Citation: Ping Wang, Haitao Li, Yanjie Cao, Huogen Yu. Carboxyl-Functionalized Graphene for Highly Efficient H2-Evolution Activity of TiO2 Photocatalyst[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200804. doi: 10.3866/PKU.WHXB202008047 shu

Carboxyl-Functionalized Graphene for Highly Efficient H2-Evolution Activity of TiO2 Photocatalyst

  • Corresponding author: Ping Wang, wangping0904@whut.edu.cn Huogen Yu, yuhuogen@whut.edu.cn
  • Received Date: 17 August 2020
    Revised Date: 21 September 2020
    Accepted Date: 22 September 2020
    Available Online: 28 September 2020

    Fund Project: the National Natural Science Foundation of China 21771142the National Natural Science Foundation of China 51872221the Fundamental Research Funds for the Central Universities, China WUT2019IB002

  • The use of semiconductor photocatalysts (CdS, g-C3N4, TiO2, etc.) to generate hydrogen (H2) is a prospective strategy that can convert solar energy into hydrogen energy, thereby meeting future energy demands. Among the numerous photocatalysts, TiO2 has attracted significant attention because of its suitable reduction potential and excellent chemical stability. However, the photoexcited electrons and holes of TiO2 are easily quenched, leading to limited photocatalytic performance. Furthermore, graphene has been used as an effective electron cocatalyst in the accelerated transport of photoinduced electrons to enhance the H2-production performance of TiO2, owing to its excellent conductivity and high charge carrier mobility. For an efficient graphene-based photocatalyst, the rapid transfer of photogenerated electrons is extremely important along with an effectual interfacial H2-production reaction on the graphene surface. Therefore, it is necessary to further optimize the graphene microstructures (functionalized graphene) to improve the H2-production performance of graphene-based TiO2 photocatalysts. The introduction of H2-evolution active sites onto the graphene surface is an effective strategy for the functionalization of graphene. Compared with the noncovalent functionalization of graphene (such as loading Pt, MoSx, and CoSx on the graphene surface), its covalent functionalization can provide a strong interaction between graphene and organic molecules in the form of H2-evolution active sites that are produced by chemical reactions. In this study, carboxyl-functionalized graphene (rGO-COOH) was successfully modified via ring-opening and esterification reactions on the TiO2 surface by using an ultrasound-assisted self-assembly method to prepare a high-activity TiO2/rGO-COOH photocatalyst. The Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG) curves revealed the successful covalent functionalization of GO to rGO-COOH by significantly enhanced ―COOH groups in FTIR and increased peak area of carboxyl groups in XPS. A series of characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), XPS, and UV-Vis adsorption spectra, were performed to demonstrate the successful synthesis of TiO2/rGO-COOH photocatalysts. The experimental data for the hydrogen-evolution rate showed that the TiO2/rGO-COOH displayed an extremely high hydrogen-generation activity (254.2 μmol∙h−1∙g−1), which was 2.06- and 4.48-fold higher than those of TiO2/GO and TiO2, respectively. The enhanced photocatalytic activity of TiO2/rGO-COOH is ascribed to the carboxyl groups of carboxyl-functionalized graphene, which act as effective hydrogen-generation active sites and enrich hydrogen ions owing to their excellent nucleophilicity that facilitates the interfacial hydrogen production reaction of TiO2. This study provides novel insights into the development of high-activity graphene-supported photocatalysts in the hydrogen-generation field.
  • 加载中
    1. [1]

      Li, J.; Li, Y.; Zhang, G.; Huang, H.; Wu, X. ACS Appl. Mater. Interfaces 2019, 11, 7112. doi:10.1021/acsami.8b21693  doi: 10.1021/acsami.8b21693

    2. [2]

      Luo, J.; Lin, Z.; Zhao, Y.; Jiang, S.; Song, S. Chin. J. Catal. 2020, 41, 122. doi:10.1016/s1872-2067(19)63490-x  doi: 10.1016/s1872-2067(19)63490-x

    3. [3]

      Mu, R.; Ao, Y.; Wu, T.; Wang, C.; Wang, P. J. Alloy. Compd. 2020, 812, 151990. doi:10.1016/j.jallcom.2019.151990  doi: 10.1016/j.jallcom.2019.151990

    4. [4]

      Wang, J.; Chen, J.; Wang, P.; Hou, J.; Wang, C.; Ao, Y. Appl. Catal. B:Environ. 2018, 239, 578. doi:10.1016/j.apcatb.2018.08.048  doi: 10.1016/j.apcatb.2018.08.048

