Citation: Hua Guangbin, Fan Yanchen, Zhang Qianfan. Application of Computational Simulation on the Study of Lithium Metal Anodes[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200808. doi: 10.3866/PKU.WHXB202008089 shu

Application of Computational Simulation on the Study of Lithium Metal Anodes

  • Corresponding author: Zhang Qianfan, qianfan@buaa.edu.cn
  • Received Date: 31 August 2020
    Revised Date: 6 October 2020
    Available Online: 22 October 2020

    Fund Project: The project was supported by the Beijing Natural Science Foundation, China (2192029)the Beijing Natural Science Foundation, China 2192029

  • Lithium-metal anode batteries have the potential to serve as next-generation, high energy density batteries with high specific capacity and low electrode potential. However, due to the high reactivity of lithium, complex interfacial reactions and uncontrollable dendrite growth obstruct their application. These lithium-metal anode interfacial reactions are often accompanied by the organic electrolyte spontaneously decomposing and combustible gas subsequently escaping, which is a safety concern. It also affects the form of the solid electrolyte interphase (SEI), which is important for stabilizing the interface between the Li-metal anode and electrolyte. Uncontrollable Li dendrite growth could penetrate the separator or electrolyte, creating the risk of a short circuit. Therefore, it is necessary to optimize the lithium nucleation and deposition processes. Solid state electrolytes (SSEs) have also attracted attention for improving the energy density and safety of Li-ion batteries; however, problems such as poor ionic conductivity still exist. Computational simulations, such as molecular dynamics (MD) simulations and first-principles calculations based on density function theory (DFT), can help elucidate reaction mechanisms, explore electrode materials, and optimize battery design. In this review, we summarize the theoretical perspective gained from computational simulation studies of lithium-metal anodes. This review is organized into four sections: interfacial reactions, SEIs, lithium nucleation, and SSEs. We first explore organic-electrolyte interfacial reaction mechanisms that were revealed through MD simulations and how electrolyte additives, electrolyte concentration, operating temperature affect them. For SEI, DFT can provide an in-depth understanding of the surface chemical reaction, surface morphology, electrochemical properties, and kinetic characteristics of SEI. We review the developments in SEI transmission mechanisms and SEI materials' properties alteration by lithium metal. We further explore artificial SEI design requirements and compare the performances of artificial SEIs, including double-layer, fluorine-, and sulfur-SEIs. Lithium dendrite growth as a result of lithium nucleation and deposition is then discussed, focusing on computational studies that evaluated how doped graphene, 3D carbon fibers, porous metals, and other matrix materials regulated these processes and inhibited dendrite growth. Computational simulations evaluating transport phenomena and interface reactions between SSEs and lithium-metal anodes are then explored, followed by ideas for further design optimization. Finally, potential research directions and perspectives in this field are proposed and discussed.
  • 加载中
    1. [1]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Energy Environ. Sci. 2014, 7, 513. doi: 10.1039/C3EE40795K  doi: 10.1039/C3EE40795K

    2. [2]

      Lang, J.; Qi, L.; Luo, Y.; Wu, H. Energy Storage Mater. 2017, 7, 115. doi: 10.1016/j.ensm.2017.01.006  doi: 10.1016/j.ensm.2017.01.006

    3. [3]

      Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Nat. Mater. 2014, 13, 69. doi: 10.1038/nmat3793  doi: 10.1038/nmat3793

    4. [4]

      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotech. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    5. [5]

      Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2016, 28, 2888. doi: 10.1002/adma.201506124  doi: 10.1002/adma.201506124

    6. [6]

      Cheng, X. B.; Yan, C.; Peng, H. J.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Energy Storage Mater. 2018, 10, 199. doi: 10.1016/j.ensm.2017.03.008  doi: 10.1016/j.ensm.2017.03.008

    7. [7]

      Gao, Y.; Yi, R.; Li, Y. C.; Song, J.; Chen, S.; Huang, Q.; Mallouk, T. E.; Wang, D. J. Am. Chem. Soc. 2017, 139, 17359. doi: 10.1021/jacs.7b07584  doi: 10.1021/jacs.7b07584

    8. [8]

      Tu, Z.; Choudhury, S.; Zachman, M. J.; Wei, S.; Zhang, K.; Kourkoutis, L. F.; Archer, L. A. Joule 2017, 1, 394. doi: 10.1016/j.joule.2017.06.002  doi: 10.1016/j.joule.2017.06.002

    9. [9]

      Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. Angew. Chem. 2018, 130, 1521. doi: 10.1002/ange.201710806  doi: 10.1002/ange.201710806

    10. [10]

      Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1605989. doi: 10.1002/adfm.201605989  doi: 10.1002/adfm.201605989

    11. [11]

      Zhao, C. Z.; Cheng, X. B.; Zhang, R.; Peng, H. J.; Huang, J. Q.; Ran, R.; Huang, Z. H.; Wei, F.; Zhang, Q. Energy Storage Mater. 2016, 3, 77. doi: 10.1016/j.ensm.2016.01.007  doi: 10.1016/j.ensm.2016.01.007

    12. [12]

      Ma, Y.; Zhou, Z.; Li, C.; Wang, L.; Wang, Y.; Cheng, X.; Zuo, P.; Du, C.; Huo, H.; Gao, Y.; et al. Energy Storage Mater. 2018, 11, 197. doi: 10.1016/j.ensm.2017.10.015  doi: 10.1016/j.ensm.2017.10.015

