Mechanisms and Applications of Laser Action on Lead Halide Perovskites
- Corresponding author: Chen Jun, chenjun@njust.edu.cn Zeng Haibo, zeng.haibo@njust.edu.cn
Citation: Wang Jiaxin, Shen Weili, Hu Jinning, Chen Jun, Li Xiaoming, Zeng Haibo. Mechanisms and Applications of Laser Action on Lead Halide Perovskites[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200805. doi: 10.3866/PKU.WHXB202008051
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982
doi: 10.1126/science.1243982
Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167
doi: 10.1126/science.1243167
Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. J. Mater. Chem. A 2016, 4, 3970. doi: 10.1039/c5ta09011c
doi: 10.1039/c5ta09011c
Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. J. Phys. Chem. Lett. 2015, 6, 4360. doi: 10.1021/acs.jpclett.5b02011
doi: 10.1021/acs.jpclett.5b02011
Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Nat. Photon. 2017, 11, 108. doi: 10.1038/nphoton.2016.269
doi: 10.1038/nphoton.2016.269
Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. Science 2015, 350, 1222. doi: 10.1126/science.aad1818
doi: 10.1126/science.aad1818
Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715
doi: 10.1021/acs.chemrev.5b00715
Galasso, F. S. Structure, Properties and Preparation of Perovskite-Type Compounds; International Series of Monographs in Solid State Physics: Elsevier, Pergamon, 2013; pp. 1–209.
Grätzel, M. Nat. Mater. 2014, 13, 838. doi: 10.1038/nmat4065
doi: 10.1038/nmat4065
Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Acta Phys. -Chim. Sin. 2020, 36, 1907012.
doi: 10.3866/PKU.WHXB201907012
Chen, R.; Wang, W.; Bu, T. L.; Ku, Z. L.; Zhong, J.; Peng, Y.; Xiao, S. Q.; You, W.; Huang, F. Z.; Cheng, Y. B.; Fu, Z. Y. Acta Phys. -Chim. Sin. 2019, 35, 401.
doi: 10.3866/PKU.WHXB201803131
Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. Adv. Funct. Mater. 2016, 26, 2435. doi: 10.1002/adfm.201600109
doi: 10.1002/adfm.201600109
Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun.2013, 4, 1. doi: 10.1038/ncomms3885
doi: 10.1038/ncomms3885
Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A 2015, 3, 8970. doi: 10.1039/c4ta04994b
doi: 10.1039/c4ta04994b
Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/c5ee03874j
doi: 10.1039/c5ee03874j
Ge, Y.; Mou, X. L.; Lu, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039.
doi: 10.3866/PKU.WHXB201905039
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r
doi: 10.1021/ja809598r
Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. J. Am. Chem. Soc. 2015, 137, 1530. doi: 10.1021/ja511132a
doi: 10.1021/ja511132a
Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H. J. Appl. Phys. 2016, 119, 115501. doi: 10.1063/1.4943638
doi: 10.1063/1.4943638
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764. doi: 10.1021/nl400349b
doi: 10.1021/nl400349b
Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew. Chem. Int. Ed. 2015, 54, 8208. doi: 10.1002/ange.201503153
doi: 10.1002/ange.201503153
Berhe, T. A.; Su, W. N.; Chen, C. H.; Pan, C. J.; Cheng, J. H.; Chen, H. M.; Tsai, M. C.; Chen, L. Y.; Dubale, A. A.; Hwang, B. J. Energy Environ. Sci. 2016, 9, 323. doi: 10.1039/c5ee02733k
doi: 10.1039/c5ee02733k
Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 1. doi: 10.1038/ncomms15218
doi: 10.1038/ncomms15218
Nickel, N. H.; Lang, F.; Brus, V. V.; Shargaieva, O.; Rappich, J. Adv. Electron. Mater. 2017, 3, 1700158. doi: 10.1002/aelm.201700158
doi: 10.1002/aelm.201700158
Li, Y.; Xu, X.; Wang, C.; Ecker, B.; Yang, J.; Huang, J.; Gao, Y. J. Phys. Chem. C 2017, 121, 3904. doi: 10.1021/acs.jpcc.6b11853
doi: 10.1021/acs.jpcc.6b11853
Huang, F.; Jiang, L.; Pascoe, A. R.; Yan, Y.; Bach, U.; Spiccia, L.; Cheng, Y. B. Nano Energy 2016, 27, 509. doi: 10.1016/j.nanoen.2016.07.033
doi: 10.1016/j.nanoen.2016.07.033
Zhang, Y.; Zhu, H.; Zheng, J.; Chai, G.; Song, Z.; Chen, Y.; Liu, Y.; He, S.; Shi, Y.; Tang, Y. J. Phys. Chem. C 2019, 123, 4502. doi: 10.1021/acs.jpcc.8b11353
doi: 10.1021/acs.jpcc.8b11353
Merdasa, A.; Bag, M.; Tian, Y.; Källman, E.; Dobrovolsky, A.; Scheblykin, I. G. J. Phys. Chem. C 2016, 120, 10711. doi: 10.1021/acs.jpcc.6b03512
doi: 10.1021/acs.jpcc.6b03512
dos Reis, R.; Yang, H.; Ophus, C.; Ercius, P.; Bizarri, G.; Perrodin, D.; Shalapska, T.; Bourret, E.; Ciston, J.; Dahmen, U. Appl. Phys. Lett. 2018, 112, 071901. doi: 10.1063/1.5017537
doi: 10.1063/1.5017537
Jeon, T.; Jin, H. M.; Lee, S. H.; Lee, J. M.; Park, H. I.; Kim, M. K.; Lee, K. J.; Shin, B.; Kim, S. O. ACS Nano 2016, 10, 7907. doi: 10.1021/acsnano.6b03815
doi: 10.1021/acsnano.6b03815
Chen, J.; Wu, Y.; Li, X.; Cao, F.; Gu, Y.; Liu, K.; Liu, X.; Dong, Y.; Ji, J.; Zeng, H. Adv. Mater. Technol. 2017, 2, 1700132. doi: 10.1002/admt.201700132
doi: 10.1002/admt.201700132
Wang, J. F.; Lin, D. X.; Yuan, Y. B. Acta Phys. Sin. 2019, 68, 158801.
doi: 10.7498/aps.68.20190853
Abdelmageed, G.; Jewell, L.; Hellier, K.; Seymour, L.; Luo, B.; Bridges, F.; Zhang, J. Z.; Carter, S. Appl. Phys. Lett. 2016, 109, 233905. doi: 10.1063/1.4967840
doi: 10.1063/1.4967840
Tang, X.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H.; Chen, S.; Kahmann, S.; Osvet, A. J. Mater. Chem. A 2016, 4, 15896. doi: 10.1039/c6ta06497c
doi: 10.1039/c6ta06497c
Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903. doi: 10.1063/1.4864778
doi: 10.1063/1.4864778
Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. J. Am. Chem. Soc. 2014, 136, 11610. doi: 10.1021/ja506624n
doi: 10.1021/ja506624n
Mosconi, E.; Meggiolaro, D.; Snaith, H. J.; Stranks, S. D.; De Angelis, F. Energy Environ. Sci. 2016, 9, 3180. doi: 10.1039/c6ee01504b
doi: 10.1039/c6ee01504b
DeQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Nat. Commun. 2016, 7, 1. doi: 10.1038/ncomms11683
