Citation: Li Mengting, Zheng Xingqun, Li Li, Wei Zidong. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200705. doi: 10.3866/PKU.WHXB202007054 shu

Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media

  • Corresponding author: Li Li, liliracial@cqu.edu.cn Wei Zidong, zdwei@cqu.edu.cn
  • Received Date: 21 July 2020
    Revised Date: 13 August 2020
    Accepted Date: 14 August 2020
    Available Online: 19 August 2020

    Fund Project: the National Natural Science Foundation of China 21822803the National Natural Science Foundation of China 91834301The project was supported by the National Natural Science Foundation of China (21822803, 91834301, 21576032)the National Natural Science Foundation of China 21576032

  • Hydrogen oxygen fuel cells and water electrolysis serves as two important systems for realizing the recycling of hydrogen energy, which involves two crucial electrochemical reactions, the hydrogen oxidation reaction (HOR) and the hydrogen evolution reaction (HER). The kinetics of HOR/HER in alkaline media is 2 or 3 orders of magnitude slower than that in acidic media, which is the main bottleneck that hinders the development of alkaline membrane fuel cells and alkaline water electrolysis. Thus, clarifying the underlying difference of HOR/HER activity in alkaline and acid electrolytes, and exploring the alkaline HOR/HER mechanism are the significant challenges for widely commercial application of low temperature alkaline energy conversion devices. Here, this paper briefly reviews the related explanations and controversies about the alkaline HOR/HER mechanism in recent years, including bifunctional mechanism, hydrogen binding energy (HBE) theory and electronic effect. The bifunctional mechanism emphasizes the influence of water dissociation and OH adsorption on HER and HOR, respectively, which possesses guiding significance for designing and fabricating composite catalysts. The HBE theory stresses that Had is the key reaction intermediate of HOR/HER, and other external factors, such as electrode potential, pH, ions and so on, affect the HOR/HER mechanism and kinetics by disturbing HBE. HBE is widely considered to be the only activity descriptor of HOR/HER. The electronic effect emphasizes the role of catalysts' composition and reaction intermediates in regulating electronic structure of active sites and changing HOR/HER mechanism. It provides an effective strategy to construct active sites and optimize catalytic activity. In addition, we summarize the theoretical simulation methods of electrochemical interface and their applications in exploring HOR/HER mechanism. In-depth theoretical simulation of HOR/HER mechanism requires the establishment of a more reasonable explicit solvation model on electrode/electrolyte interface and the combination of density functional theory (DFT), ab initio molecular dynamics (AIMD), and microkinetic model, to calculate the electronic structure and the dynamic processes of electrode/electrolyte interface, such as bond breaking and formation, solvent recombination, and proton migration in the electric double layer during reaction process, and then to analyze the HOR/HER mechanism and reaction kinetics under different electrode potentials and electrolytes. The present review is helpful for understanding the ongoing developments of HOR/HER mechanism. And the combination of experiment and theoretical calculation can be employed to explore the pH-dependence of HOR/HER deeply, and design novel HOR/HER catalysts with high activity and stability.
  • 加载中
    1. [1]

      Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332. doi: 10.1038/35104599  doi: 10.1038/35104599

    2. [2]

      Dincer, I.; Acar, C. Int. J. Hydrogen Energy 2015, 40, 11094. doi: 10.1016/j.ijhydene.2014.12.035  doi: 10.1016/j.ijhydene.2014.12.035

    3. [3]

      Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P. Energy Policy 2008, 36, 4356. doi: 10.1016/j.enpol.2008.09.036  doi: 10.1016/j.enpol.2008.09.036

    4. [4]

      Hosseini, S. E.; Wahid, M. A. Renew. Sust. Energ. Rev. 2016, 57, 850. doi: 10.1016/j.rser.2015.12.112  doi: 10.1016/j.rser.2015.12.112

    5. [5]

      Yi, B. L. Chinese Battery Industry 2002, 8, 16.
       

    6. [6]

      Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.  doi: 10.3866/PKU.WHXB202003047

    7. [7]

      Juarez, F.; Salmazo, D.; Quaino, P.; Schmickler, W. Electrocatalysis 2019, 10, 584. doi: 10.1007/s12678-019-00546-1  doi: 10.1007/s12678-019-00546-1

    8. [8]

      Yang, F. L.; Bao, X.; Li, P.; Wang, X. W.; Cheng, G. Z.; Chen, S. L.; Luo, W. Angew. Chem. Int. Ed. 2019, 58, 1. doi: 10.1002/anie.201908194  doi: 10.1002/anie.201908194

    9. [9]

      Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32, 1556.  doi: 10.3866/PKU.WHXB201604291

    10. [10]