    5. [5]

      Wang, K.; Li, Y.; Li, J.; Zhang, G. Appl. Catal. B:Environ. 2020, 263, 117730. doi:10.1016/j.apcatb.2019.05.032  doi: 10.1016/j.apcatb.2019.05.032

    6. [6]

      Zhao, Y.; Shao, C.; Lin, Z.; Jiang, S.; Song, S. Small 2020, 16, 2000944. doi:10.1002/smll.202000944  doi: 10.1002/smll.202000944

    7. [7]

      Lin, J.; Liu, Y.; Liu, Y.; Huang, C.; Liu, W.; Mi, X.; Fan, D.; Fan, F.; Lu, H.; Chen, X. ChemSusChem 2019, 12, 961. doi:10.1002/cssc.201802691  doi: 10.1002/cssc.201802691

    8. [8]

      Cao, D.; An, H.; Yan, X.; Zhao, Y.; Yang, G.; Mei, H. Acta Phys. -Chim. Sin. 2020, 36, 1901051.  doi: 10.3866/PKU.WHXB201901051

    9. [9]

      Cheng, L.; Zhang, D.; Liao, Y.; Li, F.; Zhang, H.; Xiang, Q. J. Colloid Interface Sci. 2019, 555, 94. doi:10.1016/j.jcis.2019.07.060  doi: 10.1016/j.jcis.2019.07.060

    10. [10]

      Qiu, X.; Miyauchi, M.; Sunada, K.; Minoshima, M.; Liu, M.; Lu, Y.; Li, D.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.; Hashimoto, K. ACS Nano 2012, 6, 1609. doi:10.1021/nn2045888  doi: 10.1021/nn2045888

    11. [11]

      Shen, J.; Wang, R.; Liu, Q.; Yang, X.; Tang, H.; Yang, J. Chin. J. Catal. 2019, 40, 380. doi:10.1016/s1872-2067(18)63166-3  doi: 10.1016/s1872-2067(18)63166-3

    12. [12]

      Pan, J.; Shen, S.; Zhou, W.; Tang, J.; Ding, H.; Wang, J.; Chen, L.; Au, C. -T.; Yin, S. -F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    13. [13]

      Duan, S.; Wu, S.; Wang, L.; She, H.; Huang, J.; Wang, Q. Acta Phys. -Chim. Sin. 2020, 36, 1905086.  doi: 10.3866/PKU.WHXB201905086

    14. [14]

      Yin, S. Y.; Chaktong, A.; Li, H. Acta Phys. -Chim. Sin. 2020, 36, 1910023.  doi: 10.3866/PKU.WHXB201910023

    15. [15]

      Wang, H.; Hu, X.; Ma, Y.; Zhu, D.; Li, T.; Wang, J. Chin. J. Catal. 2020, 41, 95. doi:10.1016/s1872-2067(19)63452-2  doi: 10.1016/s1872-2067(19)63452-2

    16. [16]

      Xiang, Q.; Ma, X.; Zhang, D.; Zhou, H.; Liao, Y.; Zhang, H.; Xu, S.; Levchenko, I.; Bazaka, K. J. Colloid Interface Sci. 2019, 556, 376.doi:10.1016/j.jcis.2019.08.033  doi: 10.1016/j.jcis.2019.08.033

    17. [17]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    18. [18]

      Sun, S.; Zhang, X.; Liu, X.; Pan, L.; Zhang, X.; Zou, J. Acta Phys. -Chim. Sin. 2020, 36, 1905007.  doi: 10.3866/PKU.WHXB201905007

    19. [19]

      Li, Y.; Wang, X.; Gong, J.; Xie, Y.; Wu, X.; Zhang, G. ACS Appl. Mater. Interfaces 2018, 10, 43760. doi:10.1021/acsami.8b17580  doi: 10.1021/acsami.8b17580

    20. [20]

      Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Small 2016, 12, 6640. doi:10.1002/smll.201600382  doi: 10.1002/smll.201600382

    21. [21]

      Oh, I.; Youn, J. -S.; Kang, H.; Manavalan, K.; Jung, S. -C.; Park, Y. -K.; Jeon, K. -J. Carbon 2020, 161, 665. doi:10.1016/j.carbon.2020.02.005  doi: 10.1016/j.carbon.2020.02.005

    22. [22]

      Shen, R.; Xie, J.; Xiang, Q.; Chen, X.; Jiang, J.; Li, X. Chin. J. Catal. 2019, 40, 240. doi:10.1016/s1872-2067(19)63294-8  doi: 10.1016/s1872-2067(19)63294-8

