Citation: Zang Zihao, Li Hansheng, Jiang Xianyuan, Ning Zhijun. Progress and Perspective of Tin Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200709. doi: 10.3866/PKU.WHXB202007090 shu

Progress and Perspective of Tin Perovskite Solar Cells

  • Corresponding author: Ning Zhijun, ningzhj@shanghaitech.edu.cn
  • Received Date: 30 July 2020
    Revised Date: 26 August 2020
    Accepted Date: 26 August 2020
    Available Online: 3 September 2020

    Fund Project: the National Natural Science Foundation of China 61935016the National Key Research and Development Program of China 2016YFA0204000The project was supported by the National Key Research and Development Program of China (2016YFA0204000), the ShanghaiTech Start-up Funding, the 1000 Young Talent Program, the National Natural Science Foundation of China (61935016)

  • Since organic-inorganic halide perovskites were first used in the field of solar cells in 2009, they have emerged as the most promising high-efficiency and low-cost next-generation solar cells. However, even though conventional lead perovskite halide perovskite solar cells have achieved a record efficiency of 25.2%, there is scope for improvement in terms of the detrimental properties of their constituent heavy metals. In addition, their theoretic efficiencies are limited by the large bandgap. Tin perovskite has received considerable attention in recent years, due to its heavy-metal-free character and superior semiconductor properties, such as a suitable bandgap and a high carrier mobility. In order to fabricate tin perovskite solar cells (TPSCs) of high-efficiency, the major obstacles have to be overcome, including fast crystallization of tin perovskites, high p-type carrier concentration, and high defect density. Even if Sn2+ has similar electronic configuration as Pb2+, Sn2+ has two more active electrons, which render tin perovskite less stable. To deal with these problems many strategies are developed. Lewis bases, such as dimethyl sulfoxide, are widely used to slow down the crystallization rate of tin perovskite, while oxide protective layer and plentiful additives (e.g., SnF2, liquid formic acid, and hydrazine vapor) have been found to reduce their oxidation. Furthermore, low-dimension structure and device engineering have been verified effectively promote TPSCs performance. Owing to the aforementioned strategies, the efficiency and stabilities of TPSCs were improving rapidly over the past few years, which indicates that TPSCs are the most promising candidate of lead-free perovskite solar cells. Recently, the certified efficiency of TPSCs reached over 12%, which is the maximum value for lead-free perovskite solar cells. Herein, we discuss the crystal and band structures, as well as the optoelectronic properties of tin perovskites. Furthermore, recent representative studies on tin perovskite are introduced, along with the strategies employed to improve the conversion efficiency, including the achievements based on component modification, dimension control, crystallization engineering and device structure design. Finally, we highlight the challenges presented by tin perovskites and the possible paths to improve device performance.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    2. [2]

      https://www.nrel.gov/pv/cell-efficiency.html (accessed Feb 11, 2020).

    3. [3]

      Yu, D.; Hu, Y.; Shi, J.; Tang, H.; Zhang, W.; Meng, Q.; Han, H.; Ning, Z.; Tian, H. Sci. China Chem. 2019, 62, 684. doi: 10.1007/s11426-019-9448-3  doi: 10.1007/s11426-019-9448-3

    4. [4]

      Park, N. G. Mater. Today 2015, 18, 65. doi: 10.1016/j.mattod.2014.07.007  doi: 10.1016/j.mattod.2014.07.007

    5. [5]

      Stoumpos, C. C.; Kanatzidis, M. G. Acc. Chem. Res. 2015, 48, 2791. doi: 10.1021/acs.accounts.5b00229  doi: 10.1021/acs.accounts.5b00229

    6. [6]

      Wang, Y.; Zhang, Y.; Zhang, P.; Zhang, W. Phys. Chem. Chem. Phys. 2015, 17, 11516. doi: 10.1039/c5cp00448a  doi: 10.1039/c5cp00448a

    7. [7]

      Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7, 399. doi: 10.1039/c3ee43161d  doi: 10.1039/c3ee43161d

    8. [8]

      Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281  doi: 10.1002/adma.201306281

    9. [9]

