Citation: Muqiang Jian, Yingying Zhang, Zhongfan Liu. Graphene Fibers: Preparation, Properties, and Applications[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 200709. doi: 10.3866/PKU.WHXB202007093 shu

Graphene Fibers: Preparation, Properties, and Applications

  • Corresponding author: Zhongfan Liu, zfliu@pku.edu.cn
  • Received Date: 31 July 2020
    Revised Date: 24 August 2020
    Accepted Date: 24 August 2020
    Available Online: 27 August 2020

    Fund Project: the National Key Basic Research Program of China 2016YFA0200103the National Natural Science Foundation of China 51432002the National Natural Science Foundation of China 51290272the National Natural Science Foundation of China 51672153the National Natural Science Foundation of China 21975141the National Natural Science Foundation of China 51972184the Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001the China Postdoctoral Science Foundation 2019M660322

  • Graphene fiber is a macroscopic carbonaceous fiber composed of microscopic graphene sheets, and has attracted extensive attention. Graphene building blocks form a highly ordered structure, resulting in fibers with the same properties as graphene, such as superior mechanical and electrical performance, low weight, excellent flexibility, and ease of functionalization. Moreover, graphene fibers are compatible with traditional textile technologies, facilitating the development of wearable electronics, flexible energy devices, and smart textiles. Graphene fibers were first prepared in 2011 by wet spinning of graphene oxide (GO) solution, which was dispersed in water. Various fabrication methods have been developed to assemble graphene sheets into fibers since then and different strategies have been proposed to optimize their structure and performance. Graphene fibers have applications in numerous fields, including conductors, sensors, actuators, smart textiles, and flexible energy devices. This review aims to provide a comprehensive picture of the preparation approaches, properties, and applications of graphene fibers. Firstly, the preparation processes, unique structures, and properties of three typical carbonaceous fibers-arbon fibers, carbon nanotube (CNT) fibers, and graphene fibers-re compared. It can be seen that graphene fibers possess the unique structures, such as the large grain sizes and highly aligned structure, endowing them with the outstanding properties. Then a variety of fabrication techniques have been summarized, including wet spinning, dry spinning, dry-jet wet spinning, space-confined hydrothermal assembly, film conversion approach, and template-assisted chemical vapor deposition (CVD). Wet spinning is a common method to fabricate high-performance graphene fibers and is promising for the large-scale production of graphene fibers. Besides, various strategies for improving the mechanical, electrical, and thermal properties of graphene fibers are introduced in detail, including well-chosen graphene building blocks, optimized fabrication processes, and high-temperature treatments. Although the electrical and thermal transport properties of typical graphene fibers are better than those of carbon fibers, the strength and modulus of graphene fibers are inferior. Therefore, the enhancement of the mechanical properties of graphene fibers by optimizing the composition of precursors, controlling and adjusting the assembly processes, and exploring feasible post-treatment procedures are essential. Meanwhile, the review outlines the applications of graphene fibers in high-performance conductors, functional fabrics, flexible sensors, actuators, fiber-shaped supercapacitors and batteries. Finally, the persisting challenges and the future scope of graphene fibers are discussed. We believe that graphene fibers will become a new structural and functional material that can be applied in numerous fields in the future, aided by the continuous development of materials and techniques.
  • 加载中
    1. [1]

      Zhu, M. F; Zhou, Z. High Performance Fiber. China Railway Publishing House: Beijing, China, 2017, p. 1.

    2. [2]

      Xu, Z.; Gao, C. Mater. Today 2015, 18, 480. doi: 10.1016/j.mattod.2015.06.009  doi: 10.1016/j.mattod.2015.06.009

    3. [3]

      刘云圻. 石墨烯: 从基础到应用. 北京: 化学工业出版社, 2017: 6-14.