    13. [13]

      Chen, N.; Dai, Y.; Xing, Y.; Wang, L.; Guo, C.; Chen, R.; Guo, S.; Wu, F. Energy Environ. Sci. 2017, 10, 1660. doi: 10.1039/C7EE00988G  doi: 10.1039/C7EE00988G

    14. [14]

      Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. doi: 10.1021/acsnano.5b01990  doi: 10.1021/acsnano.5b01990

    15. [15]

      Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117  doi: 10.1002/adma.201504117

    16. [16]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 7764. doi: 10.1002/anie.201702099  doi: 10.1002/anie.201702099

    17. [17]

      Yang, C.; Yao, Y.; He, S.; Xie, H.; Hitz, E.; Hu, L. Adv. Mater. 2017, 29, 1702714. doi: 10.1002/adma.201702714  doi: 10.1002/adma.201702714

    18. [18]

      Zhao, J.; Zhou, G.; Yan, K.; Xie, J.; Li, Y.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J.; et al. Nat. Nanotech. 2017, 12, 993. doi: 10.1038/nnano.2017.129  doi: 10.1038/nnano.2017.129

    19. [19]

      Liu, L.; Yin, Y. X.; Li, J. Y.; Li, N. W.; Zeng, X. X.; Ye, H.; Guo, Y. G.; Wan, L. J. Joule 2017, 1, 563. doi: 10.1016/j.joule.2017.06.004  doi: 10.1016/j.joule.2017.06.004

    20. [20]

      Fan, Y.; Chen, X.; Legut, D.; Zhang, Q. Energy Storage Mater. 2019, 16, 169. doi: 10.1016/j.ensm.2018.05.007  doi: 10.1016/j.ensm.2018.05.007

    21. [21]

      Shi, S.; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W.; Ouyang, C.; Xiao, R. Chin. Phys. B 2016, 25, 018212. doi: 10.1088/1674-1056/25/1/018212  doi: 10.1088/1674-1056/25/1/018212

    22. [22]

      Islam, M. S.; Fisher, C. A. J. Chem. Soc. Rev. 2014, 43, 185. doi: 10.1039/C3CS60199D  doi: 10.1039/C3CS60199D

    23. [23]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133  doi: 10.1103/PhysRev.140.A1133

    24. [24]

      Thomas, L. H. Math. Proc. Camb. Phil. Soc. 1927, 23, 542. doi: 10.1017/S0305004100011683  doi: 10.1017/S0305004100011683

    25. [25]

      Iddir, H.; Benedek, R. Chem. Mater. 2014, 26, 2407. doi: 10.1021/cm403256a  doi: 10.1021/cm403256a

    26. [26]

      Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6, 1144. doi: 10.1016/j.elecom.2004.09.007  doi: 10.1016/j.elecom.2004.09.007

    27. [27]

      Born, M.; Oppenheimer, R. Ann. Phys. 1927, 389, 457. doi: 10.1002/andp.19273892002  doi: 10.1002/andp.19273892002

    28. [28]

      Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822  doi: 10.1103/PhysRevB.33.8822

    29. [29]

      Perdew, J. P.; Yue, W. Phys. Rev. B 1986, 33, 8800. doi: 10.1103/PhysRevB.33.8800  doi: 10.1103/PhysRevB.33.8800

    30. [30]

      Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244  doi: 10.1103/PhysRevB.45.13244

    31. [31]

      Garcia-Lastra, J. M.; Myrdal, J. S. G.; Christensen, R.; Thygesen, K. S.; Vegge, T. J. Phys. Chem. C 2013, 117, 5568. doi: 10.1021/jp3107809  doi: 10.1021/jp3107809

    32. [32]

      Heyd, J.; Scuseria, G. E. J. Chem. Phys. 2004, 121, 1187. doi: 10.1063/1.1760074  doi: 10.1063/1.1760074

    33. [33]

      Zhuang, Y.; Zou, Z.; Lu, B.; Li, Y.; Wang, D.; Avdeev, M.; Shi, S. Chinese Phys. B 2020, 29, 068202. doi: 10.1088/1674-1056/ab943c  doi: 10.1088/1674-1056/ab943c

    34. [34]

      Mo, Y.; Ong, S. P.; Ceder, G. Chem. Mater. 2012, 24, 15. doi: 10.1021/cm203303y  doi: 10.1021/cm203303y

    35. [35]

      Song, B.; Yang, J.; Zhao, J.; Fang, H. Energy Environ. Sci. 2011, 4, 1379. doi: 10.1039/c0ee00473a  doi: 10.1039/c0ee00473a

    36. [36]

      Tachikawa, H.; Shimizu, A. J. Phys. Chem. B 2006, 110, 20445. doi: 10.1021/jp061603l  doi: 10.1021/jp061603l

    37. [37]

      Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113, 9978. doi: 10.1063/1.1323224  doi: 10.1063/1.1323224

    38. [38]

      Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Phys. Chem. 2000, 113, 9901. doi: 10.1063/1.1329672  doi: 10.1063/1.1329672

    39. [39]

      Xiong, Z.; Shi, S.; Ouyang, C.; Lei, M.; Hu, L.; Ji, Y.; Wang, Z.; Chen, L. Phys. Lett. A 2005, 337, 247. doi: 10.1016/j.physleta.2005.01.041  doi: 10.1016/j.physleta.2005.01.041

    40. [40]

