Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode
- Corresponding author: Ouyang Shuxin, oysx@mail.ccnu.edu.cn
 
	            Citation:
	            
		            Lv Lin, Zhang Liyang, He Xuebing, Yuan Hong, Ouyang Shuxin, Zhang Tierui. Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode[J]. Acta Physico-Chimica Sinica,
							;2021, 37(7): 200707.
						
							doi:
								10.3866/PKU.WHXB202007079
						
					
				
					
				
	        
	                
				Chu, S.; Majumdar, A. Nature 2012,  488, 294. doi: 10.1038/nature11475
												 doi: 10.1038/nature11475
											
										
				York, R. Nat. Clim. Change 2012,  2, 441. doi: 10.1038/nclimate1451
												 doi: 10.1038/nclimate1451
											
										
				Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. Phys. Today 2004,  57, 39.
										
				Jacobson, M. Z.; Colella, W.; Golden, D. Science 2005, 308, 1901. doi: 10.1126/science.1109157
												 doi: 10.1126/science.1109157
											
										
				Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011,  334, 1383. doi: 10.1126/science.1212858
												 doi: 10.1126/science.1212858
											
										
				Hong, W. T.; Stoerzinger, K. A.; Lee, Y. -L.; Giordano, L.; Grimaud, A.; Johnson, A. M.; Hwang, J.; Crumlin, E. J.; Yang, W.; Shao-Horn, Y. Energy Environ. Sci. 2017,  10, 2190. doi: 10.1039/C7EE02052J
												 doi: 10.1039/C7EE02052J
											
										
				Bambagioni, V.; Bevilacqua, M.; Bianchini, C.; Filippi, J.; Lavacchi, A.; Marchionni, A.; Vizza, F.; Shen, P. K. ChemSusChem 2010, 3, 851. doi: 10.1002/cssc.201000103
												 doi: 10.1002/cssc.201000103
											
										
				Yu, Z.-Y.; Lang, C. -C.; Gao, M. -R.; Chen, Y.; Fu, Q. -Q.; Duan, Y.; Yu, S. -H. Energy Environ. Sci. 2018,  11, 1890. doi: 10.1039/C8EE00521D
												 doi: 10.1039/C8EE00521D
											
										
				Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Ed. 2017,  56, 842. doi: 10.1002/anie.201608899
												 doi: 10.1002/anie.201608899
											
										
				Jiang, N.; You, B.; Boonstra, R.; Terrero Rodriguez, I. M.; Sun, Y. ACS Energy Lett. 2016,  1, 386. doi: 10.1021/acsenergylett.6b00214
												 doi: 10.1021/acsenergylett.6b00214
											
										
				Liu, Y.; Yong, X.; Liu, Z.; Chen, Z.; Kang, Z.; Lu, S. Adv. Sustainable Syst. 2019,  3, 1800161. doi: 10.1002/anie.201913910
												 doi: 10.1002/anie.201913910
											
										
				Tomboc, G. M.; Abebe, M. W.; Baye, A. F.; Kim, H. J. Energy Chem. 2019,  29, 136. doi: 10.1016/j.jechem.2018.08.009
												 doi: 10.1016/j.jechem.2018.08.009
											
										
				Zhang, H.; Ren, W.; Guan, C.; Cheng, C. J. Mater. Chem. A 2017, 5, 22004. doi: 10.1039/C7TA07340B
												 doi: 10.1039/C7TA07340B
											
										
				Sarno, M.; Ponticorvo, E.; Scarpa, D. Chem. Eng. J. 2019, 377, 120600. doi: 10.1016/j.cej.2018.12.060
												 doi: 10.1016/j.cej.2018.12.060
											
										
				Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L. Angew. Chem. Int. Ed. 2020,  59, 1718. doi: 10.1002/anie.201913910
												 doi: 10.1002/anie.201913910
											
										
				Li, W.; Wei, Z.; Wang, B.; Liu, Y.; Song, H.; Tang, Z.; Yang, B.; Lu, S. Mater. Chem. Front. 2020,  4, 277. doi: 10.1039/C9QM00618D
												 doi: 10.1039/C9QM00618D
											
										
				Yousaf, A. B.; Imran, M.; Zeb, A.; Wen, T.; Xie, X.; Jiang, Y. -F.; Yuan, C. -Z.; Xu, A. -W. Electrochim. Acta 2016,  197, 117. doi: 10.1016/j.electacta.2016.03.067
												 doi: 10.1016/j.electacta.2016.03.067
											
										
				Dong, B.; Li, W.; Huang, X.; Ali, Z.; Zhang, T.; Yang, Z.; Hou, Y. Nano Energy 2019,  55, 37. doi: 10.1016/j.nanoen.2018.10.050
												 doi: 10.1016/j.nanoen.2018.10.050
											