    4. [4]

      Jiang, K.; Li, Q.; Fan, S. Nature 2002, 419, 801. doi: 10.1038/419801a  doi: 10.1038/419801a

    5. [5]

      Wang, H.; He, M.; Zhang, Y. Acta Phys. -Chim. Sin. 2019, 35, 1207.  doi: 10.3866/PKU.WHXB201811011

    6. [6]

      Xia, K. L.; Jian, M. Q.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2016, 32, 2427.  doi: 10.3866/PKU.WHXB201607261

    7. [7]

      Zhang, S.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 1907021.  doi: 10.3866/PKU.WHXB201907021

    8. [8]

      Liu, K.; Sun, Y.; Lin, X.; Zhou, R.; Wang, J.; Fan, S.; Jiang, K. ACS Nano 2010, 4, 5827. doi: 10.1021/nn1017318  doi: 10.1021/nn1017318

    9. [9]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    10. [10]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. Acta Phys. -Chim. Sin. 2021, 37, 2006046.  doi: 10.3866/PKU.WHXB202006046

    11. [11]

      Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; et al. Adv. Mater. 2016, 28, 6449. doi: 10.1002/adma.201506426  doi: 10.1002/adma.201506426

    12. [12]

      Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. Nano Lett. 2016, 16, 946. doi: 10.1021/acs.nanolett.5b03863  doi: 10.1021/acs.nanolett.5b03863

    13. [13]

      Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Adv. Mater. 2020, 32, e1902028. doi: 10.1002/adma.201902028  doi: 10.1002/adma.201902028

    14. [14]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32, e1902664. doi: 10.1002/adma.201902664  doi: 10.1002/adma.201902664

    15. [15]

      Meng, F.; Lu, W.; Li, Q.; Byun, J. H.; Oh, Y.; Chou, T. W. Adv. Mater. 2015, 27, 5113. doi: 10.1002/adma.201501126  doi: 10.1002/adma.201501126

    16. [16]

      Xu, T.; Zhang, Z.; Qu, L. Adv. Mater. 2020, 32, e1901979. doi: 10.1002/adma.201901979  doi: 10.1002/adma.201901979

    17. [17]

      Liu, Y.; Xu, Z.; Gao, W.; Cheng, Z.; Gao, C. Adv. Mater. 2017, 29, 1606794. doi: 10.1002/adma.201606794  doi: 10.1002/adma.201606794

    18. [18]

      Li, Z.; Liu, Z.; Sun, H.; Gao, C. Chem. Rev. 2015, 115, 7046. doi: 10.1021/acs.chemrev.5b00102  doi: 10.1021/acs.chemrev.5b00102

    19. [19]

      Xu, Z.; Peng, L.; Liu, Y.; Liu, Z.; Sun, H.; Gao, W.; Gao, C. Chem. Mater. 2016, 29, 319. doi: 10.1021/acs.chemmater.6b02882  doi: 10.1021/acs.chemmater.6b02882

    20. [20]

      Yu, G.H.; Han, Q.; Qu, L. T. Chin. J. Polym. Sci. 2019, 37, 535. doi: 10.1007/s10118-019-2245-9  doi: 10.1007/s10118-019-2245-9

    21. [21]

      Kou, L.; Liu, Y.; Zhang, C.; Shao, L.; Tian, Z.; Deng, Z.; Gao, C. Nano-Micro Lett. 2017, 9, 51. doi: 10.1007/s40820-017-0151-7  doi: 10.1007/s40820-017-0151-7

    22. [22]

      Chen, L.; Liu, Y.; Zhao, Y.; Chen, N.; Qu, L. Nanotechnology 2016, 27, 032001. doi: 10.1088/0957-4484/27/3/032001  doi: 10.1088/0957-4484/27/3/032001

    23. [23]

      Cheng, H.; Hu, C.; Zhao, Y.; Qu, L. NPG Asia Mater. 2014, 6, e113. doi: 10.1038/am.2014.48  doi: 10.1038/am.2014.48

    24. [24]

      Yin, F.; Hu, J.; Hong, Z.; Wang, H.; Liu, G.; Shen, J.; Wang, H. L.; Zhang, K. Q. RSC Adv. 2020, 10, 5722. doi: 10.1039/c9ra10823h  doi: 10.1039/c9ra10823h