      Curtarolo, S.; Setyawan, W.; Hart, G. L. W.; Jahnatek, M.; Chepulskii, R. V.; Taylor, R. H.; Wang, S.; Xue, J.; Yang, K.; Levy, O.; et al. Comput. Mater. Sci. 2012, 58, 218. doi: 10.1016/j.commatsci.2012.02.005  doi: 10.1016/j.commatsci.2012.02.005

    41. [41]

      Zhu, W.; Xu, Y.; Ni, J.; Hu, G.; Wang, X.; Zhang, W. Mater. Sci. Eng. B 2020, 252, 114474. doi: 10.1016/j.mseb.2019.114474  doi: 10.1016/j.mseb.2019.114474

    42. [42]

      Correa-Baena, J. P.; Hippalgaonkar, K.; van Duren, J.; Jaffer, S.; Chandrasekhar, V. R.; Stevanovic, V.; Wadia, C.; Guha, S.; Buonassisi, T. Joule 2018, 2, 1410. doi: 10.1016/j.joule.2018.05.009  doi: 10.1016/j.joule.2018.05.009

    43. [43]

      Severson, K. A.; Attia, P. M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M. H.; Aykol, M.; Herring, P. K.; Fraggedakis, D.; et al. Nat. Energy 2019, 4, 383. doi: 10.1038/s41560-019-0356-8  doi: 10.1038/s41560-019-0356-8

    44. [44]

      Chen, X.; Hou, T. Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Energy Storage Mater. 2017, 8, 194. doi: 10.1016/j.ensm.2017.01.003  doi: 10.1016/j.ensm.2017.01.003

    45. [45]

      Camacho-Forero, L. E.; Balbuena, P. B. Phys. Chem. Chem. Phys. 2017, 19, 30861. doi: 10.1039/C7CP06485C  doi: 10.1039/C7CP06485C

    46. [46]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    47. [47]

      Tian, H.; Seh, Z. W.; Yan, K.; Fu, Z.; Tang, P.; Lu, Y.; Zhang, R.; Legut, D.; Cui, Y.; Zhang, Q. Adv. Energy Mater. 2017, 7, 1602528. doi: 10.1002/aenm.201602528  doi: 10.1002/aenm.201602528

    48. [48]

      Leung, K.; Leenheer, A. J. Phys. Chem. C 2015, 119, 10234. doi: 10.1021/acs.jpcc.5b01643  doi: 10.1021/acs.jpcc.5b01643

    49. [49]

      Liu, Z.; Qi, Y.; Lin, Y. X.; Chen, L.; Lu, P.; Chen, L. Q. J. Electrochem. Soc. 2016, 163, A592. doi: 10.1149/2.0151605jes  doi: 10.1149/2.0151605jes

    50. [50]

      Zhang, Q.; Pan, J.; Lu, P.; Liu, Z.; Verbrugge, M. W.; Sheldon, B. W.; Cheng, Y. T.; Qi, Y.; Xiao, X. Nano Lett. 2016, 16, 2011. doi: 10.1021/acs.nanolett.5b05283  doi: 10.1021/acs.nanolett.5b05283

    51. [51]

      Pan, J.; Zhang, Q.; Xiao, X.; Cheng, Y. T.; Qi, Y. ACS Appl. Mater. Interfaces 2016, 8, 5687. doi: 10.1021/acsami.5b12030  doi: 10.1021/acsami.5b12030

    52. [52]

      Zhukovskii, Yu. F.; Kotomin, E. A.; Balaya, P.; Maier, J. Solid State Sci. 2008, 10, 491. doi: 10.1016/j.solidstatesciences.2007.12.030  doi: 10.1016/j.solidstatesciences.2007.12.030

    53. [53]

      Panahian Jand, S.; Kaghazchi, P. J. Phys.: Condens. Matter 2014, 26, 262001. doi: 10.1088/0953-8984/26/26/262001  doi: 10.1088/0953-8984/26/26/262001

    54. [54]

      Simeone, F. C.; Kolb, D. M.; Venkatachalam, S.; Jacob, T. Angew. Chem. Int. Ed. 2007, 46, 8903. doi: 10.1002/anie.200702868  doi: 10.1002/anie.200702868

    55. [55]

      Xiao, J. Science 2019, 366, 426. doi: 10.1126/science.aay8672  doi: 10.1126/science.aay8672

    56. [56]

      Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Adv. Funct. Mater. 2020, 30, 1910777. doi: 10.1002/adfm.201910777  doi: 10.1002/adfm.201910777

    57. [57]

      Wong, D. H. C.; Vitale, A.; Devaux, D.; Taylor, A.; Pandya, A. A.; Hallinan, D. T.; Thelen, J. L.; Mecham, S. J.; Lux, S. F.; Lapides, A. M.; et al. Chem. Mater. 2015, 27, 597. doi: 10.1021/cm504228a  doi: 10.1021/cm504228a

    58. [58]

      Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. J. Am. Chem. Soc. 2020, 142, 7393. doi: 10.1021/jacs.9b11056  doi: 10.1021/jacs.9b11056

    59. [59]

      Martinez de la Hoz, J. M.; Leung, K.; Balbuena, P. B. ACS Appl. Mater. Interfaces 2013, 5, 13457. doi: 10.1021/am404365r  doi: 10.1021/am404365r

    60. [60]

      Martínez de la Hoz, J. M.; Balbuena, P. B. Phys. Chem. Chem. Phys. 2014, 16, 17091. doi: 10.1039/C4CP01948B  doi: 10.1039/C4CP01948B