      D'Innocenzo, V.; Grancini, G.; Alcocer, M. J.; Kandada, A. R.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Nat. Commun. 2014, 5, 3586. doi: 10.1038/ncomms4586  doi: 10.1038/ncomms4586

    10. [10]

      Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Nat. Phys. 2015, 11, 582. doi: 10.1038/nphys3357  doi: 10.1038/nphys3357

    11. [11]

      Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347, 967. doi: 10.1126/science.aaa5760  doi: 10.1126/science.aaa5760

    12. [12]

      Draguta, S.; Thakur, S.; Morozov, Y. V.; Wang, Y.; Manser, J. S.; Kamat, P. V.; Kuno, M. J. Phys. Chem. Lett. 2016, 7, 715. doi: 10.1021/acs.jpclett.5b02888  doi: 10.1021/acs.jpclett.5b02888

    13. [13]

      Kang, J.; Wang, L. W. J. Phys. Chem. Lett. 2017, 8, 489. doi: 10.1021/acs.jpclett.6b02800  doi: 10.1021/acs.jpclett.6b02800

    14. [14]

      Meggiolaro, D.; Motti, S. G.; Mosconi, E.; Barker, A. J.; Ball, J.; Andrea Riccardo Perini, C.; Deschler, F.; Petrozza, A.; De Angelis, F. Energy Environ. Sci. 2018, 11, 702. doi: 10.1039/c8ee00124c  doi: 10.1039/c8ee00124c

    15. [15]

      Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424. doi: 10.1126/science.aad4424  doi: 10.1126/science.aad4424

    16. [16]

      Gu, J. Y.; Qi, P. W.; Peng, Y. Acta Phys. -Chim. Sin. 2017, 33, 1379.  doi: 10.3866/PKU.WHXB201704182

    17. [17]

      Yang, W. F.; Igbari, F.; Lou, Y. H.; Wang, Z. K.; Liao, L. S. Adv. Energy Mater. 2020, 10, 1902584. doi: 10.1002/aenm.201902584  doi: 10.1002/aenm.201902584

    18. [18]

      Li, H. M.; Dong, H.; Li, J. R.; Wu, Z. X. Acta Phys. -Chim. Sin. 2021, 37, 2007006.  doi: 10.3866/PKU.WHXB202007006

    19. [19]

      Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W. L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; et al. J. Mater. Chem. A 2015, 3, 23829. doi: 10.1039/c5ta05741h  doi: 10.1039/c5ta05741h

    20. [20]

      Huang, L.; Lambrecht, W. R. L. Phys. Rev. B 2016, 93, 195211. doi: 10.1103/PhysRevB.93.195211  doi: 10.1103/PhysRevB.93.195211

    21. [21]

      Kopacic, I.; Friesenbichler, B.; Hoefler, S. F.; Kunert, B.; Plank, H.; Rath, T.; Trimmel, G. ACS Appl. Energy Mater. 2018, 1, 343. doi: 10.1021/acsaem.8b00007  doi: 10.1021/acsaem.8b00007

    22. [22]

      Cortecchia, D.; Dewi, H. A.; Yin, J.; Bruno, A.; Chen, S.; Baikie, T.; Boix, P. P.; Gratzel, M.; Mhaisalkar, S.; Soci, C.; et al. Inorg. Chem. 2016, 55, 1044. doi: 10.1021/acs.inorgchem.5b01896  doi: 10.1021/acs.inorgchem.5b01896

    23. [23]

      Li, X.; Zhong, X.; Hu, Y.; Li, B.; Sheng, Y.; Zhang, Y.; Weng, C.; Feng, M.; Han, H.; Wang, J. J. Phys. Chem. Lett. 2017, 8, 1804. doi: 10.1021/acs.jpclett.7b00086  doi: 10.1021/acs.jpclett.7b00086

    24. [24]

      Cui, X.; Jiang, K.; Huang, J.; Zhang, Q.; Su, M.; Yang, L.; Song, Y.; Zhou, X. Synth. Met. 2015, 209, 247. doi: 10.1016/j.synthmet.2015.07.013  doi: 10.1016/j.synthmet.2015.07.013

    25. [25]