    25. [25]

      Xu, Z.; Gao, C. ACS Nano 2011, 5, 2908. doi: 10.1021/nn200069w  doi: 10.1021/nn200069w

    26. [26]

      Zhao, Y.; Jiang, C.; Hu, C.; Dong, Z.; Xue, J.; Meng, Y.; Zheng, N.; Chen, P.; Qu, L. ACS Nano 2013, 7, 2406. doi: 10.1021/nn305674a  doi: 10.1021/nn305674a

    27. [27]

      Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754  doi: 10.1038/ncomms4754

    28. [28]

      Liu, Y. J. High Performance Graphene Fiber. Ph. D. Thesis, Zhejiang University, Hangzhou, 2017.

    29. [29]

      Tian, Q.; Xu, Z.; Liu, Y.; Fang, B.; Peng, L.; Xi, J.; Li, Z.; Gao, C. Nanoscale 2017, 9, 12335. doi: 10.1039/c7nr03895j  doi: 10.1039/c7nr03895j

    30. [30]

      Xiang, C.; Behabtu, N.; Liu, Y.; Chae, H. G.; Young, C. C.; Genorio, B.; Tsentalovich, D. E.; Zhang, C.; Kosynkin, D. V.; Lomeda, J. R. ACS Nano 2013, 7, 1628. doi: 10.1021/nn305506s  doi: 10.1021/nn305506s

    31. [31]

      Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Adv. Mater. 2012, 24, 1856. doi: 10.1002/adma.201200170  doi: 10.1002/adma.201200170

    32. [32]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. Adv. Mater. 2013, 25, 2326. doi: 10.1002/adma.201300132  doi: 10.1002/adma.201300132

    33. [33]

      Hu, C.; Zhao, Y.; Cheng, H.; Wang, Y.; Dong, Z.; Jiang, C.; Zhai, X.; Jiang, L.; Qu, L. Nano Lett. 2012, 12, 5879. doi: 10.1021/nl303243h  doi: 10.1021/nl303243h

    34. [34]

      Li, X.; Zhao, T.; Wang, K.; Yang, Y.; Wei, J.; Kang, F.; Wu, D.; Zhu, H. Langmuir 2011, 27, 12164. doi: 10.1021/la202380g  doi: 10.1021/la202380g

    35. [35]

      Cruzsilva, R.; Morelosgomez, A.; Kim, H.; Jang, H.; Tristan, F.; Vegadiaz, S. M.; Rajukumar, L. P.; Elias, A. L.; Perealopez, N.; Suhr, J. ACS Nano 2014, 8, 5959. doi: 10.1021/nn501098d  doi: 10.1021/nn501098d

    36. [36]

      Wang, R.; Xu, Z.; Zhuang, J.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y.; Gao, W.; Gao, C. Adv. Electron. Mater. 2017, 3, 1600425. doi: 10.1002/aelm.201600425  doi: 10.1002/aelm.201600425

    37. [37]

      Zhang, M.; Atkinson, K. R.; Baughman, R. H. Science 2004, 306, 1358. doi: 10.1126/science.1104276  doi: 10.1126/science.1104276

    38. [38]

      Carretero-Gonzalez, J.; Castillo-Martinez, E.; Dias-Lima, M.; Acik, M.; Rogers, D. M.; Sovich, J.; Haines, C. S.; Lepro, X.; Kozlov, M.; Zhakidov, A.; et al. Adv. Mater. 2012, 24, 5695. doi: 10.1002/adma.201201602  doi: 10.1002/adma.201201602

    39. [39]

      Wang, H.; Wang, C.; Jian, M.; Wang, Q.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Nano Res. 2018, 11, 2347. doi: 10.1007/s12274-017-1782-1  doi: 10.1007/s12274-017-1782-1

    40. [40]

      Cui, G.; Cheng, Y.; Liu, C.; Huang, K.; Li, J.; Wang, P.; Duan, X.; Chen, K.; Liu, K.; Liu, Z. ACS Nano 2020, 14, 5938. doi: 10.1021/acsnano.0c01298  doi: 10.1021/acsnano.0c01298