    61. [61]

      Ma, Y.; Martinez de la Hoz, J. M.; Angarita, I.; Berrio-Sanchez, J. M.; Benitez, L.; Seminario, J. M.; Son, S. B.; Lee, S. H.; George, S. M.; Ban, C.; et al. ACS Appl. Mater. Interfaces 2015, 7, 11948. doi: 10.1021/acsami.5b01917  doi: 10.1021/acsami.5b01917

    62. [62]

      Soto, F. A.; Ma, Y.; Martinez de la Hoz, J. M.; Seminario, J. M.; Balbuena, P. B. Chem. Mater. 2015, 27, 7990. doi: 10.1021/acs.chemmater.5b03358  doi: 10.1021/acs.chemmater.5b03358

    63. [63]

      Peng, Z.; Cao, X.; Gao, P.; Jia, H.; Ren, X.; Roy, S.; Li, Z.; Zhu, Y.; Xie, W.; Liu, D.; et al. Adv. Funct. Mater. 2020, 30, 2001285. doi: 10.1002/adfm.202001285  doi: 10.1002/adfm.202001285

    64. [64]

      Kim, K.; Hwang, D.; Kim, S.; Park, S. O.; Cha, H.; Lee, Y.; Cho, J.; Kwak, S. K.; Choi, N. Adv. Energy Mater. 2020, 10, 2000012. doi: 10.1002/aenm.202000012  doi: 10.1002/aenm.202000012

    65. [65]

      Berhaut, C. L.; Lemordant, D.; Porion, P.; Timperman, L.; Schmidt, G.; Anouti, M. RSC Adv. 2019, 9, 4599. doi: 10.1039/C8RA08430K  doi: 10.1039/C8RA08430K

    66. [66]

      Camacho-Forero, L. E.; Smith, T. W.; Bertolini, S.; Balbuena, P. B. J. Phys. Chem. C 2015, 119, 26828. doi: 10.1021/acs.jpcc.5b08254  doi: 10.1021/acs.jpcc.5b08254

    67. [67]

      Camacho-Forero, L. E.; Smith, T. W.; Balbuena, P. B. J. Phys. Chem. C 2017, 121, 182. doi: 10.1021/acs.jpcc.6b10774  doi: 10.1021/acs.jpcc.6b10774

    68. [68]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    69. [69]

      Chen, X.; Shen, X.; Li, B.; Peng, H.; Cheng, X.; Li, B.; Zhang, X.; Huang, J.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 734. doi: 10.1002/anie.201711552  doi: 10.1002/anie.201711552

    70. [70]

      Wang, J.; Huang, W.; Pei, A.; Li, Y.; Shi, F.; Yu, X.; Cui, Y. Nat. Energy 2019, 4, 664. doi: 10.1038/s41560-019-0413-3  doi: 10.1038/s41560-019-0413-3

    71. [71]

      Gao, Y.; Rojas, T.; Wang, K.; Liu, S.; Wang, D.; Chen, T.; Wang, H.; Ngo, A. T.; Wang, D. Nat. Energy 2020, 5, 534. doi: 10.1038/s41560-020-0640-7  doi: 10.1038/s41560-020-0640-7

    72. [72]

      Wang, S.; Qu, J.; Wu, F.; Yan, K.; Zhang, C. ACS Appl. Mater. Interfaces 2020, 12, 8366. doi: 10.1021/acsami.9b23251  doi: 10.1021/acsami.9b23251

    73. [73]

      Cheng, X. B.; Yan, C.; Huang, J. Q.; Li, P.; Zhu, L.; Zhao, L.; Zhang, Y.; Zhu, W.; Yang, S. T.; Zhang, Q. Energy Storage Mater. 2017, 6, 18. doi: 10.1016/j.ensm.2016.09.003  doi: 10.1016/j.ensm.2016.09.003

    74. [74]

      Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Chem 2017, 2, 258. doi: 10.1016/j.chempr.2017.01.003  doi: 10.1016/j.chempr.2017.01.003

    75. [75]

      Liu, Z.; Bertolini, S.; Balbuena, P. B.; Mukherjee, P. P. ACS Appl. Mater. Interfaces 2016, 8, 4700. doi: 10.1021/acsami.5b11803  doi: 10.1021/acsami.5b11803

    76. [76]

      Peled, E. J. Electrochem. Soc. 1979, 126, 2047. doi: 10.1149/1.2128859  doi: 10.1149/1.2128859

    77. [77]

      Yan, C.; Cheng, X. B.; Zhao, C. Z.; Huang, J. Q.; Yang, S. T.; Zhang, Q. J. Phys. Chem. Solids 2016, 327, 212. doi: 10.1016/j.jpowsour.2016.07.056  doi: 10.1016/j.jpowsour.2016.07.056

    78. [78]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213  doi: 10.1002/advs.201500213

    79. [79]

      Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, L. G.; Li, H.; Harris, S. J. J. Am. Chem. Soc. 2012, 134, 15476. doi: 10.1021/ja305366r  doi: 10.1021/ja305366r

    80. [80]

      Lu, P.; Harris, S. J. Electrochem. Commun. 2011, 13, 1035. doi: 10.1016/j.elecom.2011.06.026  doi: 10.1016/j.elecom.2011.06.026

    81. [81]

      Shi, S.; Qi, Y.; Li, H.; Hector, L. G. J. Phys. Chem. C 2013, 117, 8579. doi: 10.1021/jp310591u  doi: 10.1021/jp310591u

