Carboxyl-Functionalized Graphene for Highly Efficient H2-Evolution Activity of TiO2 Photocatalyst
- Corresponding author: Ping Wang, wangping0904@whut.edu.cn Huogen Yu, yuhuogen@whut.edu.cn
Citation:
Ping Wang, Haitao Li, Yanjie Cao, Huogen Yu. Carboxyl-Functionalized Graphene for Highly Efficient H2-Evolution Activity of TiO2 Photocatalyst[J]. Acta Physico-Chimica Sinica,
;2021, 37(6): 200804.
doi:
10.3866/PKU.WHXB202008047
Li, J.; Li, Y.; Zhang, G.; Huang, H.; Wu, X. ACS Appl. Mater. Interfaces 2019, 11, 7112. doi:10.1021/acsami.8b21693
doi: 10.1021/acsami.8b21693
Luo, J.; Lin, Z.; Zhao, Y.; Jiang, S.; Song, S. Chin. J. Catal. 2020, 41, 122. doi:10.1016/s1872-2067(19)63490-x
doi: 10.1016/s1872-2067(19)63490-x
Mu, R.; Ao, Y.; Wu, T.; Wang, C.; Wang, P. J. Alloy. Compd. 2020, 812, 151990. doi:10.1016/j.jallcom.2019.151990
doi: 10.1016/j.jallcom.2019.151990
Wang, J.; Chen, J.; Wang, P.; Hou, J.; Wang, C.; Ao, Y. Appl. Catal. B:Environ. 2018, 239, 578. doi:10.1016/j.apcatb.2018.08.048
doi: 10.1016/j.apcatb.2018.08.048
Wang, K.; Li, Y.; Li, J.; Zhang, G. Appl. Catal. B:Environ. 2020, 263, 117730. doi:10.1016/j.apcatb.2019.05.032
doi: 10.1016/j.apcatb.2019.05.032
Zhao, Y.; Shao, C.; Lin, Z.; Jiang, S.; Song, S. Small 2020, 16, 2000944. doi:10.1002/smll.202000944
doi: 10.1002/smll.202000944
Lin, J.; Liu, Y.; Liu, Y.; Huang, C.; Liu, W.; Mi, X.; Fan, D.; Fan, F.; Lu, H.; Chen, X. ChemSusChem 2019, 12, 961. doi:10.1002/cssc.201802691
doi: 10.1002/cssc.201802691
Cao, D.; An, H.; Yan, X.; Zhao, Y.; Yang, G.; Mei, H. Acta Phys. -Chim. Sin. 2020, 36, 1901051.
doi: 10.3866/PKU.WHXB201901051
Cheng, L.; Zhang, D.; Liao, Y.; Li, F.; Zhang, H.; Xiang, Q. J. Colloid Interface Sci. 2019, 555, 94. doi:10.1016/j.jcis.2019.07.060
doi: 10.1016/j.jcis.2019.07.060
Qiu, X.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.; Hashimoto, K. ACS Nano 2012, 6, 1609. doi:10.1021/nn2045888
doi: 10.1021/nn2045888
Shen, J.; Wang, R.; Liu, Q.; Yang, X.; Tang, H.; Yang, J. Chin. J. Catal. 2019, 40, 380. doi:10.1016/s1872-2067(18)63166-3
doi: 10.1016/s1872-2067(18)63166-3
Pan, J.; Shen, S.; Zhou, W.; Tang, J.; Ding, H.; Wang, J.; Chen, L.; Au, C. -T.; Yin, S. -F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.
doi: 10.3866/PKU.WHXB201905068
Duan, S.; Wu, S.; Wang, L.; She, H.; Huang, J.; Wang, Q. Acta Phys. -Chim. Sin. 2020, 36, 1905086.
doi: 10.3866/PKU.WHXB201905086
Yin, S. Y.; Chaktong, A.; Li, H. Acta Phys. -Chim. Sin. 2020, 36, 1910023.
doi: 10.3866/PKU.WHXB201910023
Wang, H.; Hu, X.; Ma, Y.; Zhu, D.; Li, T.; Wang, J. Chin. J. Catal. 2020, 41, 95. doi:10.1016/s1872-2067(19)63452-2
doi: 10.1016/s1872-2067(19)63452-2
Xiang, Q.; Ma, X.; Zhang, D.; Zhou, H.; Liao, Y.; Zhang, H.; Xu, S.; Levchenko, I.; Bazaka, K. J. Colloid Interface Sci. 2019, 556, 376.doi:10.1016/j.jcis.2019.08.033
doi: 10.1016/j.jcis.2019.08.033
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010
doi: 10.1016/j.chempr.2020.06.010
Sun, S.; Zhang, X.; Liu, X.; Pan, L.; Zhang, X.; Zou, J. Acta Phys. -Chim. Sin. 2020, 36, 1905007.
