Citation: Shi Haodong, Li Yaguang, Lu Pengfei, Wu Zhong-Shuai. Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 200803. doi: 10.3866/PKU.WHXB202008033 shu

Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes

  • Corresponding author: Wu Zhong-Shuai, wuzs@dicp.ac.cn
  • Received Date: 13 August 2020
    Revised Date: 8 September 2020
    Accepted Date: 8 September 2020
    Available Online: 14 September 2020

    Fund Project: Dalian Institute Of Chemical Physics DICP ZZBS201708Dalian Institute Of Chemical Physics and Qingdao Institute of Biomass Energy and Bioprocess Technology DICP&QIBEBT UN201702the Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS DNL180308The project was supported by the National Key R@D Program of China (2016YBF0100100), the National Natural Science Foundation of China (51872283, 21805273), the Liaoning BaiQianWan Talents Program, Liaoning Revitalization Talents Program (XLYC1807153), the Natural Science Foundation of Liaoning Province (20180510038), Dalian Institute Of Chemical Physics (DICP ZZBS201708, DICP ZZBS201802, DICP I202032), Dalian Institute Of Chemical Physics and Qingdao Institute of Biomass Energy and Bioprocess Technology (DICP&QIBEBT UN201702), and the Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL180310, DNL180308, DNL201912, DNL201915)Dalian Institute Of Chemical Physics DICP I202032the National Natural Science Foundation of China 51872283the Natural Science Foundation of Liaoning Province 20180510038the Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS DNL180310Dalian Institute Of Chemical Physics DICP ZZBS201802the Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS DNL201912the National Natural Science Foundation of China 21805273the Liaoning BaiQianWan Talents Program, Liaoning Revitalization Talents Program XLYC1807153the National Key R@D Program of China 2016YBF0100100the Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS DNL201915

  • Lithium (Li)-based batteries are the dominant energy source for consumer electronics, grid storage, and electrified transportation. However, the development of batteries based on graphite anodes is hindered by their limited energy density. With its ultrahigh theoretical capacity (3860 mAh∙g−1), low redox potential (−3.04 V), and satisfactorily low density (0.54 g∙cm−3), Li metal is the most promising anode for next-generation high-energy-density batteries. Unfortunately, the limited cycling life and safety issues raised by dendrite growth, unstable solid electrolyte interphase, and "dead Li" have inhibited their practical use. An effective strategy is to develop a suitable lithiophilic matrix for regulating initial Li nucleation behavior and controlling subsequent Li growth. Herein, single-atom cobalt coordinated to oxygen sites on graphene (Co-O-G SA) is demonstrated as a Li plating substrate to efficiently regulate Li metal nucleation and growth. Owing to its dense and more uniform lithiophilic sites than single-atom cobalt coordinated to nitrogen sites on graphene (Co-N-G SA), high electronic conductivity, and high specific surface area (519 m2∙g−1), Co-O-G SA could significantly reduce the local current density and promote the reversibility of Li plating and stripping. As a result, the Co-O-G SA based Li anodes exhibited a high Coulombic efficiency of 99.9% at a current density of 1 mA∙cm−2 with a capacity of 1 mAh∙cm−2, and excellent rate capability (high current density of 8 mA∙cm−2). Even at a high plating capacity of 6 mAh∙cm−2, the Co-O-G SA electrode could stably cycle for an ultralong lifespan of 1300 h. In the symmetric battery, the Co-O-G SA based Li anode (Co-O-G SA/Li) possessed a stable voltage profile of 18 mV for 780 h at 1 mA∙cm−2, and even at a high current density of 3 mA∙cm−2, its overpotential maintained a small hysteresis of approximately 24 mV for > 550 h. Density functional theory calculations showed that the surface of Co-O-G SA had a stronger interaction with Li atoms with a larger binding energy, −3.1 eV, than that of Co-N-G SA (−2.5 eV), leading to a uniform distribution of metallic Li on the Co-O-G SA surface. More importantly, when matched with a sulfur cathode, the resulting Co-O-G SA/lithium sulfur full batteries exhibited a high capacity of 1002 mAh∙g−1, improved kinetics with a small polarization of 191 mV, and an ultralow capacity decay rate of 0.036% per cycle for 1000 cycles at 0.5C (1C = 1675 mA∙g−1) with a steady Coulombic efficiency of nearly 100%. Therefore, this work provides novel insights into the coordination environment of single atoms for the chemistry of Li metal anodes for high-energy-density batteries.
  • 加载中
    1. [1]

      Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977. doi: 10.1126/science.1122152  doi: 10.1126/science.1122152

    2. [2]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    3. [3]

      Goodenough, J. B.; Kim, Y. Chem. Mater.2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    4. [4]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    5. [5]

      Shi, H.; Zhang, C. J.; Lu, P.; Dong, Y.; Wen, P.; Wu, Z. S. ACS Nano 2019, 13, 14308. doi: 10.1021/acsnano.0c03042  doi: 10.1021/acsnano.0c03042

