Citation: Zhang Yunbo, Lin Qiaowei, Han Junwei, Han Zhiyuan, Li Tong, Kang Feiyu, Yang Quan-Hong, Lü Wei. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200808. doi: 10.3866/PKU.WHXB202008088 shu

Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes

  • Corresponding author: Lü Wei, lv.wei@sz.tsinghua.edu.cn
  • Received Date: 31 August 2020
    Revised Date: 29 September 2020
    Accepted Date: 30 September 2020
    Available Online: 19 October 2020

    Fund Project: the Guangdong Natural Science Funds for Distinguished Young Scholars 2017B030306006the National Key Research and Development Program of China 2018YFE0124500Shenzhen Basic Research Project JCYJ20180508152037520the National Natural Science Foundation of China 51972190The project was supported by the National Key Research and Development Program of China (2018YFE0124500), the National Natural Science Foundation of China (51972190), the Guangdong Natural Science Funds for Distinguished Young Scholars (2017B030306006), Shenzhen Basic Research Project (JCYJ20180508152037520)

  • Lithium (Li) metal anodes are critical components for next-generation high-energy density batteries, owing to their high theoretical specific capacity (3800 mAh·g-1) and low voltage (-3.040 V versus the standard hydrogen electrode). However, their applications are hindered by dendrite growth, which potentially induces inner short circuit and leads to safety issues. Employing three-dimensional (3D) current collectors is an effective strategy to suppress dendrite growth by decreasing the local current density. However, many of the reported 3D current collectors have a lithiophobic surface, which leads to non-uniform Li+ ion deposition. Thus, a complicated modification process is required to increase the lithiophilic property of the current collectors. In addition, they have a large weight or volume, which greatly lowers the energy density of the entire anode. In this work, we report a lightweight 3D carbon current collector with a lithiophilic surface by employing the direct carbonization of low-cost bacterial cellulose (BC) biomass. The current collector is composed of electrically conductive, robust, and interconnected carbon nanofiber networks, which provide sufficient void space to accommodate a large amount of Li and buffer the volume changes during Li plating and stripping. More importantly, homogeneously distributed oxygen-containing functional groups on the nanofiber surface are retained by controlling the carbonization temperature. These functional groups serve as uniform nucleation sites and help realize uniform and dendrite-free Li deposition. Notably, the areal mass density of the 3D carbon current collector was only 0.32 mg·cm-2 and its mass ratio in the whole anode was 28.8%, with a capacity of 3 mAh·cm-2. This 3D carbon current collector facilitates the stable working of the half cells for 150 cycles under a high current density of 3 mA·cm-2 or a high capacity of 4 mAh·cm-2. Symmetric cells exhibit a steady cycling life as long as 600 h under a current density of 1 mA·cm-2 and a capacity of 1 mAh·cm-2. Moreover, appreciable cycling performance was realized in the full cells when the anodes were paired with LiNi0.8Co0.15Al0.05 cathodes. Furthermore, the low-cost raw materials and the simple preparation method promise significant potential for the future applications of the proposed 3D current collectors.
  • 加载中
    1. [1]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    2. [2]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    3. [3]

      Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A. Nat. Energy 2016, 1, 1. doi: 10.1038/nenergy.2016.114  doi: 10.1038/nenergy.2016.114

    4. [4]

      Yue, X. Y; Cui, M.; Bao, J.; Yang, S. Y.; Chen, D.; Wu, X. J.; Zhou, Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    5. [5]

      Qian, J.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y.; Zhang, J. G. Nano Energy 2015, 15, 135. doi: 10.1016/j.nanoen.2015.04.009  doi: 10.1016/j.nanoen.2015.04.009

    6. [6]

      Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13, 961. doi: 10.1038/nmat4041  doi: 10.1038/nmat4041

    7. [7]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2, 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    8. [8]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    9. [9]

      Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 14207. doi: 10.1002/anie.201707093  doi: 10.1002/anie.201707093

