Controlling the Global Mean Temperature by Decarbonization
- Corresponding author: Dautzenberg Frits Mathias, fritsd@serenixcorp.com
Citation: Dautzenberg Frits Mathias, Lu Yong, Xu Bin. Controlling the Global Mean Temperature by Decarbonization[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200806. doi: 10.3866/PKU.WHXB202008066
Hausfather, Z.; Drake, H. F.; Abott, T.; Schmidt, G. A. Geophys. Res. Lett. 2020, 47 (1), e2019GL085378. doi: 10.1029/2019GL085378
doi: 10.1029/2019GL085378
Intergovernmental Panel on Climate Change (IPCC) Reports, 1990-2019. https://www.ipcc.ch (accessed on Sep. 18, 2020).
GISS Surface Temperature Analysis (GISTEMP v4), version 4, 2019. https://data.giss.nasa.gov/gistemp (accessed on Sep. 18 2020).
Buis, A. Study conforms climate models are getting future warming projections right. https://climate.nasa.gov/news/2943/study-confirms-climate-models-are-getting-future-warming-projections-right/ (accessed on Sep. 18 2020).
Moore, P. A. Confessions of a Greenpeace Dropout; Beatty Street Publishing Inc.: Vancouver, BC, Canada, 2013.
Spencer, R. W. The Greatest Global Warming Blunder: How Mother Nature Fooled the World's Top Climate Scientists; Encounter Books: New York, NY, USA, 2010.
Petit, J. R.; Jouzel, J.; Raynaud, D.; Barkov, N. I.; Barnola, J. -M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Nature 1999, 399 (6735), 429. doi: 10.1038/20859
doi: 10.1038/20859
Bohren, C. F.; Clothiaux, E. E. Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006.
www.geo.utexas.edu/courses/387H/Lectures/chap2.pdf (accessed on Sep. 18 2020).
https://www.nist.gov/publications/web-thermo-tables-line-version-trc-thermodynamics-table (accessed on Sep. 18, 2020).
Yaws, C. L. Chemical Properties Handbook; McGraw-Hill: New York, NY, USA, 1999; p. 291 and p. 310.
Cox, P. M.; Huntingford, C.; Williamson, M. S. Nature 2018, 533 (7688), 319. doi: 10.1038/nature25450
doi: 10.1038/nature25450
Deser, C. Making Sense of Climate Projections. Lecture at the University of Washington, Department of Atmospheric Sciences: Seattle, WA, USA, 2019.
http://www.scotese.com/earth.htm. (accessed on Sep. 18 2020)
Ruddiman, W. F. Earth's Climate: Past and Future, 3rd ed.; W.H. Freeman & Sons: New York, NY, USA, 2013.
Pagani, M.; Zachos, J. C.; Freeman, K. H.; Tipple, B.; Bohaty, S. Science 2005, 309 (5734), 600. doi: 10.1126/science.1110063
doi: 10.1126/science.1110063
https://www.sciencemag.org/news/2019/05/500-million-year-survey-earths-climate-reveals-dire-warning-humanity (accessed on Sep. 18 2020).
Moore, P. A. Climate Realism. Presentation at the Climate Realism seminar, Toronto, Canada, October, 2019.
https://ourworldindata.org/CO2-and-other-greenhouse-gas-emissions (accessed on Sep. 18, 2020).
Abbot, J.; Marohasy, J. Geo. Res. J. 2017, 14, 36. doi: 10.1016/j.grj.2017.08.001
doi: 10.1016/j.grj.2017.08.001
https://www.therightinsight.org/Patrick-Moore-Should-We-Celebrate-CO2 (accessed on Sep. 18, 2020).
Hawken, P. Drawdown-The Most Comprehensive Plan Ever Proposed to Reverse Global Warming; Penguin Books, New York, NY, USA, 2017.
Henson, R. The Thinking Person's Guide to Climate Change, 2nd ed.; The American Meteorological Society: Boston, MA, USA, 2019.
Vertes, A.; Qureshi, N.; Yukawa, H.; Blaschek, H. Biomass to Biofuels: Strategies for Global Industries. John Wiley & Sons LTD.: Chicher, West Sussex, UK, 2010.
Anastassiadis, S. G. World J. Bio. Biotechnol. 2016, 1 (1), 1. doi: 10.33865/wjb.001.01.0002
doi: 10.33865/wjb.001.01.0002
Han, L.; Ro, K. S; Sun, K.; Sun, H.; Wang, Z.; Libra, J. A.; Xing, B. Environ. Sci. Technol. 2016, 50 (24), 13274. doi: 10.1021/acs.est.6b02401
doi: 10.1021/acs.est.6b02401
Doucet, F. J. Scoping Study on CO2 Mineralization Technologies. Report No. CGS-2011-007-Prepared for South African Centre for Carbon Capture and Storage, 2011.
Xie, H.; Yue, H.; Zhu, J.; Liang, B.; Li, C.; Wang, Y.; Xie, L.; Zhou, X. Engineering 2015, 1 (1), 150. doi: 10.15302/J-ENG-2015017
doi: 10.15302/J-ENG-2015017
https://www.theleadsouthaustria.com.au, Willis, B. Global carbon capture potential for rare nanoparticles, 2020, March 24 (accessed on Sep. 18, 2020).
Dean, C. Expert Discuss Engineering Feats, Like Space Mirrors to Slow Climate Change; The New York Times: New York, NY, USA, Nov. 10, 2007.
Gramling, C. In a Climate Crisis, Is Geoengineering Worth the Risks? Science News; Society for Science & the Public: Washington DC, USA, Oct. 6, 2019.
www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html (accessed on Sep. 18, 2020).
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173