Citation: Wang Zhida, Feng Yuancheng, Lu Songtao, Wang Rui, Qin Wei, Wu Xiaohong. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200808. doi: 10.3866/PKU.WHXB202008082 shu

Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer

  • Corresponding author: Lu Songtao, lusongtao@hit.edu.cn Wu Xiaohong, wuxiaohong@hit.edu.cn
  • Received Date: 27 August 2020
    Revised Date: 30 September 2020
    Accepted Date: 16 October 2020
    Available Online: 22 October 2020

    Fund Project: the Heilongjiang Postdoctoral Foundation, China LBH-TZ08the Foundation of Heilongjiang Scientific Committee, China YQ2020E010The project was supported by the National Natural Science Foundation of China (51671074), the China Postdoctoral Science Foundation (2017T100239), the Heilongjiang Postdoctoral Foundation, China (LBH-TZ08), and the Foundation of Heilongjiang Scientific Committee, China (YQ2020E010)the China Postdoctoral Science Foundation 2017T100239the National Natural Science Foundation of China 51671074

  • The emerging market for consumer electronics and electric vehicles has stimulated intensive research on lithium metal batteries (LMBs) with high energy densities and large cycle lifetimes. A metallic Li anode has a high theoretical specific capacity of 3860 mAh·g-1 and lowest redox potential of -3.04 V (vs. the standard hydrogen electrode) and is generally considered an ideal electrode for next-generation high-energy-density LMBs. However, their deployment in practical batteries is severely hindered by the formation of unsafe dendrites and fast capacity decay due to the uncontrollable formation of fragile solid electrolyte interfaces (SEIs). Herein, we describe the stable cycling of carbon paper (Cp)-supported Li-Sn alloy anodes in carbonate electrolytes modified with 1 mol·L-1 bis(2, 2, 2-trifluorotoluene) carbonate (DTFEC). The molten Li-Sn alloy with 8% (mass fraction) Sn was synthesized through thermal treatment at 400 ℃ in an atmosphere of Ar. The Li-Sn-alloy-coated carbon paper (SnLi/Cp) was obtained after the molten alloy was conformally loaded onto the surface of a carbon paper under the action of capillarity. The as-synthesized interconnected SnLi/Cp composite was characterized by X-ray diffraction, energy-dispersive spectrometry, and scanning electron microscopy. The porous SnLi/Cp composite consisted of only Li and Sn5Li22 phases supported by the mechanically strong carbon paper with a good conductivity; no impurity was observed in the XRD results. The synergy of the DTFEC additive and alloying with Sn provided composite anodes with significantly improved rate capability and remarkable stability owing to the formation of a dense fluorinated SEI layer with high mechanical strength and ion penetration. Moreover, with the porous SnLi alloy covered by a fluorinated protection layer, lithium avoids the intrinsic issues of uncontrollable volume expansion and dendrite growth, which restrict the practical application of Li metal, exhibiting a stabilized over-potential of only 90 mV after 100 cycles at 8 mA·cm-2. Notably, stable cycling with a 12 μL lean electrolyte was also observed at 5 mA·cm-2. Overall, the prototype full cell assembled with the SnLi/Cp anode and NMC811 cathode exhibited a high Coulombic efficiency (98.1%) and remarkable cycling stability for 300 cycles at 1C (1.5 mA·cm-2). The rate capability was evaluated at various rates of 0.5C to 5C. Compared to pure Li, the SnLi/Cp anode in the full cell exhibited a higher capacity, particularly at a high rate (~126 mAh·g-1 at 5C). Our approach provides integrated Li metal electrodes with effectively improved cycle stabilities and is very attractive for practical high-energy-density lithium batteries.
  • 加载中
    1. [1]

      Adair, K. R.; Zhao, C.; Banis, M. N.; Zhao, Y.; Li, R.; Cai, M.; Sun, X. Angew. Chem. Int. Ed. 2019, 58, 15797. doi: 10.1002/anie.201907759  doi: 10.1002/anie.201907759