      Wang, J.; Wei, Z. D. Acta Phys. -Chim. Sin. 2017, 33, 886.  doi: 10.3866/PKU.WHXB201702092

    11. [11]

      Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. J. Electrochem. Soc. 2010, 157, B1529. doi: 10.1149/1.3483106  doi: 10.1149/1.3483106

    12. [12]

      Huang, J.; Li, P.; Chen, S. L. J. Phys. Chem. C 2019, 123, 17325. doi: 10.1021/acs.jpcc.9b03639  doi: 10.1021/acs.jpcc.9b03639

    13. [13]

      Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Adv. Mater. 2019, 31, e1808066. doi: 10.1002/adma.201808066  doi: 10.1002/adma.201808066

    14. [14]

      Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. ACS Catal. 2018, 8, 6665. doi: 10.1021/acscatal.8b00689  doi: 10.1021/acscatal.8b00689

    15. [15]

      Campos-Roldán, C. A.; Alonso-Vante, N. Electrochem. Energy Rev. 2019, 2, 312. doi: 10.1007/s41918-019-00034-6  doi: 10.1007/s41918-019-00034-6

    16. [16]

      Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Adv. Sci. 2018, 5, 1700464. doi: 10.1002/advs.201700464  doi: 10.1002/advs.201700464

    17. [17]

      Shao, Q.; Wang, P.; Huang, X. Adv. Funct. Mater. 2019, 29, 1806419. doi: 10.1002/adfm.201806419  doi: 10.1002/adfm.201806419

    18. [18]

      Morales-Guio, C. G.; Stern, L. A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi: 10.1039/c3cs60468c  doi: 10.1039/c3cs60468c

    19. [19]

      Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi: 10.1002/anie.201710556  doi: 10.1002/anie.201710556

    20. [20]

      Jia, Q. Y.; Liu, E. S.; Jiao, L.; Li, J. K.; Mukerjee, S. Curr. Opin. Electrochem. 2018, 12, 209. doi: 10.1016/j.coelec.2018.11.017  doi: 10.1016/j.coelec.2018.11.017

    21. [21]

      Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Sci. Rep. 2015, 5, 13801. doi: 10.1038/srep13801  doi: 10.1038/srep13801

    22. [22]

      St. John, S.; Atkinson, R. W.; Unocic, R. R.; Zawodzinski, T. A.; Papandrew, A. B. J. Phys. Chem. C 2015, 119, 13481. doi: 10.1021/acs.jpcc.5b03284  doi: 10.1021/acs.jpcc.5b03284

    23. [23]

      Montero, M. A.; Gennero de Chialvo, M. R.; Chialvo, A. C. J. Power Sources 2015, 283, 181. doi: 10.1016/j.jpowsour.2015.02.133  doi: 10.1016/j.jpowsour.2015.02.133

    24. [24]

      Montero, M. A.; de Chialvo, M. R. G.; Chialvo, A. C. J. Electroanal. Chem. 2016, 767, 153. doi: 10.1016/j.jelechem.2016.02.024  doi: 10.1016/j.jelechem.2016.02.024

    25. [25]

      Markovic, N. M.; Grgur, B. N.; Ross, P. N. J. Phys. Chem. B 1997, 101, 5405. doi: 10.1021/jp970930d  doi: 10.1021/jp970930d

    26. [26]

      Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. ACS Nano 2018, 12, 9635. doi: 10.1021/acsnano.8b07700  doi: 10.1021/acsnano.8b07700

    27. [27]

      Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Sci. Adv. 2016, 2, e1501602. doi: 10.1126/sciadv.1501602  doi: 10.1126/sciadv.1501602

    28. [28]

      Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics, 97th.; CRC Press: Boca Raton-London-New York, 2016; pp. 6 (259)–6 (262).

    29. [29]

      Rheinländer, P. J.; Herranz, J.; Durst, J.; Gasteiger, H. A. J. Electrochem. Soc. 2014, 161, F1448. doi: 10.1149/2.0501414jes  doi: 10.1149/2.0501414jes

    30. [30]

      Zheng, J.; Yan, Y. S.; Xu, B. J. J. Electrochem. Soc. 2015, 162, F1470. doi: 10.1149/2.0501514jes  doi: 10.1149/2.0501514jes

    31. [31]

      Simon, C.; Hasché, F.; Gasteiger, H. A. J. Electrochem. Soc. 2017, 164, F591. doi: 10.1149/2.0691706jes  doi: 10.1149/2.0691706jes

    32. [32]

      Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Angew. Chem. Int. Ed. 2014, 53, 5427. doi: 10.1002/anie.201402646  doi: 10.1002/anie.201402646

    33. [33]

      Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. A. J. Electrochem. Soc. 2014, 162, F190. doi: 10.1149/2.0981501jes  doi: 10.1149/2.0981501jes

    34. [34]