    41. [41]

      Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14.  doi: 10.3866/PKU.WHXB201511133

    42. [42]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    43. [43]

      Liu, Q. B.; Yu, C.; He, Z. Z.; Wang, J. J.; Li, J.; Lu, W. L.; Feng, Z. H. Acta Phys. -Chim. Sin. 2016, 32, 787.  doi: 10.3866/PKU.WHXB201512183

    44. [44]

      Wang, K. X.; Shi, L. R.; Wang, M. Z.; Yang, H.; Liu, Z. F.; Peng, H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112.  doi: 10.3866/PKU.WHXB201805032

    45. [45]

      Chen, Z.; Qi, Y.; Chen, X.; Zhang, Y.; Liu, Z. Adv. Mater. 2019, 31, e1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    46. [46]

      Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019, 31, e1800996. doi: 10.1002/adma.201800996  doi: 10.1002/adma.201800996

    47. [47]

      Zhang, J.; Lin, L.; Jia, K.; Sun, L.; Peng, H.; Liu, Z. Adv. Mater. 2020, 32, e1903266. doi: 10.1002/adma.201903266  doi: 10.1002/adma.201903266

    48. [48]

      Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q.; Fu, L.; Choi, J.; Yang, R.; Liu, Z.; Rümmeli, M. H. Adv. Funct. Mater. , 2019, 29, 1904457. doi: 10.1002/adfm.201904457  doi: 10.1002/adfm.201904457

    49. [49]

      Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Chem. Soc. Rev. 2018, 47, 3018. doi: 10.1039/c7cs00852j  doi: 10.1039/c7cs00852j

    50. [50]

      Lin, L.; Deng, B.; Sun, J.; Peng, H.; Liu, Z. Chem. Rev. 2018, 118, 9281. doi: 10.1021/acs.chemrev.8b00325  doi: 10.1021/acs.chemrev.8b00325

    51. [51]

      Jiang, B.; Zhao, Q.; Zhang, Z.; Liu, B.; Shan, J.; Zhao, L.; Rümmeli, M. H.; Gao, X.; Zhang, Y.; Yu, T.; et al. Nano Res. 2020. doi: 10.1007/s12274-020-2771-3  doi: 10.1007/s12274-020-2771-3

    52. [52]

      Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y.; et al. Nat. Commun. 2019, 10, 1912. doi: 10.1038/s41467-019-09565-4  doi: 10.1038/s41467-019-09565-4

    53. [53]

      Lin, L.; Peng, H.; Liu, Z. Nat. Mater. 2019, 18, 520. doi: 10.1038/s41563-019-0341-4  doi: 10.1038/s41563-019-0341-4

    54. [54]

      Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Xie, Y.; Yu, W.; Yao, F.; Sun, Z.; et al. Nat. Photonics 2019, 13, 754. doi: 10.1038/s41566-019-0492-5  doi: 10.1038/s41566-019-0492-5

    55. [55]

      Deng, B.; Xin, Z.; Xue, R.; Zhang, S.; Xu, X.; Gao, J.; Tang, J.; Qi, Y.; Wang, Y.; Zhao, Y.; et al. Sci. Bull. 2019, 64, 659. doi: 10.1016/j.scib.2019.04.030  doi: 10.1016/j.scib.2019.04.030

    56. [56]

      Chen, T.; Dai, L. Angew. Chem. Int. Ed. Engl. 2015, 54, 14947. doi: 10.1002/anie.201507246  doi: 10.1002/anie.201507246

    57. [57]

      Wang, X.; Qiu, Y.; Cao, W.; Hu, P. Chem. Mater. 2015, 27, 6969. doi: 10.1021/acs.chemmater.5b02098  doi: 10.1021/acs.chemmater.5b02098

    58. [58]