doi: 10.1038/ncomms11683
Li, F.; Zhu, W.; Bao, C.; Yu, T.; Wang, Y.; Zhou, X.; Zou, Z. Chem. Commun. 2016, 52, 5394. doi: 10.1039/c6cc00753h
doi: 10.1039/c6cc00753h
Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Chem. Sci. 2015, 6, 613. doi: 10.1039/c4sc03141e
doi: 10.1039/c4sc03141e
Samu, G. F.; Janaky, C.; Kamat, P. V. ACS Energy Lett. 2017, 2, 1860. doi: 10.1021/acsenergylett.7b00589
doi: 10.1021/acsenergylett.7b00589
Draguta, S.; Sharia, O.; Yoon, S. J.; Brennan, M. C.; Morozov, Y. V.; Manser, J. S.; Kamat, P. V.; Schneider, W. F.; Kuno, M. Nat. Commun. 2017, 8, 1. doi: 10.1038/s41467-017-00284-2
doi: 10.1038/s41467-017-00284-2
Gualdrón-Reyes, A. S. F.; Yoon, S. J.; Barea, E. M.; Agouram, S.; Muñoz-Sanjosé, V.; Meléndez, A. N. M.; Niño-Gómez, M. E.; Mora-Seró, I. N. ACS Energy Lett. 2018, 4, 54. doi: 10.1021/acsenergylett.8b02207
doi: 10.1021/acsenergylett.8b02207
Tang, X.; van den Berg, M.; Gu, E.; Horneber, A.; Matt, G. J.; Osvet, A.; Meixner, A. J.; Zhang, D.; Brabec, C. J. Nano Lett. 2018, 18, 2172. doi: 10.1021/acs.nanolett.8b00505
doi: 10.1021/acs.nanolett.8b00505
Bischak, C. G.; Hetherington, C. L.; Wu, H.; Aloni, S.; Ogletree, D. F.; Limmer, D. T.; Ginsberg, N. S. Nano Lett. 2017, 17, 1028. doi: 10.1021/acs.nanolett.6b04453
doi: 10.1021/acs.nanolett.6b04453
Chen, W.; Mao, W.; Bach, U.; Jia, B.; Wen, X. Small Methods 2019, 3, 1900273. doi: 10.1002/smtd.201900273
doi: 10.1002/smtd.201900273
Zhao, Y. C.; Zhou, W. K.; Zhou, X.; Liu, K. H.; Yu, D. P.; Zhao, Q. Light Sci. Appl. 2017, 6, e16243. doi: 10.1038/lsa.2016.243
doi: 10.1038/lsa.2016.243
Zhang, H.; Fu, X.; Tang, Y.; Wang, H.; Zhang, C.; William, W. Y.; Wang, X.; Zhang, Y.; Xiao, M. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-09047-7
doi: 10.1038/s41467-019-09047-7
Zhou, Y.; You, L.; Wang, S.; Ku, Z.; Fan, H.; Schmidt, D.; Rusydi, A.; Chang, L.; Wang, L.; Ren, P. Nat. Commun. 2016, 7, 1. doi: 10.1038/ncomms11193
doi: 10.1038/ncomms11193
Wei, T. C.; Wang, H. P.; Li, T. Y.; Lin, C. H.; Hsieh, Y. H.; Chu, Y. H.; He, J. H. Adv. Mater. 2017, 29, 1701789. doi: 10.1002/adma.201701789
doi: 10.1002/adma.201701789
Kirschner, M. S.; Diroll, B. T.; Guo, P.; Harvey, S. M.; Helweh, W.; Flanders, N. C.; Brumberg, A.; Watkins, N. E.; Leonard, A. A.; Evans, A. M. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-08362-3
doi: 10.1038/s41467-019-08362-3
Kim, S. J.; Byun, J.; Jeon, T.; Jin, H. M.; Hong, H. R.; Kim, S. O. ACS Appl. Mater. Interfaces 2018, 10, 2490. doi: 10.1021/acsami.7b15470
doi: 10.1021/acsami.7b15470
Esparza, D.; Sidhik, S.; López-Luke, T.; Rivas, J. M.; De la Rosa, E. Mater. Res. Express. 2019, 4, 5041 doi: 10.1088/2053-1591/aafbce
doi: 10.1088/2053-1591/aafbce
Dong, Y.; Hu, H.; Xu, X.; Gu, Y.; Chueh, C. C.; Cai, B.; Yu, D.; Shen, Y.; Zou, Y.; Zeng, H. J. Phys. Chem. Lett. 2019, 10, 4149. doi: 10.1021/acs.jpclett.9b01673