    82. [82]

      Li, Y.; Leung, K.; Qi, Y. Acc. Chem. Res. 2016, 49, 2363. doi: 10.1021/acs.accounts.6b00363  doi: 10.1021/acs.accounts.6b00363

    83. [83]

      Lin, Y. X.; Liu, Z.; Leung, K.; Chen, L. Q.; Lu, P.; Qi, Y. J. Power Sources 2016, 309, 221. doi: 10.1016/j.jpowsour.2016.01.078  doi: 10.1016/j.jpowsour.2016.01.078

    84. [84]

      Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J. G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y.; et al. Nat. Nanotech. 2020, 15, 224. doi: 10.1038/s41565-019-0618-4  doi: 10.1038/s41565-019-0618-4

    85. [85]

      Kim, S. P.; Duin, A. C. T. van; Shenoy, V. B. J. Power Sources 2011, 196, 8590. doi: 10.1016/j.jpowsour.2011.05.061  doi: 10.1016/j.jpowsour.2011.05.061

    86. [86]

      Ren, Y.; Qi, Z.; Zhang, C.; Yang, S.; Ma, X.; Liu, X.; Tan, X.; Sun, S.; Cao, Y. Comput. Mater. Sci. 2020, 176, 109535. doi: 10.1016/j.commatsci.2020.109535  doi: 10.1016/j.commatsci.2020.109535

    87. [87]

      Zhu, J.; Li, P.; Chen, X.; Legut, D.; Fan, Y.; Zhang, R.; Lu, Y.; Cheng, X.; Zhang, Q. Energy Storage Mater. 2019, 16, 426. doi: 10.1016/j.ensm.2018.06.023  doi: 10.1016/j.ensm.2018.06.023

    88. [88]

      Chen, H.; Pei, A.; Lin, D.; Xie, J.; Yang, A.; Xu, J.; Lin, K.; Wang, J.; Wang, H.; Shi, F.; et al. Adv. Energy Mater. 2019, 9, 1900858. doi: 10.1002/aenm.201900858  doi: 10.1002/aenm.201900858

    89. [89]

      Liu, F.; Wang, L.; Zhang, Z.; Shi, P.; Feng, Y.; Yao, Y.; Ye, S.; Wang, H.; Wu, X.; Yu, Y. Adv. Funct. Mater. 2020, 30, 2001607. doi: 10.1002/adfm.202001607  doi: 10.1002/adfm.202001607

    90. [90]

      Chen, S.; Dai, F.; Cai, M. ACS Energy Lett. 2020, 3140. doi: 10.1021/acsenergylett.0c01545  doi: 10.1021/acsenergylett.0c01545

    91. [91]

      Hu, M.; Ma, Q.; Yuan, Y.; Pan, Y.; Chen, M.; Zhang, Y.; Long, D. Chem. Eng. J. 2020, 388, 124258. doi: 10.1016/j.cej.2020.124258  doi: 10.1016/j.cej.2020.124258

    92. [92]

      Lv, X.; Lei, T.; Wang, B.; Chen, W.; Jiao, Y.; Hu, Y.; Yan, Y.; Huang, J.; Chu, J.; Yan, C.; et al. Adv. Energy Mater. 2019, 9, 1901800. doi: 10.1002/aenm.201901800  doi: 10.1002/aenm.201901800

    93. [93]

      Lei, T.; Chen, W.; Lv, W.; Huang, J.; Zhu, J.; Chu, J.; Yan, C.; Wu, C.; Yan, Y.; He, W.; et al. Joule 2018, 2, 2091. doi: 10.1016/j.joule.2018.07.022  doi: 10.1016/j.joule.2018.07.022

    94. [94]

      Moorthy, B.; Kwon, S.; Kim, J. H.; Ragupathy, P.; Lee, H. M.; Kim, D. K. Nanoscale Horiz. 2019, 4, 214. doi: 10.1039/C8NH00172C  doi: 10.1039/C8NH00172C

    95. [95]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    96. [96]

      Chazalviel, J. N. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355  doi: 10.1103/PhysRevA.42.7355

    97. [97]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. J. Power Sources 1999, 81-82, 925. doi: 10.1016/S0378-7753(98)00242-0  doi: 10.1016/S0378-7753(98)00242-0

    98. [98]

      Lin, D.; Liu, Y.; Cui, Y. Nature Nanotech. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    99. [99]

      Ely, D. R.; García, R. E. J. Electrochem. Soc. 2013, 160, A662. doi: 10.1149/1.057304jes  doi: 10.1149/1.057304jes

    100. [100]

      Okajima, Y.; Shibuta, Y.; Suzuki, T. Comput. Mater. Sci. 2010, 50, 118. doi: 10.1016/j.commatsci.2010.07.015  doi: 10.1016/j.commatsci.2010.07.015

    101. [101]

      Li, Q.; Tan, S.; Li, L.; Lu, Y.; He, Y. Sci. Adv. 2017, 3, e1701246. doi: 10.1126/sciadv.1701246  doi: 10.1126/sciadv.1701246

    102. [102]

      Li, L.; Basu, S.; Wang, Y.; Chen, Z.; Hundekar, P.; Wang, B.; Shi, J.; Shi, Y.; Narayanan, S.; Koratkar, N. Science 2018, 359, 1513. doi: 10.1126/science.aap8787  doi: 10.1126/science.aap8787