      Xiang, C.; Young, C. C.; Wang, X.; Yan, Z.; Hwang, C. C.; Cerioti, G.; Lin, J.; Kono, J.; Pasquali, M.; Tour, J. M. Adv. Mater. 2013, 25, 4592. doi: 10.1002/adma.201301065  doi: 10.1002/adma.201301065

    59. [59]

      Chen, L.; He, Y.; Chai, S.; Qiang, H.; Chen, F.; Fu, Q. Nanoscale 2013, 5, 5809. doi: 10.1039/c3nr01083j  doi: 10.1039/c3nr01083j

    60. [60]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    61. [61]

      Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Science 2015, 349, 1083. doi: 10.1126/science.aaa6502  doi: 10.1126/science.aaa6502

    62. [62]

      Chen, S.; Ma, W.; Cheng, Y.; Weng, Z.; Sun, B.; Wang, L.; Chen, W.; Li, F.; Zhu, M.; Cheng, H. M. Nano Energy 2015, 15, 642. doi: 10.1016/j.nanoen.2015.05.004  doi: 10.1016/j.nanoen.2015.05.004

    63. [63]

      Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Shepherd, R. L.; Chen, J.; Aminorroaya-Yamini, S.; Konstantinov, K.; Minett, A. I.; Razal, J. M.; Wallace, G. G. Adv. Funct. Mater. 2013, 23, 5345. doi: 10.1002/adfm.201300765  doi: 10.1002/adfm.201300765

    64. [64]

      Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14, 168. doi: 10.1038/s41565-018-0330-9  doi: 10.1038/s41565-018-0330-9

    65. [65]

      Li, M.; Zhang, X.; Wang, X.; Ru, Y.; Qiao, J. Nano Lett. 2016, 16, 6511. doi: 10.1021/acs.nanolett.6b03108  doi: 10.1021/acs.nanolett.6b03108

    66. [66]

      Wang, X.; Peng, J.; Zhang, Y.; Li, M.; Saiz, E.; Tomsia, A. P.; Cheng, Q. ACS Nano 2018, 12, 12638. doi: 10.1021/acsnano.8b07392  doi: 10.1021/acsnano.8b07392

    67. [67]

      Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.; Jung, H. J.; Park, J. Y.; et al. Adv. Mater. 2018, 30, e1803267. doi: 10.1002/adma.201803267  doi: 10.1002/adma.201803267

    68. [68]

      Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. Adv. Mater. 2018, 30, e1706435. doi: 10.1002/adma.201706435  doi: 10.1002/adma.201706435

    69. [69]

      Zhang, Y.; Peng, J.; Li, M.; Saiz, E.; Wolf, S. E.; Cheng, Q. ACS Nano 2018, 12, 8901. doi: 10.1021/acsnano.8b04322  doi: 10.1021/acsnano.8b04322

    70. [70]

      Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Adv. Mater. 2016, 28, 2834. doi: 10.1002/adma.201506074  doi: 10.1002/adma.201506074

    71. [71]

      Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Wallace, G. G.; Kozlov, M. E.; Baughman, R. H.; Kim, S. J. Nat. Commun. 2012, 3, 650. doi: 10.1038/ncomms1661  doi: 10.1038/ncomms1661

    72. [72]

      Noh, S. H.; Eom, W.; Lee, W. J.; Park, H.; Ambade, S. B.; Kim, S. O.; Han, T. H. Carbon 2019, 142, 230. doi: 10.1016/j.carbon.2018.10.041  doi: 10.1016/j.carbon.2018.10.041

    73. [73]

      Xu, Z.; Liu, Z.; Sun, H.; Gao, C. Adv. Mater. 2013, 25, 3249. doi: 10. 1002/adma.201300774  doi: 10.1002/adma.201300774

    74. [74]

      Fang, B.; Xi, J.; Liu, Y.; Guo, F.; Xu, Z.; Gao, W.; Guo, D.; Li, P.; Gao, C. Nanoscale 2017, 9, 12178. doi: 10.1039/c7nr04175f  doi: 10.1039/c7nr04175f

    75. [75]

      Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Sci. Rep. 2012, 2, 613. doi: 10.1038/srep00613  doi: 10.1038/srep00613

