Citation: Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200806. doi: 10.3866/PKU.WHXB202008068 shu

Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction

  • Corresponding author: Dichang Zhong, dczhong@email.tjut.edu.cn Tongbu Lu, lutongbu@tjut.edu.cn
  • Received Date: 22 August 2020
    Revised Date: 21 September 2020
    Accepted Date: 22 September 2020
    Available Online: 28 September 2020

    Fund Project: the National Natural Science Foundation of China 21931007the National Natural Science Foundation of China 21790052the National Natural Science Foundation of China 21861001the National Natural Science Foundation of China 22071182111 Project of China D17003the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China 2018KJ129

  • Nowadays, more than 85% of the energy is generated by fossil fuels. The excessive utilization of finite fossil fuels has resulted in the crises of energy shortage and global warming caused by greenhouse gas emissions. Researchers have conceived several means for trying to solve these problems, among which the sunlight-driven CO2 reduction is viewed as a sustainable process that utilizes CO2 as the raw material to produce chemical fuels, including CO, formate, and CH4; this method not only realizes the conversion and storage of intermittent solar energy, but also decreases the CO2 concentration in the atmosphere and alleviates global warming. However, photochemical CO2 reduction usually undergoes a sluggish process due to the inertness of CO2. Moreover, the selectivity of the CO2 reduction reaction is also challenged by the hydrogen evolution reaction, which exhibits faster reaction kinetics. In this context, the rational design and synthesis of efficient and selective catalysts for photochemical CO2 reduction are major challenges. Recently, non-noble metal Co(Ⅱ) complexes as molecular catalysts have shown excellent catalytic performances in photocatalytic CO2 reduction. During the past several decades, significant progress has been achieved in improving the applicability of Co(Ⅱ) complexes for photocatalytic CO2 reduction. In this review, we systematically report the latest research progress on the use of Co(Ⅱ) complexes in photocatalytic CO2 reduction. To describe the progress of this research, we characterized the Co(Ⅱ)-based molecular catalysts into four categories according to ligand types, namely: (1) macrocyclic ligands, (2) polypyridine ligands, (3) porphyrin and porphyrin-like ligands, and (4) nonplanar N4 ligands. The progress of the research on the heterogeneity of Co(Ⅱ) molecular complexes used for photochemical CO2 reduction was also introduced and discussed. Furthermore, the effects of catalyst structures on catalytic efficiency, selectivity, and stability were particularly summarized and discussed, with the aim of revealing and building the relationship between catalyst structures and catalytic performances to guide the future design and synthesis of Co(Ⅱ) molecular complexes with excellent catalytic performance. Finally, the current challenges and problems in photocatalytic CO2 reduction were summarized, and several suggestions for designing efficient Co(Ⅱ)-based molecular catalysts for photocatalytic CO2 reduction were put forward. The trends for the future development of Co(Ⅱ) complex molecular catalysts were also investigated with regard to photocatalytic CO2 reduction.
  • 加载中
    1. [1]

      Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M. D.; Seneviratne, S.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D. Nature 2013, 500, 287. doi: 10.1038/nature12350  doi: 10.1038/nature12350

    2. [2]

      Creutzig, F.; Agoston, P.; Minx, J.; Canadell, J.; Andrew, R.; Quéré, C.; Peters, G.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Nature Climate Change 2016, 6, 1054. doi: 10.1038/nclimate3169  doi: 10.1038/nclimate3169

    3. [3]

      Davis, S.; Caldeira, K. P. Natl. Acad. Sci. 2010, 107, 5687. doi: 10.1073/pnas.0906974107  doi: 10.1073/pnas.0906974107

    4. [4]

      Bonin, J.; Maurin, A.; Robert, M. Coord. Chem. Rev. 2017, 334, 184. doi: 10.1016/j.ccr.2016.09.005  doi: 10.1016/j.ccr.2016.09.005

    5. [5]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    6. [6]