    103. [103]

      Lin, D.; Liu, Y.; Li, Y.; Li, Y.; Pei, A.; Xie, J.; Huang, W.; Cui, Y. Nat. Chem. 2019, 11, 382. doi: 10.1038/s41557-018-0203-8  doi: 10.1038/s41557-018-0203-8

    104. [104]

      Wang, T.; Zhai, P.; Legut, D.; Wang, L.; Liu, X.; Li, B.; Dong, C.; Fan, Y.; Gong, Y.; Zhang, Q. Adv. Energy Mater. 2019, 9, 1804000. doi: 10.1002/aenm.201804000  doi: 10.1002/aenm.201804000

    105. [105]

      Zhai, P.; Wang, T.; Yang, W.; Cui, S.; Zhang, P.; Nie, A.; Zhang, Q.; Gong, Y. Adv. Energy Mater. 2019, 9, 1804019. doi: 10.1002/aenm.201804019  doi: 10.1002/aenm.201804019

    106. [106]

      Yi, J.; Chen, J.; Yang, Z.; Dai, Y.; Li, W.; Cui, J.; Ciucci, F.; Lu, Z.; Yang, C. Adv. Energy Mater. 2019, 9, 1901796. doi: 10.1002/aenm.201901796  doi: 10.1002/aenm.201901796

    107. [107]

      Liu, F.; Xu, R.; Hu, Z.; Ye, S.; Zeng, S.; Yao, Y.; Li, S.; Yu, Y. Small 2019, 15, 1803734. doi: 10.1002/smll.201803734  doi: 10.1002/smll.201803734

    108. [108]

      Ye, S.; Liu, F.; Xu, R.; Yao, Y.; Zhou, X.; Feng, Y.; Cheng, X.; Yu, Y. Small 2019, 15, 1903725. doi: 10.1002/smll.201903725  doi: 10.1002/smll.201903725

    109. [109]

      Liu, F.; Jin, Z.; Hu, Z.; Zhang, Z.; Liu, W.; Yu, Y. Chem. Asian J. 2020, 15, 1057. doi: 10.1002/asia.201901668  doi: 10.1002/asia.201901668

    110. [110]

      Yue, X. Y.; Bao, J.; Yang, S. Y.; Luo, R. J.; Wang, Q. C.; Wu, X. J.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Nano Energy 2020, 71, 104614. doi: 10.1016/j.nanoen.2020.104614  doi: 10.1016/j.nanoen.2020.104614

    111. [111]

      Qiu, H.; Tang, T.; Asif, M.; Huang, X.; Hou, Y. Adv. Funct. Mater. 2019, 29, 1808468. doi: 10.1002/adfm.201808468  doi: 10.1002/adfm.201808468

    112. [112]

      Wang, L. M.; Tang, Z. F.; Lin, J.; He, X. D.; Chen, C. S.; Chen, C. H. J. Mater. Chem. A 2019, 7, 17376. doi: 10.1039/C9TA05357C  doi: 10.1039/C9TA05357C

    113. [113]

      Zhou, Y.; Zhao, K.; Han, Y.; Sun, Z.; Zhang, H.; Xu, L.; Ma, Y.; Chen, Y. J. Mater. Chem. A 2019, 7, 5712. doi: 10.1039/C8TA12064A  doi: 10.1039/C8TA12064A

    114. [114]

      Li, P.; Dong, X.; Li, C.; Liu, J.; Liu, Y.; Feng, W.; Wang, C.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 2093. doi: 10.1002/anie.201813905  doi: 10.1002/anie.201813905

    115. [115]

      Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Wang, X. X.; Song, Y.; Fu, Z. W.; Wu, X. J.; Zhou, Y. N. Energy Storage Mater. 2019, 21, 180. doi: 10.1016/j.ensm.2018.12.007  doi: 10.1016/j.ensm.2018.12.007

    116. [116]

      Zhang, M.; Xiang, L.; Galluzzi, M.; Jiang, C.; Zhang, S.; Li, J.; Tang, Y. Adv. Mater. 2019, 31, 1900826. doi: 10.1002/adma.201900826  doi: 10.1002/adma.201900826

    117. [117]

      Ke, X.; Liang, Y.; Ou, L.; Liu, H.; Chen, Y.; Wu, W.; Cheng, Y.; Guo, Z.; Lai, Y.; Liu, P.; et al. Energy Storage Mater. 2019, 23, 547. doi: 10.1016/j.ensm.2019.04.003  doi: 10.1016/j.ensm.2019.04.003

    118. [118]

      Lu, Z.; Liang, Q.; Wang, B.; Tao, Y.; Zhao, Y.; Lv, W.; Liu, D.; Zhang, C.; Weng, Z.; Liang, J.; et al. Adv. Energy Mater. 2019, 9, 1803186. doi: 10.1002/aenm.201803186  doi: 10.1002/aenm.201803186

    119. [119]

      Fan, Y.; Wang, T.; Legut, D.; Zhang, Q. J. Energ. Chem. 2019, 39, 160. doi: 10.1016/j.jechem.2019.01.021  doi: 10.1016/j.jechem.2019.01.021

    120. [120]

      Liu, S.; Zhang, X.; Li, R.; Gao, L.; Luo, J. Energy Storage Mater. 2018, 14, 143. doi: 10.1016/j.ensm.2018.03.004  doi: 10.1016/j.ensm.2018.03.004

    121. [121]