    2. [2]

      Yue, X. Y.; Ma, C.; Bao, J.; Yang, S. Y.; Chen, D.; Wu, X. J.; Zhou, Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012.  doi: 10.3866/PKU.WHXB202005012

    3. [3]

      Su, Y.; Ye, L.; Fitzhugh, W.; Wang, Y.; Gil-González, E.; Kim, I.; Li, X. Energy Environ. Sci. 2020, 13, 908. doi: 10.1039/C9EE04007B  doi: 10.1039/C9EE04007B

    4. [4]

      Qiao, Y.; Li, Q.; Cheng, X. B.; Liu, F.; Yang, Y.; Lu, Z.; Zhao, J.; Wu, J.; Liu, H.; Yang, S.; Liu, Y. ACS Appl. Mater. Interfaces 2020, 12, 5767. doi: 10.1021/acsami.9b18315  doi: 10.1021/acsami.9b18315

    5. [5]

      Li, S.; Fang, S.; Dou, H.; Zhang, X. ACS Appl. Mater. Interfaces 2019, 11, 20804. doi: 10.1021/ acsami.9b03940  doi: 10.1021/acsami.9b03940

    6. [6]

      Indu, M. S.; Alexander, G. V.; Deviannapoorani, C.; Murugan, R. Ceram. Int. 2019, 45, 22610. doi: 10.1016/j.ceramint.2019.07.293  doi: 10.1016/j.ceramint.2019.07.293

    7. [7]

      Yan, C.; Xu, R.; Qin, J.; Yuan, H.; Xiao, Y.; Xu, L.; Huang, J. Angew. Chem. Int. Ed. 2019, 58, 15235. doi: 10.1002/anie.201908874  doi: 10.1002/anie.201908874

    8. [8]

      Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/ s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    9. [9]

      Li, X.; Yang, G.; Zhang, S.; Wang, Z.; Chen, L. Nano Energy 2019, 66, 104144. doi: 10.1016/ j.nanoen.2019.104144  doi: 10.1016/j.nanoen.2019.104144

    10. [10]

      Assegie, A. A.; Chung, C. C.; Tsai, M. C.; Su, W. N.; Chen, C. W.; Hwang, B. J. Nanoscale 2019, 11, 2710. doi: 10.1039/C8NR06980H  doi: 10.1039/C8NR06980H

    11. [11]

      Thirumalraj, B.; Hagos, T. T.; Huang, C. J.; Teshager, M. A.; Cheng, J. H.; Su, W. N.; Hwang, B. J. J. Am. Chem. Soc. 2019, 141, 18612. doi: 10.1021/jacs.9b10195  doi: 10.1021/jacs.9b10195

    12. [12]

      Peng, Z.; Ren, F.; Yang, S.; Wang, M.; Sun, J.; Wang, D.; Xu, W.; Zhang, J. G. Nano Energy 2019, 59, 110. doi: 10.1021/jacs.9b10195  doi: 10.1021/jacs.9b10195

    13. [13]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365.  doi: 10.3866/PKU.WHXB201903008

    14. [14]

      Chen, K. H.; Sanchez, A. J.; Kazyak, E.; Davis, A. L.; Dasgupta, N. P. Adv. Energy Mater. 2019, 9, 1802534. doi: 10.1002/aenm.201802534  doi: 10.1002/aenm.201802534

    15. [15]

      Shangguan, X.; Xu, G.; Cui, Z.; Wang, Q.; Du, X.; Chen, K.; Huang, S.; Jia, G.; Li, F.; Wang, X.; et al. Small 2019, 15, 1900269. doi: 10.1002/smll.201900269  doi: 10.1002/smll.201900269

    16. [16]