      Yang, Y.; Zhang, Y.; Hu, J.; Wan, L. Acta Phys. -Chim. Sin. 2020, 36, 1906085.  doi: 10.3866/PKU.WHXB201906085

    7. [7]

      Lan, B.; Shi, H. Acta Phys. -Chim. Sin. 2014, 30, 2177.  doi: 10.3866/PKU.WHXB201409303

    8. [8]

      Artz, J.; Mueller, T.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. doi: 10.1021/acs.chemrev.7b00435  doi: 10.1021/acs.chemrev.7b00435

    9. [9]

      Zhou, Y.; Han, N.; Li, Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041.  doi: 10.3866/PKU.WHXB202001041

    10. [10]

      Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37, 2005027.  doi: 10.3866/PKU.WHXB202005027

    11. [11]

      Wang, L.; Zhao, B.; Wang, C.; Sun, M.; Yu, Y.; Zhang, B. J. Mater. Chem. A 2020, 8, 10175. doi: 10.1039/D0TA01256D  doi: 10.1039/D0TA01256D

    12. [12]

      Wang, F. ChemSusChem2017, 10, 4393. doi: 10.1002/cssc.201701385  doi: 10.1002/cssc.201701385

    13. [13]

      Francke, R.; Schille, B.; Roemelt, M. Chem. Rev. 2018, 118, 4631. doi: 10.1021/acs.chemrev.7b00459  doi: 10.1021/acs.chemrev.7b00459

    14. [14]

      Bose, P.; Mukherjee, C.; Golder, A. Inorg. Chem. Front. 2019, 6, 1721. doi: 10.1039/c9qi00353c  doi: 10.1039/c9qi00353c

    15. [15]

      Morris, A.; Meyer, G.; Fujita, E. Acc. Chem. Res. 2009, 42, 1983. doi: 10.1021/ar9001679  doi: 10.1021/ar9001679

    16. [16]

      Wang, W.; Himeda, Y.; Muckerman, J.; Manbeck, G.; Fujita, E. Chem. Rev. 2015, 115, 12936. doi: 10.1021/acs.chemrev.5b00197  doi: 10.1021/acs.chemrev.5b00197

    17. [17]

      Wang, J.; Yamauchi, K.; Huang, H.; Sun, J.; Luo, Z.; Zhong, D.; Lu, T.; Sakai, K. Angew. Chem. Int. Edit. 2019, 58, 10923. doi: 10.1002/anie.201904578  doi: 10.1002/anie.201904578

    18. [18]

      Liu, D.; Zhong, D.; Lu, T. EnergyChem 2020, 2, 100034. doi: 10.1016/j.enchem.2020.100034  doi: 10.1016/j.enchem.2020.100034

    19. [19]

      Fukuzumi, S.; Lee, Y.; Ahn, H.; Nam, W. Chem. Sci. 2018, 9, 6017. doi: 10.1039/c8sc02220h  doi: 10.1039/c8sc02220h

    20. [20]

      Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. ACS Catal. 2017, 7, 70. doi: 10.1021/acscatal.6b02181  doi: 10.1021/acscatal.6b02181

    21. [21]

      Barlow, J.; Yang, J. ACS Cent. Sci. 2019, 5, 580. doi: 10.1021/acscentsci.9b00095  doi: 10.1021/acscentsci.9b00095

    22. [22]

      Chen, J.; Du, X.; Yu, T.; Zeng, Y.; Zhang, X.; Li, Y. Imag. Sci. Photochem. 2015, 05, 358.  doi: 10.7517/j.issn.1674-0475.2015.05.358

    23. [23]

      Tran, P.; Wong, L.; Barber, J.; Loo, J. Energy Environ. Sci. 2012, 5, 5902. doi: 10.1039/c2ee02849b  doi: 10.1039/c2ee02849b

    24. [24]

      Yang, W.; Wang, H.; Liu, R.; Wang, J.; Zhang, C.; Li, C.; Zhong, D.; Lu, T. Angew. Chem. Int. Ed. 2020. doi: 10.1002/anie.202011068  doi: 10.1002/anie.202011068

