Citation: Wang Han, An Hanwen, Shan Hongmei, Zhao Lei, Wang Jiajun. Research Progress on Interfaces of All-Solid-State Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 200707. doi: 10.3866/PKU.WHXB202007070 shu

Research Progress on Interfaces of All-Solid-State Batteries

  • Corresponding author: Wang Jiajun, jiajunhit@hit.edu.cn
  • Received Date: 25 July 2020
    Revised Date: 17 August 2020
    Accepted Date: 20 August 2020
    Available Online: 26 August 2020

    Fund Project: the Natural Science Funds of Heilongjiang Province, China ZD2019B001the National Natural Science Foundation of China U1932205The project was supported by the National Natural Science Foundation of China (U1932205) and the Natural Science Funds of Heilongjiang Province, China (ZD2019B001)

  • Owing to the serious energy crisis and environmental problems caused by fossil energy consumption, development of high-energy-density batteries is becoming increasingly significant to satisfy the rapidly growing social demands. Lithium-ion batteries have received widespread attention because of their high energy densities and environmental friendliness. At present, they are widely used in portable electronic devices and electric vehicles. However, security aspects need to be addressed urgently. Substantial advances in liquid electrolyte-based lithium-ion batteries have become a performance bottleneck in the recent years. Traditional lithium-ion batteries use organic liquids as electrolytes, but the flammability and corrosion of these electrolytes considerably limit their development. Continuous growth of lithium dendrites can pierce the separator, leading to electrolyte leakage and combustion, which is a serious safety hazard. Replacement of organic electrolytes with solid-state electrolytes is one of the promising solutions for the development of next-generation energy storage devices, because they have high energy densities and are safe. Solid electrolytes can remarkably alleviate the safety hazards involved in the use of traditional liquid-based lithium-ion batteries. In addition, the composite of solid-state electrolytes and lithium metal is expected to result in a higher energy density. However, due to the lack of fluidity of the solid electrolytes, problems such as limited solid-solid contact area and increased impedance at the interface when solid-state electrolytes are in contact with electrodes must be solved. The localized and buried interface is a major drawback that restricts the electrochemical performance and practical applications of the solid-state batteries. Fabrication of a stable interface between the electrodes and solid-state electrolyte is the main challenge in the development of solid-state lithium metal batteries. All these aspects are critical to the electrochemical performance and safety of the solid-state batteries. Current research mainly focuses on addressing the problems related to the solid-solid interface in solid-state batteries and improving the electrochemical performance of such batteries. In this review, we comprehensively summarize the challenges in the fabrication of solid-state batteries, including poor chemical and electrochemical compatibilities and mechanical instability. Research progress on the improvement strategies for interface problems and the advanced characterization methods for the interface problems are discussed in detail. Meanwhile, we also propose a prospect for the future development of solid-state batteries to guide the rational designing of next-generation high-energy solid-state batteries. There are many critical problems in solid-state batteries that must be fully understood. With further research, all-solid-state batteries are expected to replace the traditional liquid-based lithium-ion batteries and become an important system for a safe and reliable energy storage.
  • 加载中
    1. [1]

      Hoshina, K.; Dokko, K.; Kanamura, K. J. Electrochem. Soc. 2005, 152, A2138. doi: 10.1149/1.2041967  doi: 10.1149/1.2041967

    2. [2]

      Huo, H. Y.; Liang, J. N.; Zhao, N.; Li, X. N.; Lin, X. T.; Zhao, Y.; Adair, K.; Li, R. Y.; Guo, X. X.; Sun, X. L. ACS Energy Lett. 2020, 5, 2156. doi: 10.1021/acsenergylett.0c00789  doi: 10.1021/acsenergylett.0c00789

    3. [3]

      Huo, H. Y.; Sun, J. Y.; Chen, C.; Meng, X. L.; He, M. H.; Zhao, N.; Guo, X. X. J. Power Sources 2018, 383, 150. doi: 10.1016/j.jpowsour.2018.02.026  doi: 10.1016/j.jpowsour.2018.02.026

    4. [4]

      Yamamoto, K.; Yoshida, R.; Sato, T.; Matsumoto, H.; Kurobe, H.; Hamanaka, T.; Kato, T.; Iriyama, Y.; Hirayama, T. J. Power Sources 2014, 266, 414. doi: 10.1016/j.jpowsour.2014.04.154  doi: 10.1016/j.jpowsour.2014.04.154