doi: 10.1021/acs.jpclett.9b01673
Liang, Y.; Yao, Y.; Zhang, X.; Hsu, W. L.; Gong, Y.; Shin, J.; Wachsman, E. D.; Dagenais, M.; Takeuchi, I. AIP Adv. 2016, 6, 015001. doi: 10.1063/1.4939621
doi: 10.1063/1.4939621
Miyadera, T.; Sugita, T.; Tampo, H.; Matsubara, K.; Chikamatsu, M. ACS Appl. Mater. Interfaces 2016, 8, 26013. doi: 10.1021/acsami.6b07837
doi: 10.1021/acsami.6b07837
Bansode, U.; Ogale, S. J. Appl. Phys. 2017, 121, 133107. doi: 10.1063/1.4979865
doi: 10.1063/1.4979865
Kawashima, K.; Okamoto, Y.; Annayev, O.; Toyokura, N.; Takahashi, R.; Lippmaa, M.; Itaka, K.; Suzuki, Y.; Matsuki, N.; Koinuma, H. Sci. Technol. Adv. Mater. 2017, 18, 307. doi: 10.1080/14686996.2017.1314172
doi: 10.1080/14686996.2017.1314172
Dunlap-Shohl, W. A.; Barraza, E. T.; Barrette, A.; Dovletgeldi, S.; Findik, G.; Dirkes, D. J.; Liu, C.; Jana, M. K.; Blum, V.; You, W. Mater. Horizons 2019, 6, 1707. doi: 10.1039/C9MH00366E
doi: 10.1039/C9MH00366E
Wang, H.; Wu, Y.; Ma, M.; Dong, S.; Li, Q.; Du, J.; Zhang, H.; Xu, Q. ACS Appl. Energy Mater. 2019, 2, 2305. doi: 10.1021/acsaem.9b00130
doi: 10.1021/acsaem.9b00130
Chou, S. S.; Swartzentruber, B. S.; Janish, M. T.; Meyer, K. C.; Biedermann, L. B.; Okur, S.; Burckel, D. B.; Carter, C. B.; Kaehr, B. J. Phys. Chem. Lett. 2016, 7, 3736. doi: 10.1021/acs.jpclett.6b01557
doi: 10.1021/acs.jpclett.6b01557
Konidakis, I.; Maksudov, T.; Serpetzoglou, E.; Kakavelakis, G.; Kymakis, E.; Stratakis, E. ACS Appl. Energy Mater. 2018, 1, 5101. doi: 10.1021/acsaem.8b01152
doi: 10.1021/acsaem.8b01152
Yuyama, K. I.; Islam, M. J.; Takahashi, K.; Nakamura, T.; Biju, V. Angew. Chem. Int. Ed. 2018, 130, 13612. doi: 10.1002/ange.201806079
doi: 10.1002/ange.201806079
Islam, M. J.; Yuyama, K. I.; Takahashi, K.; Nakamura, T.; Konishi, K.; Biju, V. NPG Asia Mater. 2019, 11, 1. doi: 10.1038/s41427-019-0131-0
doi: 10.1038/s41427-019-0131-0
Nie, W.; Blancon, J. C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J. Nat. Commun. 2016, 7, 1. doi: 10.1038/ncomms11574
doi: 10.1038/ncomms11574
Khenkin, M. V.; KM, A.; Visoly-Fisher, I.; Kolusheva, S.; Galagan, Y.; Di Giacomo, F.; Vukovic, O.; Patil, B. R.; Sherafatipour, G.; Turkovic, V. ACS Appl. Energy Mater. 2018, 1, 799. doi: 10.1021/acsaem.7b00256
doi: 10.1021/acsaem.7b00256
Tiguntseva, E.; Saraeva, I.; Kudryashov, S.; Ushakova, E.; Komissarenko, F.; Ishteev, A.; Tsypkin, A.; Haroldson, R.; Milichko, V.; Zuev, D. J. Phys. Conf. Ser. 2017, 917, 062002. doi: 10.1088/1742-6596/917/6/062002
doi: 10.1088/1742-6596/917/6/062002
Shan, X.; Wang, S.; Dong, W.; Pan, N.; Shao, J.; Wang, X.; Tao, R.; Deng, Z.; Hu, L.; Kong, F. Solar RRL 2019, 3, 1900020. doi: 10.1002/solr.201900020
doi: 10.1002/solr.201900020
Malyukov, S.; Sayenko, A.; Klunnikova, Y. 2018 International Russian Automation Conference (RusAutoCon), IEEE: 2018; pp. 1–4. doi: 10.1109/RUSAUTOCON.2018.8501763