    25. [25]

      Cao, L.; Lu, D.; Zhong, D.; Lu, T. Coord. Chem. Rev. 2020, 407, 213156. doi: 10.1016/j.ccr.2019.213156  doi: 10.1016/j.ccr.2019.213156

    26. [26]

      Deng, J.; Luo, J.; Mao, Y.; Lai, S.; Gong, Y.; Zhong, D.; Lu, T. Sci. Adv. 2020, 6, eaax9976. doi: 10.1126/sciadv.aax9976  doi: 10.1126/sciadv.aax9976

    27. [27]

      Liu, D.; Ouyang, T.; Xiao, R.; Liu, W.; Zhong, D.; Xu, Z.; Lu, T. ChemSusChem 2019, 12, 2166. doi: 10.1002/cssc.201900338  doi: 10.1002/cssc.201900338

    28. [28]

      Grills, D.; Ertem, M.; McKinnon, M.; Ngo, K.; Rochford, J. Coord. Chem. Rev. 2018, 374, 173. doi: 10.1016/j.ccr.2018.05.022  doi: 10.1016/j.ccr.2018.05.022

    29. [29]

      Benson, E.; Kubiak, C.; Sathrum, A.; Smieja, J. Chem. Soc. Rev. 2009, 38, 89. doi: 10.1039/B804323J  doi: 10.1039/B804323J

    30. [30]

      Meshitsuka, S.; Ichikawa, M.; Tamaru, K. J. Chem. Soc. Chem. Commun. 1974, 158. doi: 10.1039/C39740000158  doi: 10.1039/C39740000158

    31. [31]

      Fisher, B.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361. doi: 10.1021/ja00544a035  doi: 10.1021/ja00544a035

    32. [32]

      Tinnemans, A.; Koster, T.; Thewissen, D.; Mackor, A. Recl. Trav. Chim. Pays-Bas. 1984, 103, 288. doi: 10.1002/recl.19841031004  doi: 10.1002/recl.19841031004

    33. [33]

      Sheng, H.; Frei, H. J. Am. Chem. Soc. 2016, 138, 9959. doi: 10.1021/jacs.6b05248  doi: 10.1021/jacs.6b05248

    34. [34]

      Ogata, T.; Yanagida, S.; Brunschwig, B.; Fujita, E. J. Am. Chem. Soc. 1995, 117, 6708. doi: 10.1021/ja00130a009  doi: 10.1021/ja00130a009

    35. [35]

      Ogata, T.; Yamamoto, Y.; Wada, Y.; Murakoshi, K.; Kusaba, M.; Nakashima, N.; Ishida, A.; Takamuku, S.; Yanagida, S. J. Phys. Chem. 1995, 99, 11916. doi: 10.1021/j100031a020  doi: 10.1021/j100031a020

    36. [36]

      Matsuoka, S.; Yamamoto, K.; Ogata, T.; Kusaba, M.; Nakashima, N.; Fujita, E.; Yanagida, S. J. Am. Chem. Soc. 1993, 115, 601. doi: 10.1021/ja00055a032  doi: 10.1021/ja00055a032

    37. [37]

      Matsuoka, S.; Yamamoto, K.; Pac, C.; Yanagida, S. Chem. Lett. 1991, 20, 2099. doi: 10.1246/cl.1991.2099  doi: 10.1246/cl.1991.2099

    38. [38]

      Chen, L.; Guo, Z.; Wei, X.; Gallenkamp, C.; Bonin, J.; Anxolabéhère-Mallart, E.; Lau, K.; Lau, T.; Robert, M. J. Am. Chem. Soc. 2015, 137, 10918. doi: 10.1021/jacs.5b06535  doi: 10.1021/jacs.5b06535

    39. [39]