doi: 10.3866/PKU.WHXB201905007
Li, Y.; Wang, X.; Gong, J.; Xie, Y.; Wu, X.; Zhang, G. ACS Appl. Mater. Interfaces 2018, 10, 43760. doi:10.1021/acsami.8b17580
doi: 10.1021/acsami.8b17580
Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Small 2016, 12, 6640. doi:10.1002/smll.201600382
doi: 10.1002/smll.201600382
Oh, I.; Youn, J. -S.; Kang, H.; Manavalan, K.; Jung, S. -C.; Park, Y. -K.; Jeon, K. -J. Carbon 2020, 161, 665. doi:10.1016/j.carbon.2020.02.005
doi: 10.1016/j.carbon.2020.02.005
Shen, R.; Xie, J.; Xiang, Q.; Chen, X.; Jiang, J.; Li, X. Chin. J. Catal. 2019, 40, 240. doi:10.1016/s1872-2067(19)63294-8
doi: 10.1016/s1872-2067(19)63294-8
Chen, F.; Luo, W.; Mo, Y.; Yu, H.; Cheng, B. Appl. Surf. Sci. 2018, 430, 448. doi:10.1016/j.apsusc.2017.06.165
doi: 10.1016/j.apsusc.2017.06.165
Jiang, L.; Wang, K.; Wu, X.; Zhang, G.; Yin, S. ACS Appl. Mater. Interfaces 2019, 11, 26898. doi:10.1021/acsami.9b07311
doi: 10.1021/acsami.9b07311
Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi:10.1021/ja302846n
doi: 10.1021/ja302846n
Lv, X.; Zhou, S.; Zhang, C.; Chang, H.; Chen, Y.; Fu, W. J. Mater. Chem. 2012, 22, 18542. doi:10.1039/c2jm33325b
doi: 10.1039/c2jm33325b
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228. doi:10.1039/b917103g
doi: 10.1039/b917103g
Xu, Y.; Li, Y.; Wang, P.; Wang, X.; Yu, H. Appl. Surf. Sci. 2018, 430, 176. doi:10.1016/j.apsusc.2017.07.188
doi: 10.1016/j.apsusc.2017.07.188
Gong, X.; Liu, G.; Li, Y.; Yu, D. Y. W.; Teoh, W. Y. Chem. Mater. 2016, 28, 8082. doi:10.1021/acs.chemmater.6b01447
doi: 10.1021/acs.chemmater.6b01447
Chen, J.; Zhang, X.; Cai, H.; Chen, Z.; Wang, T.; Jia, L.; Wang, J.; Wan, Q.; Pei, X. Colloids Surf. B 2016, 147, 397. doi:10.1016/j.colsurfb.2016.08.023
doi: 10.1016/j.colsurfb.2016.08.023
Saleem, S. J.; Guler, M. Electronal 2019, 31, 2187. doi:10.1002/elan.201900287
doi: 10.1002/elan.201900287
Park, K. -W. J. Mater. Chem. A 2014, 2, 4292. doi:10.1039/c3ta14223j
doi: 10.1039/c3ta14223j
Bharti, A.; Agnihotri, N.; Prabhakar, N. Mikrochim. Acta 2019, 186, 185. doi:10.1007/s00604-019-3302-3
doi: 10.1007/s00604-019-3302-3
Shiddiky, M. J. A.; Rauf, S.; Kithva, P. H.; Trau, M. Biosens. Bioelectron. 2012, 35, 251. doi:10.1016/j.bios.2012.02.057
doi: 10.1016/j.bios.2012.02.057
Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. ACS Appl. Mater. Interfaces 2010, 2, 821. doi:10.1021/am900815k
doi: 10.1021/am900815k
Deb Nath, N. C.; Jeon, I. -Y.; Ju, M. J.; Ansari, S. A.; Baek, J. -B.; Lee, J. J. Carbon 2019, 142, 89. doi:10.1016/j.carbon.2018.10.011
doi: 10.1016/j.carbon.2018.10.011
Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. ACS Nano 2013, 7, 6858. doi:10.1021/nn402043c
doi: 10.1021/nn402043c
Fan, X.; Shang, K.; Sun, B.; Chen, L.; Ai, S. J. Mater. Sci. 2014, 49, 2672. doi:10.1007/s10853-013-7975-4
doi: 10.1007/s10853-013-7975-4
Bharath, G.; Veeramani, V.; Chen, S. -M.; Madhu, R.; Manivel Raja, M.; Balamurugan, A.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N. RSC Adv. 2015, 5, 13392. doi:10.1007/s10853-013-7975-4