Wilkes, G. C.; Deng, X.; Choi, J. J.; Gupta, M. C. ACS Appl. Mater. Interfaces 2018, 10, 41312. doi: 10.1021/acsami.8b13740
doi: 10.1021/acsami.8b13740
You, P.; Li, G.; Tang, G.; Cao, J.; Yan, F. Energy Environ. Sci. 2020, 13, 1187. doi: 10.1039/C9EE02324K
doi: 10.1039/C9EE02324K
Hu, Y.; Zhang, W.; Ye, Y.; Zhao, Z.; Liu, C. ACS Appl. Nano Mater. 2019, 3, 850. doi: 10.1021/acsanm.9b02362
doi: 10.1021/acsanm.9b02362
Wu, W. K.; Wang, C. M.; Chan, M. C.; Lien, J. Y.; Su, Y. M.; Sarma, M.; Yang, Z. P.; Su, H. C.; Wong, K. T.; Wang, S. L. ChemPlusChem 2018, 83, 239. doi: 10.1002/cplu.201700422
doi: 10.1002/cplu.201700422
Cheng, Z. Y.; Wang, Z.; Xing, R. B.; Han, Y. C.; Lin, J. Chem. Phys. Lett. 2003, 376, 481. doi: 10.1016/S0009-2614(03)01017-0
doi: 10.1016/S0009-2614(03)01017-0
Wang, G.; Li, D.; Cheng, H. C.; Li, Y.; Chen, C. Y.; Yin, A.; Zhao, Z.; Lin, Z.; Wu, H.; He, Q. Sci. Adv. 2015, 1, e1500613. doi: 10.1126/sciadv.1500613
doi: 10.1126/sciadv.1500613
Feng, J.; Yan, X.; Zhang, Y.; Wang, X.; Wu, Y.; Su, B.; Fu, H.; Jiang, L. Adv. Mater. 2016, 28, 3732. doi: 10.1002/adma.201505952
doi: 10.1002/adma.201505952
Chen, R. J.; Yan, X. L.; Ge, W. W.; Yuan, Y. J.; Wang, M.; Sun, M. Z.; Xing, Y. M.; Zhang, P.; Fu, C. Y.; Shuai, P. Nucl. Instrum. Methods Phys. Res. A 2018, 915, 111. doi: 10.1016/j.nima.2018.07.059
doi: 10.1016/j.nima.2018.07.059
Zarzar, L. D.; Swartzentruber, B. S.; Harper, J. C.; Dunphy, D. R.; Brinker, C. J.; Aizenberg, J.; Kaehr, B. J. Am. Chem. Soc. 2012, 134, 4007. doi: 10.1021/ja211602t
doi: 10.1021/ja211602t
Shamsi, J.; Abdelhady, A.; Accornero, S.; Arciniegas, M. P.; Goldoni, L.; Kandada, A. R. S.; Petrozza, A.; Manna, L. ACS Energy Lett. 2016, 1, 1042. doi: 10.1021/acsenergylett.6b00521
doi: 10.1021/acsenergylett.6b00521
Chou, S. S.; De, M.; Luo, J.; Rotello, V. M.; Huang, J.; Dravid, V. P. J. Am. Chem. Soc. 2012, 134, 16725. doi: 10.1021/ ja306767y
doi: 10.1021/ja306767y
Arciniegas, M. P.; Castelli, A.; Piazza, S.; Dogan, S.; Ceseracciu, L.; Krahne, R.; Duocastella, M. Adv. Funct. Mater. 2017, 27, 1701613.1. doi: 10.1002/adfm.201701613
doi: 10.1002/adfm.201701613
Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Nat. Mater. 2015, 14, 636. doi: 10.1038/nmat4271
doi: 10.1038/nmat4271
Fischer, K. A.; Müller, K.; Rundquist, A.; Sarmiento, T.; Piggott, A. Y.; Kelaita, Y.; Dory, C.; et, al. Nat. Photon. 2016, 10, 163. doi: 10.1038/nphoton.2015.276
doi: 10.1038/nphoton.2015.276
Xu, Y. Solution-processed Metal Halide Perovskites for Nuclear Radiation Detection. In nanoGe Fall Meeting, Berlin: Germany, July 16, 2019. doi: 10.29363/nanoge.ngfm.2019.001
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272
doi: 10.1126/science.aaa9272
Binek, A.; Hanusch, F. C.; Docampo, P.; Bein, T. J. Phys. Chem. Lett. 2015, 6, 1249. doi: 10.1021/acs.jpclett.5b00380
doi: 10.1021/acs.jpclett.5b00380
Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J. Angew. Chem. Int. Ed. 2014, 53, 3151. doi: 10.1002/anie.201309361
doi: 10.1002/anie.201309361
Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. doi: 10.1039/C3EE43822H
doi: 10.1039/C3EE43822H
Han, Q. F.; Bae, S. H.; Sun, P. Y.; Hsieh, Y. T.; Michael, Y. Adv. Mater. 2016, 28, 2253. doi: 10.1002/adma.201505002
doi: 10.1002/adma.201505002
Steele, J. A.; Yuan, H.; Tan, C. Y. X.; Keshavarz, M.; Hofkens, J. ACS Nano 2017, 11, 8072. doi: 10.1021/acsnano.7b02777
doi: 10.1021/acsnano.7b02777
Zhou, C.; Cao, G.; Gan, Z.; Ou, Q.; Chen, W.; Bao, Q.; Jia, B.; Wen, X. ACS Appl. Mater. Interfaces 2019, 11, 26017. doi: 10.1021/acsami.9b07708
doi: 10.1021/acsami.9b07708
Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; Zhu, S.; Xiao, M. J. Nat. Photon. 2018, 12, 596. doi: 10.1038/s41566-018-0240-2
doi: 10.1038/s41566-018-0240-2
Tan, D.; Sharafudeen, K. N.; Yue, Y.; Qiu, J. Prog. Mater. Sci. 2016, 76, 154. doi: 10.1016/j.pmatsci.2015.09.002
doi: 10.1016/j.pmatsci.2015.09.002
Chen, D.; Yuan, S.; Chen, X.; Li, J.; Mao, Q.; Li, X.; Zhong, J. J. Mater. Chem. C 2018, 6, 6832. doi: 10.1039/C8TC02407C
doi: 10.1039/C8TC02407C
Xiongjian H, Qianyi G, Shiliang K, Tianchang O, Qinpeng C, Xiaofeng L, Zhiguo X, Zhongmin Yang, Qinyuan Z, Jianrong Q, Guoping D. ACS Nano 2020, 14, 3150. doi: 10.1021/acsnano.9b08314
doi: 10.1021/acsnano.9b08314
Huang, X; Shiliang K, Tianchang O, Qinpeng C, Xiaofeng L, Zhiguo X, Zhongmin Yang, Qinyuan Z, Jianrong Q, Guoping D. ACS Nano 2020, 14, 3150. doi: 10.1021/acsnano.9b08314
doi: 10.1021/acsnano.9b08314
Fernandez, T. T.; Sakakura, M.; Eaton, S. M.; Sotillo, B.; Siegel, J.; Solis, J.; Shimotsuma, Y.; Miura, K. Prog. Mater. Sci. 2017, 94, 68. doi: 10.1016/j.pmatsci.2017.12.002
doi: 10.1016/j.pmatsci.2017.12.002
Shimizu, M.; Sakakura, M.; Ohnishi, M.; Shimotsuma, Y.; Nakaya, T.; Miura, K.; Hirao, K. J. Appl. Phys. 2010, 108, 073533. doi: 10.1063/1.3483238
doi: 10.1063/1.3483238
Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Prog. Mater. Sci. 2018, 97, 38. doi: 10.1016/j.pmatsci.2018.02.006
doi: 10.1016/j.pmatsci.2018.02.006
Huang, X.; Guo, Q.; Yang, D.; Xiao, X.; Dong, G. Nat. Photon. 2020, 14, 1. doi: 10.1038/s41566-019-0538-8
doi: 10.1038/s41566-019-0538-8
Adinolfi, V.; Ouellette, O.; Saidaminov, M. I.; Walters, G.; Abdelhady, A. L.; Bakr, O. M.; Sargent, E. H. Adv. Mater. 2016, 28, 7264. doi: 10.1002/adma.201601196
doi: 10.1002/adma.201601196
Yue, Y.; Yang, Z.; Liu, N.; Liu, W.; Zhang, H.; Ma, Y.; Yang, C.; Su, J.; Li, L.; Long, F. ACS Nano 2016, 10, 11249. doi: 10.1021/acsnano.6b06326
doi: 10.1021/acsnano.6b06326
Hou, F.; Jin, F.; Chu, B.; Su, Z.; Gao, Y.; Zhao, H.; Cheng, P.; Tang, J.; Li, W. Sol. Energy Mater. Sol. Cells 2016, 157, 989. doi: 10.1016/j.solmat.2016.08.024
doi: 10.1016/j.solmat.2016.08.024
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373