    23. [23]

      Chen, F.; Luo, W.; Mo, Y.; Yu, H.; Cheng, B. Appl. Surf. Sci. 2018, 430, 448. doi:10.1016/j.apsusc.2017.06.165  doi: 10.1016/j.apsusc.2017.06.165

    24. [24]

      Jiang, L.; Wang, K.; Wu, X.; Zhang, G.; Yin, S. ACS Appl. Mater. Interfaces 2019, 11, 26898. doi:10.1021/acsami.9b07311  doi: 10.1021/acsami.9b07311

    25. [25]

      Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi:10.1021/ja302846n  doi: 10.1021/ja302846n

    26. [26]

      Lv, X.; Zhou, S.; Zhang, C.; Chang, H.; Chen, Y.; Fu, W. J. Mater. Chem. 2012, 22, 18542. doi:10.1039/c2jm33325b  doi: 10.1039/c2jm33325b

    27. [27]

      Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228. doi:10.1039/b917103g  doi: 10.1039/b917103g

    28. [28]

      Xu, Y.; Li, Y.; Wang, P.; Wang, X.; Yu, H. Appl. Surf. Sci. 2018, 430, 176. doi:10.1016/j.apsusc.2017.07.188  doi: 10.1016/j.apsusc.2017.07.188

    29. [29]

      Gong, X.; Liu, G.; Li, Y.; Yu, D. Y. W.; Teoh, W. Y. Chem. Mater. 2016, 28, 8082. doi:10.1021/acs.chemmater.6b01447  doi: 10.1021/acs.chemmater.6b01447

    30. [30]

      Chen, J.; Zhang, X.; Cai, H.; Chen, Z.; Wang, T.; Jia, L.; Wang, J.; Wan, Q.; Pei, X. Colloids Surf. B 2016, 147, 397. doi:10.1016/j.colsurfb.2016.08.023  doi: 10.1016/j.colsurfb.2016.08.023

    31. [31]

      Saleem, S. J.; Guler, M. Electronal 2019, 31, 2187. doi:10.1002/elan.201900287  doi: 10.1002/elan.201900287

    32. [32]

      Park, K. -W. J. Mater. Chem. A 2014, 2, 4292. doi:10.1039/c3ta14223j  doi: 10.1039/c3ta14223j

    33. [33]

      Bharti, A.; Agnihotri, N.; Prabhakar, N. Mikrochim. Acta 2019, 186, 185. doi:10.1007/s00604-019-3302-3  doi: 10.1007/s00604-019-3302-3

    34. [34]

      Shiddiky, M. J. A.; Rauf, S.; Kithva, P. H.; Trau, M. Biosens. Bioelectron. 2012, 35, 251. doi:10.1016/j.bios.2012.02.057  doi: 10.1016/j.bios.2012.02.057

    35. [35]

      Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. ACS Appl. Mater. Interfaces 2010, 2, 821. doi:10.1021/am900815k  doi: 10.1021/am900815k

    36. [36]

      Deb Nath, N. C.; Jeon, I. -Y.; Ju, M. J.; Ansari, S. A.; Baek, J. -B.; Lee, J. J. Carbon 2019, 142, 89. doi:10.1016/j.carbon.2018.10.011  doi: 10.1016/j.carbon.2018.10.011

    37. [37]

      Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. ACS Nano 2013, 7, 6858. doi:10.1021/nn402043c  doi: 10.1021/nn402043c

    38. [38]

      Fan, X.; Shang, K.; Sun, B.; Chen, L.; Ai, S. J. Mater. Sci. 2014, 49, 2672. doi:10.1007/s10853-013-7975-4  doi: 10.1007/s10853-013-7975-4

    39. [39]

      Bharath, G.; Veeramani, V.; Chen, S. -M.; Madhu, R.; Manivel Raja, M.; Balamurugan, A.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N. RSC Adv. 2015, 5, 13392. doi:10.1007/s10853-013-7975-4  doi: 10.1007/s10853-013-7975-4

    40. [40]

      Ziółkowski, R.; Górski, Ł.; Malinowska, E. Sensor. Actuat. B-Chem. 2017, 238, 540. doi:10.1016/j.snb.2016.07.119  doi: 10.1016/j.snb.2016.07.119

    41. [41]

      Yu, S.; Liu, J.; Zhu, W.; Hu, Z. T.; Lim, T. T.; Yan, X. Sci. Rep. 2015, 5, 16369. doi:10.1038/srep16369  doi: 10.1038/srep16369

    42. [42]