doi: 10.1007/s10853-013-7975-4
Ziółkowski, R.; Górski, Ł.; Malinowska, E. Sensor. Actuat. B-Chem. 2017, 238, 540. doi:10.1016/j.snb.2016.07.119
doi: 10.1016/j.snb.2016.07.119
Yu, S.; Liu, J.; Zhu, W.; Hu, Z. T.; Lim, T. T.; Yan, X. Sci. Rep. 2015, 5, 16369. doi:10.1038/srep16369
doi: 10.1038/srep16369
Li, H.; Wang, P.; Yi, X.; Yu, H. Appl. Catal. B:Environ. 2020, 264, 118504. doi:10.1016/j.apcatb.2019.118504
doi: 10.1016/j.apcatb.2019.118504
Yu, H.; Liu, W.; Wang, X.; Wang, F. Appl. Catal. B:Environ. 2018, 225, 415. doi:10.1016/j.apcatb.2017.12.026
doi: 10.1016/j.apcatb.2017.12.026
Yu, H.; Yuan, R.; Gao, D.; Xu, Y.; Yu, J. Chem. Eng. J. 2019, 375, 121934. doi:10.1016/j.cej.2019.121934
doi: 10.1016/j.cej.2019.121934
Gao, D.; Wu, X.; Wang, P.; Xu, Y.; Yu, H.; Yu, J. ACS Sustainable Chem. Eng. 2019, 7, 10084. doi:10.1021/acssuschemeng.9b01516
doi: 10.1021/acssuschemeng.9b01516
Lerf, A.; He, H.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477. doi:10.1021/jp9731821
doi: 10.1021/jp9731821
Liu, Y.; Deng, R.; Wang, Z.; Liu, H. J. Mater. Chem. 2012, 22, 13619. doi:10.1039/c2jm32479b
doi: 10.1039/c2jm32479b
Luo, Q.; Ge, R.; Kang, S. -Z.; Qin, L.; Li, G.; Li, X. Appl. Surf. Sci. 2018, 427, 15. doi:10.1016/j.apsusc.2017.08.152
doi: 10.1016/j.apsusc.2017.08.152
Cho, K. M.; Kim, K. H.; Park, K.; Kim, C.; Kim, S.; Al-Saggaf, A.; Gereige, I.; Jung, H. -T. ACS Catal. 2017, 7, 7064. doi:10.1021/acscatal.7b01908
doi: 10.1021/acscatal.7b01908
McAllister, M. J.; Li, J. -L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; et al. Chem. Mater. 2007, 19, 4396. doi:10. 1021/cm0630800
doi: 10.1021/cm0630800
Shin, Y.; Vranic, S.; Just-Baringo, X.; Gali, S. M.; Kisby, T.; Chen, Y.; Gkoutzidou, A.; Prestat, E.; Beljonne, D.; Larrosa, I.; et al. Nanoscale 2020, 12, 12383. doi:10.1039/d0nr02689a
doi: 10.1039/d0nr02689a
Chu, C.; Huang, D.; Zhu, Q.; Stavitski, E.; Spies, J. A.; Pan, Z.; Mao, J.; Xin, H. L.; Schmuttenmaer, C. A.; Hu, S.; Kim, J. -H. ACS Catal. 2018, 9, 626. doi:10.1021/acscatal.8b03738
doi: 10.1021/acscatal.8b03738
Wang, P.; Xu, S.; Chen, F.; Yu, H. Chin. J. Catal. 2019, 40, 343. doi:10.1016/s1872-2067(18)63157-2
doi: 10.1016/s1872-2067(18)63157-2
Liu, J.; Wang, P.; Fan, J.; Yu, H. J. Energy Chem. 2020, 51, 253. doi:10.1016/j.jechem.2020.03.085
doi: 10.1016/j.jechem.2020.03.085
Wu, X.; Chen, F.; Wang, X.; Yu, H. Appl. Surf. Sci. 2018, 427, 645. doi:10.1016/j.apsusc.2017.08.050
doi: 10.1016/j.apsusc.2017.08.050
Bai, J. Y.; Wang, L. J.; Zhang, Y. J.; Wen, C. F.; Wang, X. L.; Yang, H. G. Appl. Catal. B:Environ. 2020, 266, 118590. doi:10.1016/j.apcatb.2020.118590
doi: 10.1016/j.apcatb.2020.118590
Gao, D.; Liu, W.; Xu, Y.; Wang, P.; Fan, J.; Yu, H. Appl. Catal. B:Environ. 2020, 260, 118190. doi:10.1016/j.apcatb.2019.118190
doi: 10.1016/j.apcatb.2019.118190
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625