    5. [5]

      Haruyama, J.; Sodeyama, K.; Han, L. Y.; Takada, K.; Tateyama, Y. Chem. Mater. 2014, 26, 4248. doi: 10.1021/cm5016959  doi: 10.1021/cm5016959

    6. [6]

      Zhang, W. B.; Richter, F. H.; Culver, S. P.; Leichtweiss, T.; Lozano, J. G.; Dietrich, C.; Bruce, P. G.; Zeier, W. G.; Janek, J. ACS Appl. Mater. Interfaces 2018, 10, 22226. doi: 10.1021/acsami.8b05132  doi: 10.1021/acsami.8b05132

    7. [7]

      Wenzel, S.; Randau, S.; Leichtwei, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Chem. Mater. 2016, 28, 2400. doi: 10.1021/acs.chemmater.6b00610  doi: 10.1021/acs.chemmater.6b00610

    8. [8]

      Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mater. 2010, 22, 949. doi: 10.1021/cm901819c  doi: 10.1021/cm901819c

    9. [9]

      Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T. R.; Wang, Z. F.; Yang, W. J.; Hu, C. C.; Luo, W.; Huang, Y. H. Angew. Chem. Int. Ed. 2020, 59, 3699. doi: 10.1002/anie.201914417  doi: 10.1002/anie.201914417

    10. [10]

      Xia, Y. Y.; Fujieda, T.; Tatsumi, K.; Prosini, P. P.; Sakai, T. J. Power Sources 2001, 92, 234. doi: 10.1016/S0378-7753(00)00533-4  doi: 10.1016/S0378-7753(00)00533-4

    11. [11]

      Zhang, D. C.; Zhang, L.; Yang, K.; Wang, H. Q.; Yu, C.; Xu, D.; Xu, B.; Wang, L. M. ACS Appl. Mater. Interfaces 2017, 9, 36886. doi: 10.1021/acsami.7b12186  doi: 10.1021/acsami.7b12186

    12. [12]

      Xu, B, Y.; Li, W. L.; Duan, H. N.; Wang, H. J.; Guo, Y. P.; Li, H.; Liu, H. Z. J. Power Sources 2017, 354, 68. doi: 10.1016/j.jpowsour.2017.04.026  doi: 10.1016/j.jpowsour.2017.04.026

    13. [13]

      Fu, K.; Gong, Y. H.; Fu, Z. Z.; Xie, H.; Yao, Y. G.; Liu, B. Y.; Carter, M.; Wachsman, E.; Hu, L. B. Angew. Chem. Int. Ed. 2017, 56, 14942. doi: 10.1002/anie.201708637  doi: 10.1002/anie.201708637

    14. [14]

      Xiong, S. Z.; Liu, Y. Y.; Jankowski, P.; Liu, Q.; Nitze, F.; Xie, K.; Song, J. X.; Matic, A. Adv. Funct. Mater. 2020, 30, 2001444. doi: 10.1002/adfm.202001444  doi: 10.1002/adfm.202001444

    15. [15]

      Kato, A.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2016, 309, 27. doi: 10.1016/j.jpowsour.2016.01.068  doi: 10.1016/j.jpowsour.2016.01.068

    16. [16]

      Wakasugi, J.; Munakata, H.; Kanamura, K. J. Electrochem. Soc. 2017, 164, A1022. doi: 10.1149/2.0471706jes  doi: 10.1149/2.0471706jes

    17. [17]

      Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N.; Wang, H.; Wang, C. S. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    18. [18]

      Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rublo, G.; et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/NMAT4821  doi: 10.1038/NMAT4821

    19. [19]

      Feng, W. L.; Dong, X. L.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. J. Power Sources 2019, 419, 91. doi: 10.1016/j.jpowsour.2019.02.066  doi: 10.1016/j.jpowsour.2019.02.066

    20. [20]

      Deng, T.; Ji, X.; Zhao, Y.; Cao, L. S.; Li, S.; Hwang, S.; Luo, C.; Wang, P. F.; Jia, H. P.; Fan, X. L. Adv. Mater. 2020, 32, 2000030. doi: 10.1002/adma.202000030  doi: 10.1002/adma.202000030

    21. [21]

      Huo, H. Y.; Chen, Y.; Li, R. Y.; Zhao, N.; Luo, J.; da Silva, J. G. P.; Mucke, R.; Kaghazchi, P.; Guo, X. X.; Sun, X. L. Energy Environ. Sci. 2020, 13, 127. doi: 10.1039/c9ee01903k  doi: 10.1039/c9ee01903k