      Li, H.; Wang, P.; Yi, X.; Yu, H. Appl. Catal. B:Environ. 2020, 264, 118504. doi:10.1016/j.apcatb.2019.118504  doi: 10.1016/j.apcatb.2019.118504

    43. [43]

      Yu, H.; Liu, W.; Wang, X.; Wang, F. Appl. Catal. B:Environ. 2018, 225, 415. doi:10.1016/j.apcatb.2017.12.026  doi: 10.1016/j.apcatb.2017.12.026

    44. [44]

      Yu, H.; Yuan, R.; Gao, D.; Xu, Y.; Yu, J. Chem. Eng. J. 2019, 375, 121934. doi:10.1016/j.cej.2019.121934  doi: 10.1016/j.cej.2019.121934

    45. [45]

      Gao, D.; Wu, X.; Wang, P.; Xu, Y.; Yu, H.; Yu, J. ACS Sustainable Chem. Eng. 2019, 7, 10084. doi:10.1021/acssuschemeng.9b01516  doi: 10.1021/acssuschemeng.9b01516

    46. [46]

      Lerf, A.; He, H.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477. doi:10.1021/jp9731821  doi: 10.1021/jp9731821

    47. [47]

      Liu, Y.; Deng, R.; Wang, Z.; Liu, H. J. Mater. Chem. 2012, 22, 13619. doi:10.1039/c2jm32479b  doi: 10.1039/c2jm32479b

    48. [48]

      Luo, Q.; Ge, R.; Kang, S. -Z.; Qin, L.; Li, G.; Li, X. Appl. Surf. Sci. 2018, 427, 15. doi:10.1016/j.apsusc.2017.08.152  doi: 10.1016/j.apsusc.2017.08.152

    49. [49]

      Cho, K. M.; Kim, K. H.; Park, K.; Kim, C.; Kim, S.; Al-Saggaf, A.; Gereige, I.; Jung, H. -T. ACS Catal. 2017, 7, 7064. doi:10.1021/acscatal.7b01908  doi: 10.1021/acscatal.7b01908

    50. [50]

      McAllister, M. J.; Li, J. -L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; et al. Chem. Mater. 2007, 19, 4396. doi:10. 1021/cm0630800  doi: 10.1021/cm0630800

    51. [51]

      Shin, Y.; Vranic, S.; Just-Baringo, X.; Gali, S. M.; Kisby, T.; Chen, Y.; Gkoutzidou, A.; Prestat, E.; Beljonne, D.; Larrosa, I.; et al. Nanoscale 2020, 12, 12383. doi:10.1039/d0nr02689a  doi: 10.1039/d0nr02689a

    52. [52]

      Chu, C.; Huang, D.; Zhu, Q.; Stavitski, E.; Spies, J. A.; Pan, Z.; Mao, J.; Xin, H. L.; Schmuttenmaer, C. A.; Hu, S.; Kim, J. -H. ACS Catal. 2018, 9, 626. doi:10.1021/acscatal.8b03738  doi: 10.1021/acscatal.8b03738

    53. [53]

      Wang, P.; Xu, S.; Chen, F.; Yu, H. Chin. J. Catal. 2019, 40, 343. doi:10.1016/s1872-2067(18)63157-2  doi: 10.1016/s1872-2067(18)63157-2

    54. [54]

      Liu, J.; Wang, P.; Fan, J.; Yu, H. J. Energy Chem. 2020, 51, 253. doi:10.1016/j.jechem.2020.03.085  doi: 10.1016/j.jechem.2020.03.085

    55. [55]

      Wu, X.; Chen, F.; Wang, X.; Yu, H. Appl. Surf. Sci. 2018, 427, 645. doi:10.1016/j.apsusc.2017.08.050  doi: 10.1016/j.apsusc.2017.08.050

    56. [56]

      Bai, J. Y.; Wang, L. J.; Zhang, Y. J.; Wen, C. F.; Wang, X. L.; Yang, H. G. Appl. Catal. B:Environ. 2020, 266, 118590. doi:10.1016/j.apcatb.2020.118590  doi: 10.1016/j.apcatb.2020.118590

    57. [57]

      Gao, D.; Liu, W.; Xu, Y.; Wang, P.; Fan, J.; Yu, H. Appl. Catal. B:Environ. 2020, 260, 118190. doi:10.1016/j.apcatb.2019.118190  doi: 10.1016/j.apcatb.2019.118190

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    3. [3]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    4. [4]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    10. [10]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    11. [11]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    12. [12]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    13. [13]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    17. [17]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

Metrics
  • PDF Downloads(26)
  • Abstract views(753)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return