    6. [6]

      Shi, H.; Qin, J.; Huang, K.; Lu, P.; Zhang, C.; Dong, Y.; Ye, M.; Liu, Z.; Wu, Z. S. Angew. Chem. Int. Ed. 2020, 59, 12147. doi: 10.1002/anie.202004284  doi: 10.1002/anie.202004284

    7. [7]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    8. [8]

      Xu, X.; Wang, S.; Wang, H.; Hu, C.; Jin, Y.; Liu, J.; Yan, H. J. Am. Chem. Soc. 2018, 27, 513. doi: 10.1016/j.jechem.2017.11.010  doi: 10.1016/j.jechem.2017.11.010

    9. [9]

      Chen, S.; Niu, C.; Lee, H.; Li, Q.; Yu, L.; Xu, W.; Zhang, J. G.; Dufek, E. J.; Whittingham, M. S.; Meng, S. Joule 2019, 3, 1094. doi: 10.1016/j.joule.2019.02.004  doi: 10.1016/j.joule.2019.02.004

    10. [10]

      Ran, Q.; Sun, T.; Han, C.; Zhang, H.; Yan, J.; Wang, J. Acta Phys. -Chim. Sin. 2020, 36, 1912068.  doi: 10.3866/PKU.WHXB201912068

    11. [11]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    12. [12]

      Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Ma, X.; Li, Y.; Liu, Y.; Lin, Z.; Yang, C.; Liu, M. Energy Storage Mater. 2019, 23, 701. doi: 10.1016/j.ensm.2019.02.026  doi: 10.1016/j.ensm.2019.02.026

    13. [13]

      Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Sci. China Chem. 2019, 62, 1286. doi: 10.1007/s11426-019-9519-9  doi: 10.1007/s11426-019-9519-9

    14. [14]

      Jin, F., Li. J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    15. [15]

      Zhu, G.; Zhao, C.; Yuan, H.; Nan, H.; Zhao, B.; Hou, L.; He, C.; Liu, Q.; Huang, J. Acta Phys. -Chim. Sin. 2021, 37, 2005003.  doi: 10.3866/PKU.WHXB202005003

    16. [16]

      Zhang, H.; Liao, X.; Guan, Y.; Xiang, Y.; Li, M.; Zhang, W.; Zhu, X.; Ming, H.; Lu, L.; Qiu, J.; et al. Nat. Commun. 2018, 9, 3729. doi: 10.1038/s41467-018-06126-z  doi: 10.1038/s41467-018-06126-z

    17. [17]

      Zhang, C.; Lyu, R.; Lv, W.; Li, H.; Jiang, W.; Li, J.; Gu, S.; Zhou, G.; Huang, Z.; Zhang, Y.; et al. Adv. Mater. 2019, 31, e1904991. doi: 10.1002/adma.201904991  doi: 10.1002/adma.201904991

    18. [18]

      Ni, S.; Tan, S.; An, Q.; Mai, L. J. Energy Chem. 2020, 44, 73. doi: 10.1016/j.jechem.2019.09.031  doi: 10.1016/j.jechem.2019.09.031

    19. [19]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 7764. doi: 10.1002/ange.201702099  doi: 10.1002/ange.201702099

    20. [20]

      Shi, H.; Yue, M.; Zhang, C. J.; Dong, Y.; Lu, P.; Zheng, S.; Huang, H.; Chen, J.; Wen, P.; Xu, Z.; et al. ACS Nano 2020, 14, 8678. doi: 10.1021/acsnano.0c03042  doi: 10.1021/acsnano.0c03042

    21. [21]

      Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Nat. Catal. 2018, 1, 985. doi: 10.1038/s41929-018-0195-1  doi: 10.1038/s41929-018-0195-1

    22. [22]

      Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K, ; Li, Y. D.; et al. J. Am. Chem. Soc. 2019, 141, 20118. doi: 10.1021/jacs.9b09352  doi: 10.1021/jacs.9b09352

    23. [23]

      Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B.; et al. J. Am. Chem. Soc. 2019, 141, 4086. doi: 10.1021/jacs.8b13579  doi: 10.1021/jacs.8b13579

    24. [24]

      Xu, K.; Zhu, M.; Wu, X.; Liang, J.; Liu, Y.; Zhang, T.; Zhu, Y.; Qian, Y. Energy Storage Mater. 2019, 23, 587. doi: 10.1016/j.ensm.2019.03.025  doi: 10.1016/j.ensm.2019.03.025

    25. [25]

      Zhai, P.; Wang, T.; Yang, W.; Cui, S.; Zhang, P.; Nie, A.; Zhang, Q.; Gong, Y. Adv. Energy Mater. 2019, 9, 1804019. doi: 10.1002/aenm.201804019  doi: 10.1002/aenm.201804019