      Conway, B. E.; Bai, L. J. Electroanal. Chem. 1986, 198, 149. doi: 10.1016/0022-0728(86)90033-1  doi: 10.1016/0022-0728(86)90033-1

    35. [35]

      Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Nat. Chem. 2013, 5, 1. doi: 10.1038/nchem.1574  doi: 10.1038/nchem.1574

    36. [36]

      Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11, 550. doi: 10.1038/nmat3313  doi: 10.1038/nmat3313

    37. [37]

      Li, J. K.; Ghoshal, S.; Bates, M. K.; Miller, T. E.; Davies, V.; Stavitski, E.; Attenkofer, K.; Mukerjee, S.; Ma Z. F.; Jia, Q. Y. Angew. Chem. Int. Ed. 2017, 56, 15594. doi: 10.1002/anie.201708484  doi: 10.1002/anie.201708484

    38. [38]

      Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Science 2011, 334, 1256. doi: 10.1126/science.1211934  doi: 10.1126/science.1211934

    39. [39]

      Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Angew. Chem. Int. Ed. 2012, 51, 12663. doi: 10.1002/anie.201204842  doi: 10.1002/anie.201204842

    40. [40]

      Peng, L. S.; Liao, M. S.; Zheng, X. Q.; Nie, Y.; Zhang, L.; Wang, M. J.; Xiang, R.; Wang, J.; Li, L.; Wei, Z. D. Chem. Sci. 2020, 11, 2487. doi: 10.1039/C9SC04603H  doi: 10.1039/C9SC04603H

    41. [41]

      Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. Energy Environ. Sci. 2014, 7, 2255. doi: 10.1039/c4ee00440j  doi: 10.1039/c4ee00440j

    42. [42]

      Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Nat. Energy 2017, 2. 1. doi: 10.1038/nenergy.2017.31

    43. [43]

      Angerstein-Kozlowska, H.; Conway, B. E.; Hamelin, A. J. Electroanal. Chem. 1990, 277, 233. doi: 10.1016/0022-0728(90)85105-E  doi: 10.1016/0022-0728(90)85105-E

    44. [44]

      Alesker, M.; Page, M.; Shviro, M.; Paska, Y.; Gershinsky, G.; Dekel, D. R.; Zitoun, D. J. Power Sources 2016, 304, 332. doi: 10.1016/j.jpowsour.2015.11.026  doi: 10.1016/j.jpowsour.2015.11.026

    45. [45]

      Alia, S. M.; Pivovar, B. S.; Yan, Y. S. J. Am. Chem. Soc. 2013, 135, 13473. doi: 10.1021/ja405598a  doi: 10.1021/ja405598a

    46. [46]

      Ramaswamy, N.; Ghoshal, S.; Bates, M. K.; Jia, Q.; Li, J.; Mukerjee, S. Nano Energy 2017, 41, 765. doi: 10.1016/j.nanoen.2017.07.053  doi: 10.1016/j.nanoen.2017.07.053

    47. [47]

      Liu, L.; Liu, Y. Y.; Liu, C. G. J. Am. Chem. Soc. 2020, 142, 4985. doi: 10.1021/jacs.9b13694  doi: 10.1021/jacs.9b13694

    48. [48]

      Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Energy Environ. Sci. 2013, 6, 1509. doi: 10.1039/c3ee00045a  doi: 10.1039/c3ee00045a

    49. [49]

      Sheng, W. C; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Nat. Commun. 2015, 6, 5848. doi: 10.1038/ncomms6848  doi: 10.1038/ncomms6848

    50. [50]

      Rossmeisl, J.; Nørskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. J. Phys. Chem. B 2006, 110, 21833. doi: 10.1021/jp0631735  doi: 10.1021/jp0631735

    51. [51]

      van der Niet, M. J. T. C.; Garcia-Araez, N.; Hernández, J.; Feliu, J. M.; Koper, M. T. M. Catal. Today 2013, 202, 105. doi: 10.1016/j.cattod.2012.04.059  doi: 10.1016/j.cattod.2012.04.059

    52. [52]

      Zheng, J.; Nash, J.; Xu, B. J.; Yan, Y. S. J. Electrochem. Soc. 2018, 165, H27. doi: 10.1149/2.0881802jes  doi: 10.1149/2.0881802jes

    53. [53]

      Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. J. Am. Chem. Soc. 2018, 140, 7787. doi: 10.1021/jacs.8b04006  doi: 10.1021/jacs.8b04006

    54. [54]

      Zheng, J.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. ACS Catal. 2015, 5, 4449. doi: 10.1021/acscatal.5b00247  doi: 10.1021/acscatal.5b00247

    55. [55]

      Lu, S. Q.; Zhuang, Z. B. J. Am. Chem. Soc. 2017, 139, 5156. doi: 10.1021/jacs.7b00765  doi: 10.1021/jacs.7b00765