      Cheng, X. B.; Zhao, M. Q.; Chen, C.; Pentecost, A.; Maleski, K.; Mathis, T.; Zhang, X. Q.; Zhang, Q.; Jiang, J.; Gogotsi, Y. Nat. Commun. 2017, 8, 336. doi: 10.1038/s41467-017-00519-2  doi: 10.1038/s41467-017-00519-2

    122. [122]

      Liu, S.; Ji, X.; Yue, J.; Hou, S.; Wang, P.; Cui, C.; Chen, J.; Shao, B.; Li, J.; Han, F.; et al. J. Am. Chem. Soc. 2020, 142, 2438. doi: 10.1021/jacs.9b11750  doi: 10.1021/jacs.9b11750

    123. [123]

      Zhang, H.; Liao, X.; Guan, Y.; Xiang, Y.; Li, M.; Zhang, W.; Zhu, X.; Ming, H.; Lu, L.; Qiu, J.; et al. Nat. Commun. 2018, 9, 3729. doi: 10.1038/s41467-018-06126-z  doi: 10.1038/s41467-018-06126-z

    124. [124]

      Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Chem 2019, 5, 74. doi: 10.1016/j.chempr.2018.12.002  doi: 10.1016/j.chempr.2018.12.002

    125. [125]

      Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. Adv. Mater. 2020, 2000721. doi: 10.1002/adma.202000721  doi: 10.1002/adma.202000721

    126. [126]

      Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R. Nat. Energy 2019, 4, 683. doi: 10.1038/s41560-019-0428-9  doi: 10.1038/s41560-019-0428-9

    127. [127]

      Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Nat. Mater. 2019, 18, 1278. doi: 10.1038/s41563-019-0431-3  doi: 10.1038/s41563-019-0431-3

    128. [128]

      Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S. Nat. Nanotech. 2020, 15, 170. doi: 10.1038/s41565-020-0657-x  doi: 10.1038/s41565-020-0657-x

    129. [129]

      Fang, H.; Jena, P. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 11046. doi: 10.1073/pnas.1704086114  doi: 10.1073/pnas.1704086114

    130. [130]

      Wang, Z.; Xu, H.; Xuan, M.; Shao, G. J. Mater. Chem. A 2018, 6, 73. doi: 10.1039/C7TA08698A.  doi: 10.1039/C7TA08698A

    131. [131]

      Wang, Y.; Klenk, M.; Page, K.; Lai, W. Chem. Mater. 2014, 26, 5613. doi: 10.1021/cm502133c  doi: 10.1021/cm502133c

    132. [132]

      Smith, J. G.; Siegel, D. J. Nat. Commun. 2020, 11, 1483. doi: 10.1038/s41467-020-15245-5  doi: 10.1038/s41467-020-15245-5

    133. [133]

      Zhu, F.; Islam, M. S.; Zhou, L.; Gu, Z.; Liu, T.; Wang, X.; Luo, J.; Nan, C. W.; Mo, Y.; Ma, C. Nat. Commun. 2020, 11, 1828. doi: 10.1038/s41467-020-15544-x  doi: 10.1038/s41467-020-15544-x

    134. [134]

      Xu, Z.; Chen, X.; Chen, R.; Li, X.; Zhu, H. NPJ Comput. Mater. 2020, 6, 47. doi: 10.1038/s41524-020-0324-7  doi: 10.1038/s41524-020-0324-7

    135. [135]

      Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. Nat. Energy 2020, 5, 299. doi: 10.1038/s41560-020-0575-z  doi: 10.1038/s41560-020-0575-z

    136. [136]

      Mo, F.; Ruan, J.; Sun, S.; Lian, Z.; Yang, S.; Yue, X.; Song, Y.; Zhou, Y.; Fang, F.; Sun, G.; et al. Adv. Energy Mater. 2019, 9, 1902123. doi: 10.1002/aenm.201902123  doi: 10.1002/aenm.201902123

    137. [137]

      Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    138. [138]

      Duan, J.; Wu, W.; Nolan, A. M.; Wang, T.; Wen, J.; Hu, C.; Mo, Y.; Luo, W.; Huang, Y. Adv. Mater. 2019, 31, 1807243. doi: 10.1002/adma.201807243  doi: 10.1002/adma.201807243

    139. [139]

      Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T.; Wang, Z.; Yang, W.; Hu, C.; Luo, W.; Huang, Y. Angew. Chem. Int. Ed. 2020, 59, 3699. doi: 10.1002/anie.201914417.  doi: 10.1002/anie.201914417

    140. [140]

      Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 82. doi: 10.1021/jacs.7b10864  doi: 10.1021/jacs.7b10864

    141. [141]

      Fergus, J. W. J. Power Sources 2010, 195, 4554. doi: 10.1016/j.jpowsour.2010.01.076  doi: 10.1016/j.jpowsour.2010.01.076

    142. [142]

      Yan, M.; Liang, J.; Zuo, T.; Yin, Y.; Xin, S.; Tan, S.; Guo, Y.; Wan, L. Adv. Funct. Mater. 2020, 30, 1908047. doi: 10.1002/adfm.201908047  doi: 10.1002/adfm.201908047

    143. [143]

      Li, X.; Wang, D.; Wang, H.; Yan, H.; Gong, Z.; Yang, Y. ACS Appl. Mater. Interfaces 2019, 11, 22745. doi: 10.1021/acsami.9b05212  doi: 10.1021/acsami.9b05212

    144. [144]

      Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Nat. Nanotechnol. 2019, 14, 705. doi: 10.1038/s41565-019-0465-3  doi: 10.1038/s41565-019-0465-3

    145. [145]

      Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Nat. Energy 2019, 4, 365. doi: 10.1038/s41560-019-0349-7  doi: 10.1038/s41560-019-0349-7

    146. [146]

      Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K. A. N.; Cui, Y.; Reed, E. J. Energy Environ. Sci. 2017, 10, 306. doi: 10.1039/C6EE02697D  doi: 10.1039/C6EE02697D

    147. [147]

      Zhang, Y.; He, X.; Chen, Z.; Bai, Q.; Nolan, A. M.; Roberts, C. A.; Banerjee, D.; Matsunaga, T.; Mo, Y.; Ling, C. Nat. Commun. 2019, 10, 5260. doi: 10.1038/s41467-019-13214-1  doi: 10.1038/s41467-019-13214-1

    148. [148]

      Kahle, L.; Marcolongo, A.; Marzari, N. Energy Environ. Sci. 2020, 13, 928. doi: 10.1039/C9EE02457C  doi: 10.1039/C9EE02457C

    149. [149]

      He, X.; Bai, Q.; Liu, Y.; Nolan, A. M.; Ling, C.; Mo, Y. Adv. Energy Mater. 2019, 9, 1902078. doi: 10.1002/aenm.201902078  doi: 10.1002/aenm.201902078

    150. [150]

      Harada, M.; Takeda, H.; Suzuki, S.; Nakano, K.; Tanibata, N.; Nakayama, M.; Karasuyama, M.; Takeuchi, I. J. Mater. Chem. A 2020, 8, 15103. doi: 10.1039/D0TA04441E  doi: 10.1039/D0TA04441E

    151. [151]

      Chan, M. K. Y.; Wolverton, C.; Greeley, J. P. J. Am. Chem. Soc. 2012, 134, 14362. doi: 10.1021/ja301766z  doi: 10.1021/ja301766z

    152. [152]

      He, Y.; Ren, X.; Xu, Y.; Engelhard, M. H.; Li, X.; Xiao, J.; Liu, J.; Zhang, J. G.; Xu, W.; Wang, C. Nature Nanotech. 2019, 14, 1042. doi: 10.1038/s41565-019-0558-z  doi: 10.1038/s41565-019-0558-z

    153. [153]

      Nomura, Y.; Yamamoto, K.; Fujii, M.; Hirayama, T.; Igaki, E.; Saitoh, K. Nat. Commun. 2020, 11, 2824. doi: 10.1038/s41467-020-16622-w  doi: 10.1038/s41467-020-16622-w

    154. [154]

      Jana, A.; Woo, S. I.; Vikrant, K. S. N.; García, R. E. Energy Environ. Sci. 2019, 12, 3595. doi: 10.1039/C9EE01864F  doi: 10.1039/C9EE01864F

    155. [155]

      Chen, X.; Bai, Y.; Zhao, C.; Shen, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 11192. doi: 10.1002/anie.201915623  doi: 10.1002/anie.201915623

    156. [156]

      Tu, Z.; Choudhury, S.; Zachman, M. J.; Wei, S.; Zhang, K.; Kourkoutis, L. F.; Archer, L. A. Nat. Energy 2018, 3, 310. doi: 10.1038/s41560-018-0096-1  doi: 10.1038/s41560-018-0096-1

    157. [157]

      Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H.; et al. Nat. Mater. 2019, 18, 384. doi: 10.1038/s41563-019-0305-8  doi: 10.1038/s41563-019-0305-8

    158. [158]

      Zheng, G.; Wang, C.; Pei, A.; Lopez, J.; Shi, F.; Chen, Z.; Sendek, A. D.; Lee, H. W.; Lu, Z.; Schneider, H.; et al. ACS Energy Lett. 2016, 1, 1247. doi: 10.1021/acsenergylett.6b00456  doi: 10.1021/acsenergylett.6b00456

    159. [159]

      Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Joule 2018, 2, 764. doi: 10.1016/j.joule.2018.02.001  doi: 10.1016/j.joule.2018.02.001

    160. [160]

      Chi, S. S.; Liu, Y.; Song, W. L.; Fan, L. Z.; Zhang, Q. Adv. Funct. Mater. 2017, 27, 1700348. doi: 10.1002/adfm.201700348  doi: 10.1002/adfm.201700348

    161. [161]

      Wang, H.; Lin, D.; Liu, Y.; Li, Y.; Cui, Y. Sci. Adv. 2017, 3, e1701301. doi: 10.1126/sciadv.1701301  doi: 10.1126/sciadv.1701301

    162. [162]

      Zhao, J.; Lee, H. W.; Sun, J.; Yan, K.; Liu, Y.; Liu, W.; Lu, Z.; Lin, D.; Zhou, G.; Cui, Y. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 7408. doi: 10.1073/pnas.1603810113  doi: 10.1073/pnas.1603810113

    163. [163]

      Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    164. [164]

      Park, S. H.; King, P. J.; Tian, R.; Boland, C. S.; Coelho, J.; Zhang, C.; McBean, P.; McEvoy, N.; Kremer, M. P.; Daly, D.; et al. Nat. Energy 2019, 4, 560. doi: 10.1038/s41560-019-0398-y  doi: 10.1038/s41560-019-0398-y

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    8. [8]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    9. [9]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(13)
  • Abstract views(441)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return