Citation: Kang Danmiao, Hart Noam, Xiao Muye, Lemmon John P.. Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research[J]. Acta Physico-Chimica Sinica, ;2021, 37(2): 200801. doi: 10.3866/PKU.WHXB202008013 shu

Short Circuit of Symmetrical Li/Li Cell in Li Metal Anode Research

  • Corresponding author: Kang Danmiao, kangdanmiao@nicenergy.com
  • Received Date: 5 August 2020
    Revised Date: 3 September 2020
    Available Online: 9 September 2020

  • Lithium is a promising anode material for next-generation high-energy-density rechargeable batteries owing to its high specific capacity, low density, and low electrochemical reduction potential. However, dendrite growth during cycling impedes its practical application and causes safety hazards. Extensive research has been conducted to obtain dendrite-free safe Li anodes with an extended cycle life by electrolyte or anode surface modification. In previous studies, the symmetrical Li/Li cell test was widely applied to evaluate the effect of various Li anode modification methods on the cycle stability and Li deposition overpotential. However, a general criterion has not yet been established to identify the short circuit in Li/Li cells. Some researchers have even made incorrect conclusions based on the Li/Li cycling data. The most common misjudgment is the ignorance of short circuit signals and mixing up of soft short circuit and normal potential decrease caused by electrode activation. In some studies, the fractal voltage signals were attributed to the unstable activation process of the symmetrical cell. Therefore, this study uses an in situ optical cell to demonstrate that a short circuit caused by the contact of dendrites from two opposite electrodes can cause a sudden drop in cell voltage to certain extent. According to the reversibility of the voltage, the short circuit induced by dendrite growth can be classified into unrecoverable hard short circuits and recoverable soft short circuits. Typical short circuit data were summarized and described to establish a rule to determine the different types of short circuits. The voltage profiles provide characteristic signals to distinguish between the soft short circuit, hard short circuit, and cell activation processes in symmetrical cells. Furthermore, this study provides a reference for identifying dendrite growth and cell short circuits, which is important for confirming the practical effect of different modification methods.
  • 加载中
    1. [1]

      Whittingham, S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c  doi: 10.1021/cr020731c

    2. [2]

      Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021.  doi: 10.3866/PKU.WHXB202006021

    3. [3]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    4. [4]

      Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y. Proc. Natl. Acad. Sci. 2017, 114, 11069. doi: 10.1073/pnas.1708489114  doi: 10.1073/pnas.1708489114

    5. [5]

      Cui, Y. Acta Phys. -Chim. Sin. 2019, 35, 661.  doi: 10.3866/PKU.WHXB201809053

    6. [6]

      Ran, Q.; Sun, T. Y.; Han, C. Y.; Zhang, H. N.; Yan, J.; Wang, J. L. Acta Phys. -Chim. Sin. 2020, 36, 1912068.  doi: 10.3866/PKU.WHXB201912068

    7. [7]

      Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Chem 2017, 2 (2), 258. doi: 10.1016/j.chempr.2017.01.003  doi: 10.1016/j.chempr.2017.01.003

    8. [8]

      Cao, X; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Mattenw. B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4 (9), 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    9. [9]

      Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Nat. Energy 2018, 3 (9), 739. doi: 10.1038/s41560-018-0199-8  doi: 10.1038/s41560-018-0199-8

    10. [10]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    11. [11]

      Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. Nat. Energy 2019, 4 (10), 882. doi: 10.1038/s41560-019-0474-3  doi: 10.1038/s41560-019-0474-3

    12. [12]

      Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. Joule 2017, 1 (4), 871. doi: 10.1016/j.joule.2017.11.009  doi: 10.1016/j.joule.2017.11.009

    13. [13]

      Wu, H.; Zhuo, D.; Kong, D.; Cui, Y. Nat. Commun. 2014, 5, 5193. doi: 10.1038/ncomms6193  doi: 10.1038/ncomms6193

    14. [14]

      Lu, Y.; Korf, K.; Kambe, Y.; Tu, Z.; Archer, L. A. Angew. Chem. Int. Ed. 2014, 126 (2), 498. doi: 10.1002/anie.201307137  doi: 10.1002/anie.201307137

    15. [15]

      Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13 (10), 961. doi: 10.1038/nmat4041  doi: 10.1038/nmat4041

    16. [16]

      Zhang, W.; Zhuang, H. L.; Fan, L.; Gao, L.; Lu, Y. Sci. Adv. 2018, 4 (2), eaar4410. doi: 10.1126/sciadv.aar4410  doi: 10.1126/sciadv.aar4410

    17. [17]

      Wood, K. N.; Noked, M.; Dasgupta, N. P. ACS Energy Lett. 2017, 2 (3), 664. doi: 10.1021/acsenergylett.6b00650  doi: 10.1021/acsenergylett.6b00650

    18. [18]

      Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. J. Mater. Chem. 2017, 5 (23), 11671. doi: 10.1039/C7TA00371D  doi: 10.1039/C7TA00371D

    19. [19]

      Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Adv. Energy Mater. 2020, 10, 2000702. doi: 10.1002/aenm.202000702  doi: 10.1002/aenm.202000702

    20. [20]

      Kang, D.; Hart, N.; Koh, J.; Ma, L.; Liang, W.; Xu, J.; Sardar, S.; Lemmon, J. P. Energy Storage Mater. 2020, 24, 618. doi: 10.1016/j.ensm.2019.06.014  doi: 10.1016/j.ensm.2019.06.014

    21. [21]

      Bai, P.; Guo, J.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Joule 2018, 2, 2434. doi: 10.1016/j.joule.2018.08.018  doi: 10.1016/j.joule.2018.08.018

    22. [22]

      Ely, Y. E.; Aurbach, D. Langmuir 1992, 8 (7), 1845. doi: 10.1021/la00043a026  doi: 10.1021/la00043a026

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    3. [3]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(238)
  • Abstract views(3511)
  • HTML views(1759)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return