    10. [10]

      Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y. Nat. Commun. 2015, 6, 7436. doi: 10.1038/ncomms8436  doi: 10.1038/ncomms8436

    11. [11]

      Yang, S. J.; Xu, X. Q., Cheng, X. B.; Wang, X. M.; Chen, J. X.; Xiao, Y.; Yuan, H.; Liu, H.; Chen, A. B.; Zhu, W. C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2007058.  doi: 10.3866/PKU.WHXB202007058

    12. [12]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    13. [13]

      Liu, B.; Xu, W.; Yan, P.; Kim, S. T.; Engelhard, M. H.; Sun, X.; Mei, D.; Cho, J.; Wang, C. M.; Zhang, J. G. Adv. Energy Mater. 2017, 7, 1602605. doi: 10.1002/aenm.201602605  doi: 10.1002/aenm.201602605

    14. [14]

      Wu, C.; Zhou, Y.; Zhu, X. L.; Zhan, M. Z.; Yang, H. X.; Qian, J. F. Acta Phys. -Chim. Sin. 2021, 37, 2008044.  doi: 10.3866/PKU.WHXB202008044

    15. [15]

      Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y. ACS Central Sci. 2018, 4, 97. doi: 10.1021/acscentsci.7b00480  doi: 10.1021/acscentsci.7b00480

    16. [16]

      Bucur, C. B.; Lita, A.; Osada, N.; Muldoon, J. Energy Environ. Sci. 2016, 9, 112. doi: 10.1039/c5ee03056k  doi: 10.1039/c5ee03056k

    17. [17]

      Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D.; Liu, Y.; Liu, C.; Hsu, P. C.; Bao, Z.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 4815. doi: 10.1021/jacs.6b13314  doi: 10.1021/jacs.6b13314

    18. [18]

      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    19. [19]

      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. Nat. Energy 2017, 2, 17119. doi: 10.1038/nenergy.2017.119  doi: 10.1038/nenergy.2017.119

    20. [20]

      Wei, Z.; Ren, Y.; Sokolowski, J.; Zhu, X.; Wu, G. InfoMat 2020, 2, 483. doi: 10.1002/inf2.12097  doi: 10.1002/inf2.12097

    21. [21]

      Yao, Y. X.; Zhang, X. Q.; Li, B. Q.; Yan, C.; Chen, P. Y.; Huang, J. Q.; Zhang, Q. InfoMat 2020, 2, 379. doi: 10.1002/inf2.12046  doi: 10.1002/inf2.12046

    22. [22]

      Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; et al. Nat. Mater. 2016, 16, 572. doi: 10.1038/nmat4821  doi: 10.1038/nmat4821

    23. [23]

      Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; et al. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 7094. doi: 10.1073/pnas.1600422113  doi: 10.1073/pnas.1600422113

    24. [24]

      Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K.; Pastel, G.; Lin, C. F.; Mo, Y.; et al. Adv. Mater. 2017, 29, 1606042. doi: 10.1002/adma.201606042  doi: 10.1002/adma.201606042

    25. [25]

      Liu, Y.; Zheng, L.; Gu, W.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2021, 37, 2004058.  doi: 10.3866/PKU.WHXB202004058

    26. [26]

      Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117  doi: 10.1002/adma.201504117

    27. [27]

      Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    28. [28]

      Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058  doi: 10.1038/ncomms9058

    29. [29]

      Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotechnol. 2016, 11, 626. doi: 10.1038/nnano.2016.32  doi: 10.1038/nnano.2016.32

    30. [30]

      Yun, Q.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. H. Adv. Mater. 2016, 28, 6932. doi: 10.1002/adma.201601409  doi: 10.1002/adma.201601409

    31. [31]

      Liang, Z.; Lin, D.; Zhao, J.; Lu, Z.; Liu, Y.; Liu, C.; Lu, Y.; Wang, H.; Yan, K.; Tao, X.; Cui, Y. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2862. doi: 10.1073/pnas.1518188113  doi: 10.1073/pnas.1518188113