    22. [22]

      Manthiram, A.; Yu, X. W.; Wang, S. F. Nat. Rev. Mater. 2017, 2, 16103. doi: 10.1038/natrevmats.2016.103  doi: 10.1038/natrevmats.2016.103

    23. [23]

      Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    24. [24]

      Du, A. B.; Chai, J. C.; Zhang, J. J.; Liu, Z. H.; Cui, G. L. Energy Storage Sci. Technol. 2016, 5, 627.  doi: 10.12028/j.issn.2095-4239.2016.0020

    25. [25]

      Li, Y.; Ding, F.; Sang, L.; Zhong, H.; Liu, X. J. Energy Storage Sci. Technol. 2016, 5, 615.  doi: 10.12028/j.issn.2095-4239.2016.0043

    26. [26]

      Huo, H. Y.; Zhao, N.; Sun, J. Y.; Du, F. M.; Li, Y. Q.; Guo, X. X. J. Power Sources 2017, 372, 1. doi: 10.1016/j.jpowsour.2017.10.059  doi: 10.1016/j.jpowsour.2017.10.059

    27. [27]

      Huo, H. Y.; Li, X. N.; Sun, Y. P.; Lin, X. T.; Kieran, D. D.; Liang, J. W.; Gao, X. J.; Li, R. Y.; Huang, H.; Guo, X. X.; et al. Nano Energy 2020, 73, 104836. doi: 10.1016/j.nanoen.2020.104836  doi: 10.1016/j.nanoen.2020.104836

    28. [28]

      Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X. Adv. Energy Mater. 2019, 9, 1804004. doi: 10.1002/aenm.201804004  doi: 10.1002/aenm.201804004

    29. [29]

      Bae, J.; Li, Y. T.; Zhang, J.; Zhou, X. Y.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. H. Angew. Chem. Int. Ed. 2018, 57, 2096. doi: 10.1002/anie.201710841  doi: 10.1002/anie.201710841

    30. [30]

      Liu, Q.; Liu, Y. Y.; Jiao, X. X.; Song, Z. X.; Sadd, M.; Xu, X. X.; Matic, A.; Xiong, S. Z.; Song, J. X. Energy Storage Mater. 2019, 23, 105. doi: 10.1016/j.ensm.2019.05.023  doi: 10.1016/j.ensm.2019.05.023

    31. [31]

      Cao, Y.; Zuo, P. J.; Lou, S. F.; Sun, Z.; Li, Q.; Huo, H.; Ma, Y. L.; Du, C. Y.; Gao, Y. Z.; Yin, G. P. J. Mater. Chem. A 2019, 7, 6533. doi: 10.1039/c9ta00146h  doi: 10.1039/c9ta00146h

    32. [32]

      Li, Y. T.; Chen, X.; Dolocan, A.; Cui, Z. M.; Xin, S.; Xue, L. G.; Xu, H. H.; Park, K.; Goodenough, J. B. J. Am. Chem. Soc. 2018, 140, 6448. doi: 10.1021/jacs.8b03106  doi: 10.1021/jacs.8b03106

    33. [33]

      Huo, H. Y.; Chen, Y.; Zhao, N.; Lin, X. T.; Luo, J.; Yang, X. F.; Liu, Y. L.; Guo, X. X.; Sun, X. L. Nano Energy 2019, 61, 119. doi: 10.1016/j.nanoen.2019.04.058  doi: 10.1016/j.nanoen.2019.04.058

    34. [34]

      Huo, H. Y.; Luo, J.; Thangadurai, V.; Guo, X. X.; Nan, C. W.; Sun, X. L. ACS Energy Lett. 2020, 5, 252. doi: 10.1021/acsenergylett.9b02401  doi: 10.1021/acsenergylett.9b02401

    35. [35]

      Liang, J. W.; Chen, N.; Li, X. N.; Li, X.; Adair, K. R.; Li, J. J.; Wang, C. H.; Yu, C.; Banis, M. N.; Zhang, L.; et al. Chem. Mater. 2020, 32, 2664. doi: 10.1021/acs.chemmater.9b04764  doi: 10.1021/acs.chemmater.9b04764

    36. [36]