										
				Yang, W.; Yang, X.; Jia, J.; Hou, C.; Gao, H.; Mao, Y.; Wang, C.; Lin, J.; Luo, X. Appl. Catal. B 2019,  244, 1096. doi: 10.1016/j.apcatb.2018.12.038
												 doi: 10.1016/j.apcatb.2018.12.038
											
										
				Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Adv. Funct. Mater. 2017,  27, 1703455. doi: 10.1002/adfm.201703455
												 doi: 10.1002/adfm.201703455
											
										
				Tu, Y.; Ren, P.; Deng, D.; Bao, X. Nano Energy 2018, 52, 494. doi: 10.1016/j.nanoen.2018.07.062
												 doi: 10.1016/j.nanoen.2018.07.062
											
										
				Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Energy Environ. Sci. 2016,  9, 123. doi: 10.1039/C5EE03316K
												 doi: 10.1039/C5EE03316K
											
										
				Lv, L.; Zha, D.; Ruan, Y.; Li, Z.; Ao, X.; Zheng, J.; Jiang, J.; Chen, H.; M.; Chiang, W. -H.; Chen, J. ACS Nano 2018,  12, 3042. doi: 10.1021/acsnano.8b01056
												 doi: 10.1021/acsnano.8b01056
											
										
				Li, M.; Wang, C.; Hu, S.; Wu, H.; Feng, C.; Zhang, Y. Ionics 2019,  25, 4295. doi: 10.1007/s11581-019-02976-9
												 doi: 10.1007/s11581-019-02976-9
											
										
				Yan, X.; Tian, L.; Chen, X. J. Power Sources 2015,  300, 336. doi: 10.1016/j.jpowsour.2015.09.089
												 doi: 10.1016/j.jpowsour.2015.09.089
											
										
				Lai, H.; Wu, Q.; Zhao, J.; Shang, L.; Li, H.; Che, R.; Lyu, Z.; Xiong, J.; Yang, L.; Wang, X. Energy Environ. Sci. 2016,  9, 2053. doi: 10.1039/C6EE00603E
												 doi: 10.1039/C6EE00603E
											
										
				Kim, I. T.; Shin, S.; Shin, M. W. Carbon 2018,  135, 35. doi: 10.1016/j.carbon.2018.04.019
												 doi: 10.1016/j.carbon.2018.04.019
											
										
				Nie, Y. F.; Wang, Q.; Chen, X. Y.; Zhang, Z. J. J. Power Sources 2016,  320, 140. doi: 10.1016/j.jpowsour.2016.04.093
												 doi: 10.1016/j.jpowsour.2016.04.093
											
										
				Xu, K.; Ning, S.; Chen, H.; Ouyang, S.; Wang, J.; Song, L.; Lv, J.; Ye, J. Sol. RRL 2020, 2000116. doi: 10.1002/solr.202000116
												 doi: 10.1002/solr.202000116
											
										
				Chen, S.; Duan, J.; Ran, J.; Jaroniec, M.; Qiao, S. Z. Energy Environ. Sci. 2013,  6, 3693. doi: 10.1039/C3EE42383B
												 doi: 10.1039/C3EE42383B
											
										
				Song, F.; Hu, X. J. Am. Chem. Soc. 2014,  136, 16481. doi: 10.1021/ja5096733
												 doi: 10.1021/ja5096733
											
										
				Lv, L.; Li, Z.; Xue, K. -H.; Ruan, Y.; Ao, X.; Wan, H.; Miao, X.; Zhang, B.; Jiang, J.; Wang, C. Nano Energy 2018,  47, 275. doi: 10.1016/j.nanoen.2018.03.010
												 doi: 10.1016/j.nanoen.2018.03.010
											
										
				Pieta, I. S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Hołdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M. B.; Zboril, R. Appl. Catal. B 2019, 244, 272. doi: 10.1016/j.apcatb.2018.10.072
												 doi: 10.1016/j.apcatb.2018.10.072
											
										
				Jian, J.; Shi, Y.; Syväjärvi, M.; Yakimova, R.; Sun, J. Sol. RRL 2020,  4, 1900364. doi: 10.1002/solr.201900364
												 doi: 10.1002/solr.201900364
											
										
						
						
						
	                Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Xingyan Liu , Yue Li , Kaili Wu , Panpan Li , Yonggang Xu , Xiaowei Li , Junhao Zhou , Youzhou He , Min Fu , Guangming Jiang , Siping Wei . In-situ confined up-conversion Pt/CQDs within linker-defective NH2-MIL-125 to integrate photosensitivity and conductivity for hydrogen production and NO oxidation. Chinese Chemical Letters, 2025, 36(11): 110853-. doi: 10.1016/j.cclet.2025.110853
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Mengzhao Liu , Jie Yin , Chengjian Wang , Weiji Wang , Yuan Gao , Mengxia Yan , Ping Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
Chengyan Ge , Jiawei Hu , Xingyu Liu , Yuxi Song , Chao Liu , Zhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232