Storage Mater. 2019, 23, 547. doi: 10.1016/j.ensm.2019.04.003  doi: 10.1016/j.ensm.2019.04.003

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    10. [10]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(10)
  • Abstract views(1727)
  • HTML views(480)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return