    76. [76]

      Cao, J.; Zhang, Y.; Men, C.; Sun, Y.; Wang, Z.; Zhang, X.; Li, Q. ACS Nano 2014, 8, 4325. doi: 10.1021/nn4059488  doi: 10.1021/nn4059488

    77. [77]

      Liu, Y.; Xu, Z.; Zhan, J.; Li, P.; Gao, C. Adv. Mater. 2016, 28, 7941. doi: 10.1002/adma.201602444  doi: 10.1002/adma.201602444

    78. [78]

      Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Xue, M.; Gao, C. ACS Nano 2017, 11, 4301. doi: 10.1021/acsnano.7b01491  doi: 10.1021/acsnano.7b01491

    79. [79]

      Feng, L.; Chang, Y.; Zhong, J.; Jia, D. C. Sci. Rep. 2018, 8, 10803. doi: 10.1038/s41598-018-29157-4  doi: 10.1038/s41598-018-29157-4

    80. [80]

      Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Nat. Nanotechnol. 2014, 9, 555. doi: 10.1038/nnano.2014.93  doi: 10.1038/nnano.2014.93

    81. [81]

      Zheng, B.; Gao, W.; Liu, Y.; Wang, R.; Li, Z.; Xu, Z.; Gao, C. Carbon 2020, 158, 157. doi: 10.1016/j.carbon.2019.11.072  doi: 10.1016/j.carbon.2019.11.072

    82. [82]

      Xu, Z.; Zhang, Y.; Li, P.; Gao, C. ACS Nano 2012, 6, 7103. doi: 10.1021/nn3021772  doi: 10.1021/nn3021772

    83. [83]

      Aboutalebi, S. H.; Jalili, R.; Esrafilzadeh, D.; Salari, M.; Gholamvand, Z.; Yamini, S. A.; Konstantinov, K.; Shepherd, R. L.; Chen, J.; Moulton, S. E. ACS Nano 2014, 8, 2456. doi: 10.1021/nn406026z  doi: 10.1021/nn406026z

    84. [84]

      Fang, B.; Peng, L.; Xu, Z.; Gao, C. ACS Nano 2015, 9, 5214. doi: 10.1021/acsnano.5b00616  doi: 10.1021/acsnano.5b00616

    85. [85]

      Seyedin, S.; Romano, M. S.; Minett, A. I.; Razal, J. M. Sci. Rep. 2015, 5, 14946. doi: 10.1038/srep14946  doi: 10.1038/srep14946

    86. [86]

      Li, Z.; Xu, Z.; Liu, Y.; Wang, R.; Gao, C. Nat. Commun. 2016, 7, 13684. doi: 10.1038/ncomms13684  doi: 10.1038/ncomms13684

    87. [87]

      Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Small 2018, 14, e1703934. doi: 10.1002/smll.201703934  doi: 10.1002/smll.201703934

    88. [88]

      Fang, B.; Xiao, Y.; Xu, Z.; Chang, D.; Wang, B.; Gao, W.; Gao, C. Mater. Horiz. 2019, 6, 1207. doi: 10.1039/c8mh01647j  doi: 10.1039/c8mh01647j

    89. [89]

      Peng, Y.; Lin, D.; Justin Gooding, J.; Xue, Y.; Dai, L. Carbon 2018, 136, 329. doi: 10.1016/j.carbon.2018.05.004  doi: 10.1016/j.carbon.2018.05.004

    90. [90]

      Jang, J. S.; Yu, H.; Choi, S. J.; Koo, W. T.; Lee, J.; Kim, D. H.; Kang, J. Y.; Jeong, Y. J.; Jeong, H.; Kim, I. D. ACS Appl. Mater. Interfaces 2019, 11, 10208. doi: 10.1021/acsami.8b22015  doi: 10.1021/acsami.8b22015

    91. [91]

      Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Jiang, L.; Qu, L. Angew. Chem. Int. Ed. Engl. 2013, 52, 10482. doi: 10.1002/anie.201304358  doi: 10.1002/anie.201304358