      Hirose, T.; Maeno, Y.; Himeda, Y. J. Mol. Catal. A: Chem. 2003, 193, 27. doi: 10.1016/S1381-1169(02)00478-8  doi: 10.1016/S1381-1169(02)00478-8

    40. [40]

      Komatsuzaki, N.; Himeda, Y.; Hirose, T.; Sugihara, H.; Kasuga, K. Bull. Chem. Soc. Jpn. 1999, 72, 725. doi: 10.1246/bcsj.72.725  doi: 10.1246/bcsj.72.725

    41. [41]

      Guo, Z.; Cheng, S.; Cometto, C.; Anxolabéhère-Mallart, E.; Ng, S.; Ko, C.; Liu, G.; Chen, L.; Robert, M.; Lau, T. J. Am. Chem. Soc. 2016, 138, 9413. doi: 10.1021/jacs.6b06002  doi: 10.1021/jacs.6b06002

    42. [42]

      Guo, Z.; Chen, G.; Cometto, C.; Ma, B.; Zhao, H.; Groizard, T.; Chen, L.; Fan, H.; Man, W.; Yiu, S.; et al. Nat. Catal. 2019, 2, 801. doi: 10.1038/s41929-019-0331-6  doi: 10.1038/s41929-019-0331-6

    43. [43]

      Shimoda, T.; Morishima, T.; Kodama, K.; Hirose, T.; Polyansky, D.; Manbeck, G.; Muckerman, J.; Fujita, E. Inorg. Chem. 2018, 57, 5486. doi: 10.1021/acs.inorgchem.8b00433  doi: 10.1021/acs.inorgchem.8b00433

    44. [44]

      Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C.; Ejeh, D.; Hambright, P.; Fujita, E. J. Phys. Chem. A 1998, 102, 2870. doi: 10.1021/jp9807017  doi: 10.1021/jp9807017

    45. [45]

      Dhanasekaran, T.; Grodkowski, J.; Neta, P.; Hambright, P.; Fujita, E. J. Phys. Chem. A 1999, 103, 7742. doi: 10.1021/jp991423u  doi: 10.1021/jp991423u

    46. [46]

      Grodkowski, J.; Neta, P.; Fujita, E.; Mahammed, A.; Simkhovich, L.; Gross, Z. J. Phys. Chem. A 2002, 106, 4772. doi: 10.1021/jp013668o  doi: 10.1021/jp013668o

    47. [47]

      Call, A.; Cibian, M.; Yamamoto, K.; Nakazono, T.; Yamauchi, K.; Sakai, K. ACS Catal. 2019, 9, 4867. doi: 10.1021/acscatal.8b04975  doi: 10.1021/acscatal.8b04975

    48. [48]

      Zhang, Y.; Schulz, M.; Waechtler, M.; Karnahl, M.; Dietzek, B. Coord. Chem. Rev. 2018, 356, 127. doi: 10.1016/j.ccr.2017.10.016  doi: 10.1016/j.ccr.2017.10.016

    49. [49]

      Zhang, X.; Cibian, M.; Call, A.; Yamauchi, K.; Sakai, K. ACS Catal. 2019, 9, 11263. doi: 10.1021/acscatal.9b04023  doi: 10.1021/acscatal.9b04023

    50. [50]

      Chan, S.; Lam, T.; Yang, C.; Yan, S.; Cheng, N. Chem. Commun. 2015, 51, 7799. doi: 10.1039/c5cc00566c  doi: 10.1039/c5cc00566c

    51. [51]

      Chan, S.; Lam, T.; Yang, C.; Lai, J.; Cao, B.; Zhou, Z.; Zhu, Q. Polyhedron 2017, 125, 156. doi: 10.1016/j.poly.2016.09.049  doi: 10.1016/j.poly.2016.09.049

    52. [52]

      Yang, C.; Mehmood, F.; Lam, T.; Chan, S.; Wu, Y.; Yeung, C.; Guan, X.; Li, K.; Chung, C.; Zhou, C.; et al. Chem. Sci. 2016, 7, 3123. doi: 10.1039/c5sc04458h  doi: 10.1039/c5sc04458h