      Park, B. W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E. M. Adv. Mater. 2015, 27, 6806. doi: 10.1002/adma.201501978  doi: 10.1002/adma.201501978

    26. [26]

      Pazoki, M.; Johansson, M. B.; Zhu, H.; Broqvist, P.; Edvinsson, T.; Boschloo, G.; Johansson, E. M. J. J. Phys. Chem. C 2016, 120, 29039. doi: 10.1021/acs.jpcc.6b11745  doi: 10.1021/acs.jpcc.6b11745

    27. [27]

      Mohammad, T.; Kumar, V.; Dutta, V. Sol. Energy 2019, 182, 72. doi: 10.1016/j.solener.2019.02.034  doi: 10.1016/j.solener.2019.02.034

    28. [28]

      Zuo, C.; Ding, L. Angew. Chem. Int. Ed. 2017, 56, 6528. doi: 10.1002/anie.201702265  doi: 10.1002/anie.201702265

    29. [29]

      Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L.; et al. Nat. Commun. 2020, 11, 1245. doi: 10.1038/s41467-020-15078-2  doi: 10.1038/s41467-020-15078-2

    30. [30]

      Liu, X.; Wang, Y.; Wu, T.; He, X.; Meng, X.; Barbaud, J.; Chen, H.; Segawa, H.; Yang, X.; Han, L. Nat. Commun. 2020, 11, 2678. doi: 10.1038/s41467-020-16561-6  doi: 10.1038/s41467-020-16561-6

    31. [31]

      Ju, M.; Chen, M.; Zhou, Y.; Dai, J.; Ma, L.; Padture, N. P.; Zeng, X. C. Joule 2018, 2, 1231. doi: 10.1016/j.joule.2018.04.026  doi: 10.1016/j.joule.2018.04.026

    32. [32]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    33. [33]

      Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477. doi: 10.1007/BF01507527  doi: 10.1007/BF01507527

    34. [34]

      Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Acta Cryst. 2008, B64, 702. doi: 10.1107/S0108768108032734  doi: 10.1107/S0108768108032734

    35. [35]

      Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. Chem. Sci. 2016, 7, 4548. doi: 10.1039/c5sc04845a  doi: 10.1039/c5sc04845a

    36. [36]

      Zhou, Y.; Zhao, Y. Energy Environ. Sci. 2019, 12, 1495. doi: 10.1039/c8ee03559h  doi: 10.1039/c8ee03559h

    37. [37]

      Shannon, R. D. Acta Cryst. 1976, A32, 751. doi: 10.1107/S0567739476001551  doi: 10.1107/S0567739476001551

    38. [38]

      Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 8579. doi: 10.1021/ja301539s  doi: 10.1021/ja301539s

    39. [39]

      Pisanu, A.; Speltini, A.; Quadrelli, P.; Drera, G.; Sangaletti, L.; Malavasi, L. J. Mater. Chem. C 2019, 7, 7020. doi: 10.1039/c9tc01743g  doi: 10.1039/c9tc01743g

    40. [40]

      Lee, S. J.; Shin, S. S.; Im, J.; Ahn, T. K.; Noh, J. H.; Jeon, N. J.; Seok, S. I.; Seo, J. ACS Energy Lett. 2018, 3, 46. doi: 10.1021/acsenergylett.7b00976  doi: 10.1021/acsenergylett.7b00976

    41. [41]

      Sabba, D.; Mulmudi, H. K.; Prabhakar, R. R.; Krishnamoorthy, T.; Baikie, T.; Boix, P. P.; Mhaisalkar, S.; Mathews, N. J. Phys. Chem. C 2015, 119, 1763. doi: 10.1021/jp5126624  doi: 10.1021/jp5126624

    42. [42]

      Huang, L.; Lambrecht, W. R. L. Phys. Rev. B 2013, 88, 165203. doi: 10.1103/PhysRevB.88.165203  doi: 10.1103/PhysRevB.88.165203

    43. [43]

      Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; et al. Energy Environ. Sci. 2014, 7, 3061. doi: 10.1039/c4ee01076k  doi: 10.1039/c4ee01076k

    44. [44]

      Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photon. 2014, 8, 489. doi: 10.1038/nphoton.2014.82  doi: 10.1038/nphoton.2014.82