    32. [32]

      Wang, Q.; Wu, K.; Wang, H. C.; Liu, W.; Zhou, H. H. Acta Phys. -Chim. Sin. 2021, 37, 2007092.  doi: 10.3866/PKU.WHXB202007092

    33. [33]

      Chazalviel, J. N. Phys. Rev. A 1990, 42, 7355. doi: 10.1103/PhysRevA.42.7355  doi: 10.1103/PhysRevA.42.7355

    34. [34]

      Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2016, 28, 2888. doi: 10.1002/adma.201506124  doi: 10.1002/adma.201506124

    35. [35]

      Jin, C.; Sheng, O.; Luo, J.; Yuan, H.; Fang, C.; Zhang, W.; Huang, H.; Gan, Y.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Nano Energy 2017, 37, 177. doi: 10.1016/j.nanoen.2017.05.015  doi: 10.1016/j.nanoen.2017.05.015

    36. [36]

      Lin, Y. C.; Cho, J.; Tompsett, G. A.; Westmoreland, P. R.; Huber, G. W. J. Phys. Chem. C 2009, 113, 20097. doi: 10.1021/jp906702p  doi: 10.1021/jp906702p

    37. [37]

      Lee, H. J.; Chung, T. J.; Kwon, H. J.; Kim, H. J.; Tze, W. T. Y. Cellulose 2012, 19, 1251. doi: 10.1007/s10570-012-9705-5  doi: 10.1007/s10570-012-9705-5

    38. [38]

      Feng, Y.; Zhang, X.; Shen, Y.; Yoshino, K.; Feng, W. Carbohydr. Polym. 2012, 87, 644. doi: 10.1016/j.carbpol.2011.08.039  doi: 10.1016/j.carbpol.2011.08.039

    39. [39]

      Mueller, D.; Mandelli, J. S.; Marins, J. A.; Soares, B. G.; Porto, L. M.; Rambo, C. R.; Barra, G. M. O. Cellulose 2012, 19, 1645. doi: 10.1007/s10570-012-9754-9  doi: 10.1007/s10570-012-9754-9

    40. [40]

      Mukherjee, R.; Thomas, A. V.; Datta, D.; Singh, E.; Li, J.; Eksik, O.; Shenoy, V. B.; Koratkar, N. Nat. Commun. 2014, 5, 3710. doi: 10.1038/ncomms4710  doi: 10.1038/ncomms4710

    41. [41]

      Gong, Y.; Zhang, M.; Cao, G. RSC Adv. 2015, 5, 26521. doi: 10.1039/C5RA01518A  doi: 10.1039/C5RA01518A

    42. [42]

      Zhang, J.; Wang, D. W.; Lv, W.; Zhang, S.; Liang, Q.; Zheng, D.; Kang, F.; Yang, Q. H. Energy Environ. Sci. 2017, 10, 370. doi: 10.1039/c6ee03367a  doi: 10.1039/c6ee03367a

    43. [43]

      Wang, L.; Liu, J.; Yuan, S.; Wang, Y.; Xia, Y. Energy Environ. Sci. 2016, 9, 224. doi: 10.1039/C5EE02837J  doi: 10.1039/C5EE02837J

    44. [44]

      Guan, P.; Liu, L.; Lin, X. J. Electrochem. Soc. 2015, 162, A1798. doi: 10.1149/2.0521509jes  doi: 10.1149/2.0521509jes

  • 加载中
    1. [1]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    2. [2]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    3. [3]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    4. [4]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    5. [5]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    8. [8]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    9. [9]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    10. [10]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    11. [11]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    12. [12]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    13. [13]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    14. [14]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    15. [15]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    16. [16]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    17. [17]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    18. [18]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    19. [19]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    20. [20]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

Metrics
  • PDF Downloads(10)
  • Abstract views(405)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return