    92. [92]

      Zhang, M.; Wang, Y.; Jian, M.; Wang, C.; Liang, X.; Niu, J.; Zhang, Y. Adv. Sci. 2020, 7, 1903048. doi: 10.1002/advs.201903048  doi: 10.1002/advs.201903048

    93. [93]

      Zhang, M.; Guo, R.; Chen, K.; Wang, Y.; Niu, J.; Guo, Y.; Zhang, Y.; Yin, Z.; Xia, K.; Zhou, B.; et al. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 14667. doi: 10.1073/pnas.2003079117  doi: 10.1073/pnas.2003079117

    94. [94]

      Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1702047. doi: 10.1002/aenm.201702047  doi: 10.1002/aenm.201702047

    95. [95]

      He, N.; Shan, W.; Wang, J.; Pan, Q.; Qu, J.; Wang, G.; Gao, W. J. Mater. Chem. A 2019, 7, 6869. doi: 10.1039/c8ta12337c  doi: 10.1039/c8ta12337c

    96. [96]

      Padmajan Sasikala, S.; Lee, K. E.; Lim, J.; Lee, H. J.; Koo, S. H.; Kim, I. H.; Jung, H. J.; Kim, S. O. ACS Nano 2017, 11, 9424. doi: 10.1021/acsnano.7b05029  doi: 10.1021/acsnano.7b05029

    97. [97]

      Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. Adv. Mater. 2018, 30, e1800124. doi: 10.1002/adma.201800124  doi: 10.1002/adma.201800124

    98. [98]

      Zhai, S.; Wang, C.; Karahan, H. E.; Wang, Y.; Chen, X.; Sui, X.; Huang, Q.; Liao, X.; Wang, X.; Chen, Y. Small 2018, 14, e1800582. doi: 10.1002/smll.201800582  doi: 10.1002/smll.201800582

    99. [99]

      Sun, H.; You, X.; Deng, J.; Chen, X.; Yang, Z.; Ren, J.; Peng, H. Adv. Mater. 2014, 26, 2868. doi: 10.1002/adma.201305188  doi: 10.1002/adma.201305188

    100. [100]

      Rao, J.; Liu, N.; Zhang, Z.; Su, J.; Li, L.; Xiong, L.; Gao, Y. Nano Energy 2018, 51, 425. doi: 10.1016/j.nanoen.2018.06.067  doi: 10.1016/j.nanoen.2018.06.067

    101. [101]

      Chong, W. G.; Huang, J.Q.; Xu, Z.L.; Qin, X.; Wang, X.; Kim, J. K. Adv. Funct. Mater. 2017, 27, 1604815. doi: 10.1002/adfm.201604815  doi: 10.1002/adfm.201604815

    102. [102]

      Zhao, S.; Li, G.; Tong, C.; Chen, W.; Wang, P.; Dai, J.; Fu, X.; Xu, Z.; Liu, X.; Lu, L.; et al. Nat. Commun. 2020, 11, 1788. doi: 10.1038/s41467-020-15570-9  doi: 10.1038/s41467-020-15570-9

    103. [103]

      Wang, K.; Frewin, C. L.; Esrafilzadeh, D.; Yu, C.; Wang, C.; Pancrazio, J. J.; Romero-Ortega, M.; Jalili, R.; Wallace, G. Adv. Mater. 2019, 31, e1805867. doi: 10.1002/adma.201805867  doi: 10.1002/adma.201805867

    104. [104]

      Zhou, F.; Tien, H. N.; Xu, W. L.; Chen, J. T.; Liu, Q.; Hicks, E.; Fathizadeh, M.; Li, S.; Yu, M. Nat. Commun. 2017, 8, 2107. doi: 10.1038/s41467-017-02318-1  doi: 10.1038/s41467-017-02318-1

  • 加载中
    1. [1]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    16. [16]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

Metrics
  • PDF Downloads(255)
  • Abstract views(3315)
  • HTML views(990)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return