      Lepley, N. D.; Holzwarth, N. A. W.; Du, Y. J. A. Phys. Rev. B 2013, 88, 104103. doi: 10.1103/PhysRevB.88.104103  doi: 10.1103/PhysRevB.88.104103

    37. [37]

      Ong, S. P.; Mo, Y. F.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G. Energy Environ. Sci. 2013, 6, 148. doi: 10.1039/c2ee23355j  doi: 10.1039/c2ee23355j

    38. [38]

      Wu, F.; Fitzhugh, W.; Ye, L. h.; Ning, J. X.; Li, X. Nat. Commun. 2018, 9, 4037. doi: 10.1038/s41467-018-06123-2  doi: 10.1038/s41467-018-06123-2

    39. [39]

      Zhou, W. D.; Wang, S. F.; Li, Y. T.; Xin, S.; Manthiram, A.; Goodenough, J. B. J. Am. Chem. Soc. 2016, 138, 9385. doi: 10.1021/jacs.6b05341  doi: 10.1021/jacs.6b05341

    40. [40]

      Wu, J. F.; Pang, W. K.; Peterson, V. K.; Wei, L.; Guo, X. ACS Appl. Mater. Interfaces 2017, 9, 12461. doi: 10.1021/acsami.7b00614  doi: 10.1021/acsami.7b00614

    41. [41]

      Du, F. M.; Zhao, N.; Li, Y. Q.; Chen, C.; Liu, Z. W.; Guo, X. X. J. Power Sources 2015, 300, 24. doi: 10.1016/j.jpowsour.2015.09.061  doi: 10.1016/j.jpowsour.2015.09.061

    42. [42]

      Li, H. Q.; Liu, F. Y.; Li, Z. Y.; Wang, S. F.; Jin, R. H.; Liu, C. Y.; Chen, Y. M. ACS Appl. Mater. Interfaces 2019, 11, 17925. doi: 10.1021/acsami.9b06754  doi: 10.1021/acsami.9b06754

    43. [43]

      Cao, D. X.; Zhang, Y. B.; Nolan, A. M.; Sun, X.; Liu, C.; Sheng, J. Z.; Mo, Y. F.; Wang, Y.; Zhu. H. L. Nano Lett. 2020, 20, 1483. doi: 10.1021/acs.nanolett.9b02678  doi: 10.1021/acs.nanolett.9b02678

    44. [44]

      Wang, L. P.; Zhang, X. D.; Wang, T. S.; Yin, Y. X.; Shi, J. L.; Wang, C. R.; Guo, Y. G. Adv. Energy Mater. 2018, 8, 1801528. doi: 10.1002/aenm.201801528  doi: 10.1002/aenm.201801528

    45. [45]

      Ohta, N.; Takada, K.; Zhang, L. Q.; Ma, R. Z.; Osada, M.; Sasaki, T. Adv. Mater. 2006, 18, 2226. doi: 10.1002/adma.200502604  doi: 10.1002/adma.200502604

    46. [46]

      Takada, K. Langmuir 2013, 29, 7538. doi: 10.1021/la3045253  doi: 10.1021/la3045253

    47. [47]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Wang, P. F.; Ma, J. Y.; Yin, Y. X.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 6767. doi: 10.1021/jacs.8b03319  doi: 10.1021/jacs.8b03319

    48. [48]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2019, 141, 9165. doi: 10.1021/jacs.9b03517  doi: 10.1021/jacs.9b03517

    49. [49]

      Yan, H. F.; Voorhees, P. W.; Xin, H. L. L. MRS Bull. 2020, 45, 264. doi: 10.1557/mrs.2020.90  doi: 10.1557/mrs.2020.90

    50. [50]

      Hovden, R.; Muller, D. A. MRS Bull. 2020, 45, 298. doi: 10.1557/mrs.2020.87  doi: 10.1557/mrs.2020.87

    51. [51]

      Yu, Z. J.; Wang, J. J.; Wang, L. G.; Xie, Y.; Lou, S. F.; Jiang, Z. X.; Ren, Y.; Lee, S.; Zuo, P. J.; Huo, H.; et al. ACS Energy Lett. 2019, 4, 2007. doi: 10.1021/acsenergylett.9b01347  doi: 10.1021/acsenergylett.9b01347

    52. [52]

      Yu, Z. J.; Wang, J. J.; Liu, Y. J. MRS Bull. 2020, 45, 283. doi: 10.1557/mrs.2020.86  doi: 10.1557/mrs.2020.86