    45. [45]

      Wang, L. Z.; Zhao, Y. Q.; Liu, B.; Wu, L. J.; Cai, M. Q. Phys. Chem. Chem. Phys. 2016, 18, 22188. doi: 10.1039/c6cp03605h  doi: 10.1039/c6cp03605h

    46. [46]

      Tao, S.; Schmidt, I.; Brocks, G.; Jiang, J.; Tranca, I.; Meerholz, K.; Olthof, S. Nat. Commun. 2019, 10, 2560. doi: 10.1038/s41467-019-10468-7  doi: 10.1038/s41467-019-10468-7

    47. [47]

      Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H. G.; Toney, M. F.; McGehee, M. D. J. Am. Chem. Soc. 2017, 139, 11117. doi: 10.1021/jacs.7b04981  doi: 10.1021/jacs.7b04981

    48. [48]

      Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034  doi: 10.1063/1.1736034

    49. [49]

      Rühle, S. Sol. Energy 2016, 130, 139. doi: 10.1016/j.solener.2016.02.015  doi: 10.1016/j.solener.2016.02.015

    50. [50]

      Li, B.; Long, R.; Xia, Y.; Mi, Q. Angew. Chem. Int. Ed. 2018, 57, 13154. doi: 10.1002/anie.201807674  doi: 10.1002/anie.201807674

    51. [51]

      Chen, Z.; Yu, C.; Shum, K.; Wang, J. J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J. T. J. Lumin. 2012, 132, 345. doi: 10.1016/j.jlumin.2011.09.006  doi: 10.1016/j.jlumin.2011.09.006

    52. [52]

      Milot, R. L.; Klug, M. T.; Davies, C. L.; Wang, Z.; Kraus, H.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Adv. Mater. 2018, 30, 1804506. doi: 10.1002/adma.201804506  doi: 10.1002/adma.201804506

    53. [53]

      Ruf, F.; Aygüler, M. F.; Giesbrecht, N.; Rendenbach, B.; Magin, A.; Docampo, P.; Kalt, H.; Hetterich, M. APL Mater. 2019, 7, 031113. doi: 10.1063/1.5083792  doi: 10.1063/1.5083792

    54. [54]

      Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Adv. Mater. 2014, 26, 7122. doi: 10.1002/adma.201401991  doi: 10.1002/adma.201401991

    55. [55]

      Stoumpos, C. C.; Kanatzidis, M. G. Adv. Mater. 2016, 28, 5778. doi: 10.1002/adma.201600265  doi: 10.1002/adma.201600265

    56. [56]

      Herz, L. M. ACS Energy Lett. 2017, 2, 1539. doi: 10.1021/acsenergylett.7b00276  doi: 10.1021/acsenergylett.7b00276

    57. [57]

      Shi, J.; Li, D.; Luo, Y.; Wu, H.; Meng, Q. Rev. Sci. Instrum. 2016, 87, 123107. doi: 10.1063/1.4972104  doi: 10.1063/1.4972104

    58. [58]

      Herz, L. M. Annu. Rev. Phys. Chem. 2016, 67, 65. doi: 10.1146/annurev-physchem-040215-112222  doi: 10.1146/annurev-physchem-040215-112222

    59. [59]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    60. [60]

      Manser, J. S.; Christians, J. A.; Kamat, P. V. Chem. Rev. 2016, 116, 12956. doi: 10.1021/acs.chemrev.6b00136  doi: 10.1021/acs.chemrev.6b00136

    61. [61]

      Yuan, J.; Jiang, Y.; He, T.; Shi, G.; Fan, Z.; Yuan, M. Sci. China Chem. 2019, 62, 629. doi: 10.1007/s11426-018-9436-1  doi: 10.1007/s11426-018-9436-1

    62. [62]

      Shi, J.; Li, Y.; Li, Y.; Li, D.; Luo, Y.; Wu, H.; Meng, Q. Joule 2018, 2, 879. doi: 10.1016/j.joule.2018.04.010  doi: 10.1016/j.joule.2018.04.010

    63. [63]