    26. [26]

      Gu, J.; Zhu, Q.; Shi, Y.; Chen, H.; Zhang, D.; Du, Z.; Yang, S. ACS Nano 2020, 14, 891. doi: 10.1021/acsnano.9b08141  doi: 10.1021/acsnano.9b08141

    27. [27]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2, 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    28. [28]

      Li, Y.; Wu, Z. S.; Lu, P.; Wang, X.; Liu, W.; Liu, Z.; Ma, J.; Ren, W.; Jiang, Z.; Bao, X. Adv. Sci. 2020, 7, 1903089. doi: 10.1002/advs.201903089  doi: 10.1002/advs.201903089

    29. [29]

      Xu, Y.; Zhang, W.; Li, Y.; Lu, P.; Wu, Z. S. J. Energy Chem. 2020, 43, 52. doi: 10.1016/j.jechem.2019.08.006  doi: 10.1016/j.jechem.2019.08.006

    30. [30]

      Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015  doi: 10.1063/1.1316015

    31. [31]

      White, J.; Bird, D. Phys. Rev. B 1994, 50, 4954. doi: 10.1103/PhysRevB.50.4954  doi: 10.1103/PhysRevB.50.4954

    32. [32]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    33. [33]

      Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188  doi: 10.1103/PhysRevB.13.5188

    34. [34]

      Cui, J.; Yao, S.; Ihsan-Ul-Haq, M.; Wu, J.; Kim, J. K. Adv. Energy Mater. 2019, 9, 1802777. doi: 10.1002/aenm.201802777  doi: 10.1002/aenm.201802777

    35. [35]

      Sun, W.; Du, L.; Tan, Q.; Zhou, J.; Hu, Y.; Du, C.; Gao, Y.; Yin, G. ACS Appl. Mater. Interfaces 2019, 11, 41258. doi: 10.1021/acsami.9b11830  doi: 10.1021/acsami.9b11830

    36. [36]

      Yang, L.; Shi, L.; Wang, D.; Lv, Y.; Cao, D. Nano Energy 2018, 50, 691. doi: 10.1016/j.nanoen.2018.06.023  doi: 10.1016/j.nanoen.2018.06.023

    37. [37]

      Cheng, X. B.; Yan, C.; Peng, H. J.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Energy Storage Mater. 2018, 10, 199. doi: 10.1016/j.ensm.2017.03.008  doi: 10.1016/j.ensm.2017.03.008

    38. [38]

      Liu, K.; Li, Z.; Xie, W.; Li, J.; Rao, D.; Shao, M.; Zhang, B.; Wei, M. Energy Storage Mater. 2018, 15, 308. doi: 10.1016/j.ensm.2018.05.025  doi: 10.1016/j.ensm.2018.05.025

    39. [39]

      Deng, W.; Zhu, W.; Zhou, X.; Liu, Z. Energy Storage Mater. 2018, 15, 266. doi: 10.1016/j.ensm.2018.05.005  doi: 10.1016/j.ensm.2018.05.005

    40. [40]

      Chen, W.; Salvatierra, R. V.; Ren, M.; Chen, J.; Stanford, M. G.; Tour, J. M. Adv. Mater. 2020, 2002850. doi: 10.1002/adma.202002850

    41. [41]

      Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Joule 2018, 2, 764. doi: 10.1016/j.joule.2018.02.001  doi: 10.1016/j.joule.2018.02.001

    42. [42]

      Chen, X.; Chen, X. R.; Hou, T. Z.; Li, B. Q.; Cheng, X. B.; Zhang, R.; Zhang, Q. Sci. Adv. 2019, 5, eaau7728. doi: 10.1126/sciadv.aau7728  doi: 10.1126/sciadv.aau7728

    43. [43]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. doi: 10.1002/anie.201304762  doi: 10.1002/anie.201304762

    44. [44]

      Shi, H.; Zhao, X.; Wu, Z. S.; Dong, Y.; Lu, P.; Chen, J.; Ren, W.; Cheng, H. M.; Bao, X. Nano Energy 2019, 60, 743. doi: 10.1016/j.nanoen.2019.04.006  doi: 10.1016/j.nanoen.2019.04.006

    45. [45]

      Shi, H.; Dong, Y.; Zhou, F.; Chen, J.; Wu, Z. S. J. Phys.: Energy 2018, 1, 015002. doi: 10.1088/2515-7655/aadef6  doi: 10.1088/2515-7655/aadef6

  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    3. [3]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    4. [4]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    5. [5]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    6. [6]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    7. [7]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    8. [8]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    9. [9]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    10. [10]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    11. [11]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    12. [12]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    13. [13]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    14. [14]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    15. [15]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    18. [18]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    19. [19]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    20. [20]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

Metrics
  • PDF Downloads(39)
  • Abstract views(1392)
  • HTML views(293)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return