    53. [53]

      Zhu, C.; Zhang, Y.; Liao, R.; Xia, W.; Hu, J.; Wu, J.; Liu, H.; Wang, F. Dalton Trans. 2018, 47, 13142. doi: 10.1039/c8dt02148a  doi: 10.1039/c8dt02148a

    54. [54]

      Wang, F.; Cao, B.; To, W.; Tse, C.; Li, K.; Chang, X.; Zang, C.; Chan, S.; Che, C. Catal. Sci. Technol. 2016, 6, 7408. doi: 10.1039/C6CY01265E  doi: 10.1039/C6CY01265E

    55. [55]

      Zhu, C.; Huang, Y.; Hu, J.; Li, Q.; Tan, H.; Gui, M.; Deng, S.; Wang, F. J. Photochem. Photobiol. A 2018, 355, 175. doi: 10.1016/j.jphotochem.2017.09.056  doi: 10.1016/j.jphotochem.2017.09.056

    56. [56]

      Lin, J.; Qin, B.; Zhao, G. J. Photochem. Photobiol. A 2018, 354, 181. doi: 10.1016/j.jphotochem.2017.09.019  doi: 10.1016/j.jphotochem.2017.09.019

    57. [57]

      Chen, B.; Morlanes, N.; Adogla, E.; Takanabe, K.; Rodionov, V. ACS Catal. 2016, 6, 4647. doi: 10.1021/acscatal.6b01237  doi: 10.1021/acscatal.6b01237

    58. [58]

      Ouyang, T.; Hou, C.; Wang, J.; Liu, W.; Zhong, D.; Ke, Z.; Lu, T. Inorg. Chem. 2017, 56, 7307. doi: 10.1021/acs.inorgchem.7b00566  doi: 10.1021/acs.inorgchem.7b00566

    59. [59]

      Hossain, A.; Liljegren, J. A.; Powell, D.; Bowman-James, K. Inorg. Chem. 2004, 43, 3751. doi: 10.1021/ic049762b  doi: 10.1021/ic049762b

    60. [60]

      Liu, D.; Huang, H.; Wang, J.; Jiang, L.; Zhong, D.; Lu, T. ChemCatChem 2018, 10, 3435. doi: 10.1002/cctc.201800727  doi: 10.1002/cctc.201800727

    61. [61]

      Xiang, D.; Magana, D.; Dyer, R. J. Am. Chem. Soc. 2014, 136, 14007. doi: 10.1021/ja5081103  doi: 10.1021/ja5081103

    62. [62]

      Liu, D.; Wang, H.; Ouyang, T.; Wang, J.; Jiang, L.; Zhong, D.; Lu, T. ACS Appl. Energy Mater. 2018, 1, 2452. doi: 10.1021/acsaem.8b00673  doi: 10.1021/acsaem.8b00673

    63. [63]

      Wang, J.; Huang, H.; Sun, J.; Ouyang, T.; Zhong, D.; Lu, T. ChemSusChem 2018, 11, 1025. doi: 10.1002/cssc.201702280  doi: 10.1002/cssc.201702280

    64. [64]

      Ouyang, T.; Huang, H.; Wang, J.; Zhong, D.; Lu, T. Angew. Chem. Int. Edit. 2017, 56, 738. doi: 10.1002/anie.201610607  doi: 10.1002/anie.201610607

    65. [65]

      Lan, Z.; Wang, X. Acta Phys. -Chim. Sin. 2017, 33, 457.  doi: 10.3866/PKU.WHXB201701061

    66. [66]

      Wang, J.; Zhong, D.; Lu, T. Coord. Chem. Rev. 2018, 377, 225. doi: 10.1016/j.ccr.2018.09.003  doi: 10.1016/j.ccr.2018.09.003

    67. [67]