      Xu, P.; Chen, S.; Xiang, H. J.; Gong, X. G.; Wei, S. H. Chem. Mater. 2014, 26, 6068. doi: 10.1021/cm503122j  doi: 10.1021/cm503122j

    64. [64]

      Shi, T.; Zhang, H. S.; Meng, W.; Teng, Q.; Liu, M.; Yang, X.; Yan, Y.; Yip, H. L.; Zhao, Y. J. J. Mater. Chem. A 2017, 5, 15124. doi: 10.1039/c7ta02662e  doi: 10.1039/c7ta02662e

    65. [65]

      Krishna, A.; Grimsdale, A. C. J. Mater. Chem. A 2017, 5, 16446. doi: 10.1039/c7ta01258f  doi: 10.1039/c7ta01258f

    66. [66]

      Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Adv. Sci. 2017, 4, 1700204. doi: 10.1002/advs.201700204  doi: 10.1002/advs.201700204

    67. [67]

      Gao, W.; Ran, C.; Li, J.; Dong, H.; Jiao, B.; Zhang, L.; Lan, X.; Hou, X.; Wu, Z. J. Phys. Chem. Lett. 2018, 9, 6999. doi: 10.1021/acs.jpclett.8b03194  doi: 10.1021/acs.jpclett.8b03194

    68. [68]

      Ke, W.; Stoumpos, C. C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O. Y.; Chen, M.; Sarma, D.; Zhang, Y.; et al. Sci. Adv. 2017, 3, e1701293. doi: 10.1126/sciadv.1701293  doi: 10.1126/sciadv.1701293

    69. [69]

      Yang, D.; Lv, J.; Zhao, X.; Xu, Q.; Fu, Y.; Zhan, Y.; Zunger, A.; Zhang, L. Chem. Mater. 2017, 29, 524. doi: 10.1021/acs.chemmater.6b03221  doi: 10.1021/acs.chemmater.6b03221

    70. [70]

      Jokar, E.; Chien, C. H.; Tsai, C. M.; Fathi, A.; Diau, E. W. Adv. Mater. 2019, 31 (2), 1804835. doi: 10.1002/adma.201804835  doi: 10.1002/adma.201804835

    71. [71]

      Zhao, T.; Chueh, C. C.; Chen, Q.; Rajagopal, A.; Jen, A. K. Y. ACS Energy Lett. 2016, 1, 757. doi: 10.1021/acsenergylett.6b00327  doi: 10.1021/acsenergylett.6b00327

    72. [72]

      Chen, Y.; Yu, S.; Sun, Y.; Liang, Z. J. Phys. Chem. Lett. 2018, 9, 2627. doi: 10.1021/acs.jpclett.8b00840  doi: 10.1021/acs.jpclett.8b00840

    73. [73]

      Tsai, H.; Asadpour, R.; Blancon, J. C.; Stoumpos, C. C.; Even, J.; Ajayan, P. M.; Kanatzidis, M. G.; Alam, M. A.; Mohite, A. D.; Nie, W. Nat. Commun. 2018, 9, 2130. doi: 10.1038/s41467-018-04430-2  doi: 10.1038/s41467-018-04430-2

    74. [74]

      Ran, C.; Gao, W.; Li, J.; Xi, J.; Li, L.; Dai, J.; Yang, Y.; Gao, X.; Dong, H.; Jiao, B.; et al. Joule 2019, 3, 3072. doi: 10.1016/j.joule.2019.08.023  doi: 10.1016/j.joule.2019.08.023

    75. [75]

      Liao, Y.; Liu, H.; Zhou, W.; Yang, D.; Shang, Y.; Shi, Z.; Li, B.; Jiang, X.; Zhang, L.; Quan, L. N.; et al. J. Am. Chem. Soc. 2017, 139, 6693. doi: 10.1021/jacs.7b01815  doi: 10.1021/jacs.7b01815

    76. [76]

      Wang, F.; Jiang, X.; Chen, H.; Shang, Y.; Liu, H.; Wei, J.; Zhou, W.; He, H.; Liu, W.; Ning, Z. Joule 2018, 2, 2732. doi: 10.1016/j.joule.2018.09.012  doi: 10.1016/j.joule.2018.09.012