      Bae, J.; Qian, Y.; Li, Y.; Zhou, X.; Goodenough, J. B.; Yu, G. Energy Environ. Sci. 2019, 12, 3319. doi: 10.1039/C9EE02558H  doi: 10.1039/C9EE02558H

    17. [17]

      Cao, C.; Li, Y.; Feng, Y.; Peng, C.; Li, Z.; Feng, W. Energy Storage Mater. 2019, 19, 401. doi: 10.1016/j.ensm.2019.03.004  doi: 10.1016/j.ensm.2019.03.004

    18. [18]

      Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q.; Zhou, Y. Energy Storage Mater. 2019, 18, 389. doi: 10.1016/j.ensm. 2019.02.006  doi: 10.1016/j.ensm.2019.02.006

    19. [19]

      Guo, F.; Wu, C.; Chen, H.; Zhong, F.; Ai, X.; Yang, H.; Qian, J. Energy Storage Mater. 2020, 24, 635. doi: 10.1016/j.ensm.2019.06.010  doi: 10.1016/j.ensm.2019.06.010

    20. [20]

      Li, N.; Yin, Y.; Yang, C.; Guo, Y. Adv. Mater. 2016, 28, 1853. doi: 10.1002/adma.201504526  doi: 10.1002/adma.201504526

    21. [21]

      Li, N.; Shi, Y.; Yin, Y.; Zeng, X.; Li, J.; Li, C.; Wan, L.; Wen, R.; Guo, Y. J. Angew. Chem. Int. Ed. 2018, 57, 1505. doi: 10.1002/anie.201710806  doi: 10.1002/anie.201710806

    22. [22]

      Chen, L.; Li, X. L.; Zhao, Q.; Cai, W. B.; Jiang, Z. Y. Acta Phys. -Chim. Sin. 2006, 22, 1155.  doi: 10.3866/PKU.WHXB20060924

    23. [23]

      Zheng, L.; Guo, F.; Kang, T; Yang, J.; Liu, Y.; Gu, W.; Zhao, Y.; Lin, H.; Shen, Y.; Lu, W.; Chen, L. Nano Res. 2020, 13, 1324. doi: 10.1007/s12274-019-2565-7  doi: 10.1007/s12274-019-2565-7

    24. [24]

      Lang, J.; Long, Y.; Qu, J.; Luo, X.; Wei, H.; Huang, K.; Zhang, H.; Qi, L.; Zhang, Q.; Li, Z.; Wu, H. Energy Storage Mater. 2019, 16, 85. doi: 10.1016/j.ensm.2018.04.024  doi: 10.1016/j.ensm.2018.04.024

    25. [25]

      DeSilva, J.; Udinwe, V.; Sideris, P J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G. J. Electrochem. Soc. 2012, 41, 207. doi: 10.1149/1.4717978  doi: 10.1149/1.4717978

    26. [26]

      Liu, W.; Lin, D.; Pei, A.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 15443. doi: 10.1021/jacs.6b08730  doi: 10.1021/jacs.6b08730

    27. [27]

      Li, S.; Wang, C.; Yu, J.; Han, Y.; Lu, Z. Energy Storage Mater. 2019, 20, 7. doi: 10.1016/ j.ensm.2018.11.030  doi: 10.1016/j.ensm.2018.11.030

    28. [28]

      Kong, L. L.; Wang, L.; Ni, Z. C.; Liu, S.; Li, G. R.; Gao, X. P. Adv. Funct. Mater. 2019, 29, 1808756. doi: 10.1002/adfm.201808756  doi: 10.1002/adfm.201808756

    29. [29]

      Hu, Z.; Li, Z.; Xia, Z.; Jiang, T.; Wang, G.; Sun, J.; Sun, P.; Yan, C.; Zhang, L. Energy Storage Mater. 2019, 22, 29. doi: 10.1016/j.ensm.2018.12.020  doi: 10.1016/j.ensm.2018.12.020

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(6)
  • Abstract views(525)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return