    53. [53]

      Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. Electrochim. Acta 1998, 43, 1569. doi: 10.1016/S0013-4686(97)10055-X  doi: 10.1016/S0013-4686(97)10055-X

    54. [54]

      Ren, Y. Y.; Shen, Y.; Lin, Y. H.; Nan, C. W. Electrochem. Commun. 2015, 57, 27. doi: 10.1016/j.elecom.2015.05.001  doi: 10.1016/j.elecom.2015.05.001

    55. [55]

      Golozar, M.; Hovington, P.; Paolella, A.; Bessette, S.; Lagace, M.; Bouchard, P.; Demers, H.; Gauvin, R.; Zaghib, K. Nano Lett. 2018, 18, 7583. doi: 10.1021/acs.nanolett.8b03148  doi: 10.1021/acs.nanolett.8b03148

    56. [56]

      Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Nat. Mater. 2014, 13, 69. doi: 10.1038/NMAT3793  doi: 10.1038/NMAT3793

    57. [57]

      Gittleson, F. S.; El Gabaly, F. Nano Lett. 2017, 17, 6974. doi: 10.1021/acs.nanolett.7b03498  doi: 10.1021/acs.nanolett.7b03498

    58. [58]

      Zarabian, M.; Bartolini, M.; Pereira-Almao, P.; Thangadurai, V. J. Electrochem. Soc. 2017, 164, A1133. doi: 10.1149/2.0621706jes  doi: 10.1149/2.0621706jes

    59. [59]

      Park, K.; Yu, B. C.; Jung, J. W.; Li, Y. T.; Zhou, W. D.; Gao, H. C.; Son, S.; Goodenough, J. B. Chem. Mater. 2016, 28, 8051. doi: 10.1021/acs.chemmater.6b03870  doi: 10.1021/acs.chemmater.6b03870

    60. [60]

      Hovington, P.; Lagace, M.; Guerfi, A.; Bouchard, P.; Manger, A.; Julien, C. M.; Armand, M.; Zaghib, K. Nano Lett. 2015, 15, 2671. doi: 10.1021/acs.nanolett.5b00326  doi: 10.1021/acs.nanolett.5b00326

    61. [61]

      Wang, Z. Y.; Santhanagopalan, D.; Zhang, W.; Wang, F.; Xin, H. L. L.; He, K.; Li, J. C.; Dudney, N.; Meng, Y. S. Nano Lett. 2016, 16, 3760. doi: 10.1021/acs.nanolett.6b01119  doi: 10.1021/acs.nanolett.6b01119

    62. [62]

      Sun, N.; Liu, Q. S.; Cao, Y.; Lou, S. F.; Ge, M. Y.; Xiao, X. H.; Lee, W. K.; Gao, Y. Z.; Yin, G. P.; Wang, J. J. Angew. Chem. Int. Ed. 2019, 58, 18647. doi: 10.1002/anie.201910993  doi: 10.1002/anie.201910993

    63. [63]

      Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M. Energy Environ. Sci. 2010, 3, 1995. doi: 10.1039/c0ee00266f  doi: 10.1039/c0ee00266f

    64. [64]

      Auvergniot, J.; Cassel, A.; Ledeuil, J. B.; Viallet, V.; Seznec, V.; Dedryvere, R. Chem. Mater. 2017, 29, 3883. doi: 10.1021/acs.chemmater.6b04990  doi: 10.1021/acs.chemmater.6b04990

    65. [65]

      Zhang, F.; Lou, S. F.; Li, S.; Yu, Z. J.; Liu, Q. S.; Dai, A.; Cao, C. T.; Toney, M. F.; Ge, M. Y.; Wang, J. J.; et al. Nat. Commun. 2020, 11, 3050. doi: 10.1038/s41467-020-16824-2  doi: 10.1038/s41467-020-16824-2

    66. [66]

      Besli, M. M.; Xia, S. H.; Kuppan, S.; Huang, Y. Q.; Metzger, M.; Shukla, A. K.; Schneider, G.; Hellstrom, S.; Christensen, J.; Doeff, M. M.; et al. Chem. Mater. 2019, 31, 491. doi: 10.1021/acs.chemmater.8b04418  doi: 10.1021/acs.chemmater.8b04418

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    6. [6]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    10. [10]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    18. [18]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    20. [20]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

Metrics
  • PDF Downloads(184)
  • Abstract views(2854)
  • HTML views(1170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return