    77. [77]

      Shao, S.; Liu, J.; Portale, G.; Fang, H. H.; Blake, G. R.; ten Brink, G. H.; Koster, L. J. A.; Loi, M. A. Adv. Energy Mater. 2018, 8 (4), 1702019. doi: 10.1002/aenm.201702019  doi: 10.1002/aenm.201702019

    78. [78]

      Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. J. Am. Chem. Soc. 2019, 141, 1171. doi: 10.1021/jacs.8b10851  doi: 10.1021/jacs.8b10851

    79. [79]

      Chen, M.; Dong, Q.; Eickemeyer, F. T.; Liu, Y.; Dai, Z.; Carl, A. D.; Bahrami, B.; Chowdhury, A. H.; Grimm, R. L.; Shi, Y.; et al. ACS Energy Lett. 2020, 5, 2223. doi: 10.1021/acsenergylett.0c00888  doi: 10.1021/acsenergylett.0c00888

    80. [80]

      Li, P.; Liu, X.; Zhang, Y.; Liang, C.; Chen, G.; Li, F.; Su, M.; Xing, G.; Tao, X.; Song, Y. Angew. Chem. Int. Ed. 2020, 59, 6909. doi: 10.1002/anie.202000460  doi: 10.1002/anie.202000460

    81. [81]

      Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Adv. Energy Mater. 2015, 5 (15), 1500477. doi: 10.1002/aenm.201500477  doi: 10.1002/aenm.201500477

    82. [82]

      Dang, Y.; Zhou, Y.; Liu, X.; Ju, D.; Xia, S.; Xia, H.; Tao, X. Angew. Chem. Int. Ed. 2016, 55, 3447. doi: 10.1002/anie.201511792  doi: 10.1002/anie.201511792

    83. [83]

      Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746. doi: 10.1021/acs.jpclett.6b00002  doi: 10.1021/acs.jpclett.6b00002

    84. [84]

      Wang, N.; Zhou, Y.; Ju, M. G.; Garces, H. F.; Ding, T.; Pang, S.; Zeng, X. C.; Padture, N. P.; Sun, X. W. Adv. Energy Mater. 2016, 6, 1601130. doi: 10.1002/aenm.201601130  doi: 10.1002/aenm.201601130

    85. [85]

      Song, T. B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M. G. ACS Energy Lett. 2017, 2, 897. doi: 10.1021/acsenergylett.7b00171  doi: 10.1021/acsenergylett.7b00171

    86. [86]

      Heo, J. H.; Kim, J.; Kim, H.; Moon, S. H.; Im, S. H.; Hong, K. H. J. Phys. Chem. Lett. 2018, 9, 6024. doi: 10.1021/acs.jpclett.8b02555  doi: 10.1021/acs.jpclett.8b02555

    87. [87]

      Chen, M.; Ju, M. G.; Garces, H. F.; Carl, A. D.; Ono, L. K.; Hawash, Z.; Zhang, Y.; Shen, T.; Qi, Y.; Grimm, R. L.; et al. Nat. Commun. 2019, 10, 16. doi: 10.1038/s41467-018-07951-y  doi: 10.1038/s41467-018-07951-y

    88. [88]

      Gupta, S.; Cahen, D.; Hodes, G. J. Phys. Chem. C 2018, 122, 13926. doi: 10.1021/acs.jpcc.8b01045  doi: 10.1021/acs.jpcc.8b01045

    89. [89]

      Xiao, M.; Gu, S.; Zhu, P.; Tang, M.; Zhu, W.; Lin, R.; Chen, C.; Xu, W.; Yu, T.; Zhu, J. Adv. Optical Mater. 2018, 6 (1), 1700615. doi: 10.1002/adom.201700615  doi: 10.1002/adom.201700615

    90. [90]

      Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974. doi: 10.1021/jacs.6b00142  doi: 10.1021/jacs.6b00142

    91. [91]

      Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A. Nat. Energy 2016, 1, 16178. doi: 10.1038/nenergy.2016.178  doi: 10.1038/nenergy.2016.178

    92. [92]

      Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 11445. doi: 10.1021/jacs.5b06658  doi: 10.1021/jacs.5b06658

    93. [93]

      Wu, T.; Liu, X.; He, X.; Wang, Y.; Meng, X.; Noda, T.; Yang, X.; Han, L. Sci. China Chem. 2019, 63, 107. doi: 10.1007/s11426-019-9653-8  doi: 10.1007/s11426-019-9653-8

    94. [94]

      Lin, Y.; Shen, L.; Dai, J.; Deng, Y.; Wu, Y.; Bai, Y.; Zheng, X.; Wang, J.; Fang, Y.; Wei, H.; et al. Adv. Mater. 2017, 29 (7), 1604545. doi: 10.1002/adma.201604545  doi: 10.1002/adma.201604545

    95. [95]

      Zhang, J.; He, Y. J.; Min, J. Acta Phys. -Chim. Sin. 2018, 34, 1221.  doi: 10.3866/PKU.WHXB201803231

    96. [96]

      Liu, X. P.; Kong, F. T.; Chen, W. C.; Yu, T.; Guo, F. L.; Chen, J.; Dai, S. Y. Acta Phys. -Chim. Sin. 2016, 32, 1347.  doi: 10.3866/PKU.WHXB201603143

    97. [97]

      Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M. C.; Kanatzidis, M. G. J. Am. Chem. Soc. 2018, 140, 388. doi: 10.1021/jacs.7b10898  doi: 10.1021/jacs.7b10898

    98. [98]

      Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; et al. Adv. Mater. 2016, 28, 9333. doi: 10.1002/adma.201602992  doi: 10.1002/adma.201602992

    99. [99]

      Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Adv. Energy Mater. 2016, 6, 1600474. doi: 10.1002/aenm.201600474  doi: 10.1002/aenm.201600474

    100. [100]

      Liu, X.; Wang, Y.; Xie, F.; Yang, X.; Han, L. ACS Energy Lett. 2018, 3, 1116. doi: 10.1021/acsenergylett.8b00383  doi: 10.1021/acsenergylett.8b00383

    101. [101]

      Vegiraju, S.; Ke, W.; Priyanka, P.; Ni, J. S.; Wu, Y. C.; Spanopoulos, I.; Yau, S. L.; Marks, T. J.; Chen, M. C.; Kanatzidis, M. G. Adv. Funct. Mater. 2019, 29, 1905393. doi: 10.1002/adfm.201905393  doi: 10.1002/adfm.201905393

    102. [102]

      Baig, F.; Khattak, Y. H.; Marí, B.; Beg, S.; Gillani, S. R.; Ahmed, A. Optik 2018, 170, 463. doi: 10.1016/j.ijleo.2018.05.135  doi: 10.1016/j.ijleo.2018.05.135

    103. [103]

      Liu, D.; Zhou, W.; Tang, H.; Fu, P.; Ning, Z. Sci. China Chem. 2018, 61, 1278. doi: 10.1007/s11426-018-9250-6  doi: 10.1007/s11426-018-9250-6

    104. [104]

      Song, T. B.; Yokoyama, T.; Stoumpos, C. C.; Logsdon, J.; Cao, D. H.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 836. doi: 10.1021/jacs.6b10734  doi: 10.1021/jacs.6b10734

    105. [105]

      Meng, X.; Wu, T.; Liu, X.; He, X.; Noda, T.; Wang, Y.; Segawa, H.; Han, L. J. Phys. Chem. Lett. 2020, 11, 2965. doi: 10.1021/acs.jpclett.0c00923  doi: 10.1021/acs.jpclett.0c00923

    106. [106]

      Wei, Q.; Ke, Y.; Ning, Z. Energy Environ. Mater. 2020, 3, 541. doi: 10.1002/eem2.12075  doi: 10.1002/eem2.12075

    107. [107]

      Meng, X.; Wang, Y.; Lin, J.; Liu, X.; He, X.; Barbaud, J.; Wu, T.; Noda, T.; Yang, X.; Han, L. Joule 2020, 4, 902. doi: 10.1016/j.joule.2020.03.007  doi: 10.1016/j.joule.2020.03.007

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(10)
  • Abstract views(248)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return