      Cao, L.; Huang, H.; Wang, J.; Zhong, D.; Lu, T. Green Chem. 2018, 20, 798. doi: 10.1039/c7gc03451b  doi: 10.1039/c7gc03451b

    68. [68]

      Realista, S.; Almeida, J.; Milheiro, S.; Bandeira, N.; Alves, L.; Madeira, F.; Calhorda, M.; Martinho, P. Chem. Eur. J. 2019, 25, 11670. doi: 10.1002/chem.201901806  doi: 10.1002/chem.201901806

    69. [69]

      Ouyang, T.; Wang, H.; Huang, H.; Wang, J.; Guo, S.; Liu, W.; Zhong, D.; Lu, T. Angew. Chem. Int. Edit. 2018, 57, 16480. doi: 10.1002/anie.201811010  doi: 10.1002/anie.201811010

    70. [70]

      Liu, D.; Wang, H.; Wang, J.; Zhong, D.; Jiang, L.; Lu, T. Chem. Commun. 2018, 54, 11308. doi: 10.1039/c8cc04892d  doi: 10.1039/c8cc04892d

    71. [71]

      Akai, T.; Kondo, M.; Lee, S.; Izu, H.; Enomoto, T.; Okamura, M.; Saga, Y.; Masaoka, S. Dalton Trans. 2020, 49, 1384. doi: 10.1039/C9DT04684D  doi: 10.1039/C9DT04684D

    72. [72]

      Kumar, P.; Kumar, A.; Sreedhar, B.; Sain, B.; Ray, S.; Jain, S. Chem. Eur. J. 2014, 20, 6154. doi: 10.1002/chem.201304189  doi: 10.1002/chem.201304189

    73. [73]

      Aoi, S.; Mase, K.; Ohkubo, K.; Fukuzumi, S. Catal. Sci. Technol. 2016, 6, 4077. doi: 10.1039/c6cy00376a  doi: 10.1039/c6cy00376a

    74. [74]

      Zhao, G.; Pang, H.; Liu, G.; Li, P.; Liu, H.; Zhang, H.; Shi, L.; Ye, J. Appl. Catal. B2017, 200, 141. doi: 10.1016/j.apcatb.2016.06.074  doi: 10.1016/j.apcatb.2016.06.074

    75. [75]

      Roy, S.; Reisner, E. Angew. Chem. Int. Ed. 2019, 58, 12180. doi: 10.1002/ange.201907082  doi: 10.1002/ange.201907082

    76. [76]

      Ma, B.; Chen, G.; Fave, C.; Chen, L.; Kuriki, R.; Maeda, K.; Ishitani, O.; Lau, T.; Bonin, J.; Robert, M. J. Am. Chem. Soc. 2020, 142, 6188. doi: 10.1021/jacs.9b13930  doi: 10.1021/jacs.9b13930

    77. [77]

      Pan, Z.; Niu, P.; Liu, M.; Zhang, G.; Zhu, Z.; Wang, X. ChemSusChem 2020, 13, 888. doi: 10.1002/cssc.201903172  doi: 10.1002/cssc.201903172

    78. [78]

      Kumar, A.; Prajapati, P.; Aathira, M.; Bansiwal, A.; Boukherroub, R.; Jain, S. J. Colloid Interface Sci. 2019, 543, 201. doi: 10.1016/j.jcis.2019.02.061  doi: 10.1016/j.jcis.2019.02.061

    79. [79]

      Bi, Q.; Wang, J.; Lv, J.; Wang, J.; Zhang, W.; Lu, T. ACS Catal. 2018, 8, 11815. doi: 10.1021/acscatal.8b03457  doi: 10.1021/acscatal.8b03457

    80. [80]

      Wang, J.; Liu, W.; Zhong, D.; Lu, T. Coord. Chem. Rev. 2019, 378, 237. doi: 10.1016/j.ccr.2017.12.009  doi: 10.1016/j.ccr.2017.12.009

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(38)
  • Abstract views(1251)
  • HTML views(357)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return