    56. [56]

      Liu, E. S.; Li, J. K.; Jiao, L.; Doan, H. T. T.; Liu, Z. Y.; Zhao, Z. P.; Huang, Y.; Abraham, K. M.; Mukerjee, S.; Jia, Q. Y. J. Am. Chem. Soc. 2019, 141, 3232. doi: 10.1021/jacs.8b13228  doi: 10.1021/jacs.8b13228

    57. [57]

      Schwämmlein, J. N.; Stühmeier, B. M.; Wagenbauer, K.; Dietz, H.; Tileli, V.; Gasteiger, H. A.; El-Sayed, H. A. J. Electrochem. Soc. 2018, 165, H229. doi: 10.1149/2.0791805jes  doi: 10.1149/2.0791805jes

    58. [58]

      Han, B. C.; van der Ven, A.; Ceder, G.; Hwang, B. J. Phys. Rev. B 2005, 72, 205409. doi: 10.1103/PhysRevB.72.205409  doi: 10.1103/PhysRevB.72.205409

    59. [59]

      McCrum, I. T.; Janik, M. J. J. Phys. Chem. C 2015, 120, 457. doi: 10.1021/acs.jpcc.5b10979  doi: 10.1021/acs.jpcc.5b10979

    60. [60]

      Strmcnik, D.; Kodama, K.; van der Vliet, D.; Greeley, J.; Stamenkovic, V. R.; Markovic, N. M. Nat. Chem. 2009, 1, 466. doi: 10.1038/nchem.330  doi: 10.1038/nchem.330

    61. [61]

      Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Energy Environ. Sci. 2015, 8, 177. doi: 10.1039/c4ee02564d  doi: 10.1039/c4ee02564d

    62. [62]

      Peng, L. S.; Zheng, X. Q.; Li, L.; Zhang, L.; Yang, N.; Xiong, K.; Chen, H. M.; Li, J.; Wei, Z. D. Appl. Catal. B 2019, 245, 122. doi: 10.1016/j.apcatb.2018.12.035  doi: 10.1016/j.apcatb.2018.12.035

    63. [63]

      Jiang, J. X.; Tao, S. C.; He, Q.; Wang, J.; Zhou, Y. Y.; Xie, Z. Y.; Ding, W.; Wei, Z. D. J. Mater. Chem. A 2020, 8, 10168. doi: 10.1039/D0TA02528C  doi: 10.1039/D0TA02528C

    64. [64]

      Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Nat. Catal. 2020, 3, 454. doi: 10.1038/s41929-020-0446-9  doi: 10.1038/s41929-020-0446-9

    65. [65]

      Feng, Z. P.; Li, L.; Zheng, X. Q.; Li, J.; Yang, N.; Ding, W.; Wei, Z. D. J. Phys. Chem. C 2019, 123, 23931. doi: 10.1021/acs.jpcc.9b04731  doi: 10.1021/acs.jpcc.9b04731

    66. [66]

      Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Norskov, J. K. Nat. Mater. 2006, 5, 909. doi: 10.1038/nmat1752  doi: 10.1038/nmat1752

    67. [67]

      Skúlason, E.; Tripkovic, V.; Bjúrketun, M. E.; Gudmundsdóttir, S. D.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. J. Phys. Chem. C 2010, 114, 18182. doi: 10.1021/jp1048887  doi: 10.1021/jp1048887

    68. [68]

      Qi, X. Q.; Wei, Z. D.; Li, L.; Ji, M. B.; Li, L. L.; Zhang, Q.; Xia, M. R.; Chen, S. G.; Yang, L. J. Comput. Theor. Chem. 2012, 979, 96. doi: 10.1016/j.comptc.2011.10.021  doi: 10.1016/j.comptc.2011.10.021

    69. [69]

      Vasić, D. D.; Pašti, I. A.; Mentus, S. V. Int. J. Hydrogen Energy 2013, 38, 5009. doi: 10.1016/j.ijhydene.2013.02.020  doi: 10.1016/j.ijhydene.2013.02.020

    70. [70]

      Liang, Z.; Zhong, X. L.; Li, T. Q.; Chen, M.; Feng, G. ChemElectroChem 2019, 6, 260. doi: 10.1002/celc.201800601  doi: 10.1002/celc.201800601

    71. [71]

      Bjorneholm, O.; Hansen, M. H.; Hodgson, A.; Liu, L. M.; Limmer, D. T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; et al. Chem. Rev. 2016, 116, 7698. doi: 10.1021/acs.chemrev.6b00045  doi: 10.1021/acs.chemrev.6b00045

    72. [72]

      Le, J. B.; Iannuzzi, M.; Cuesta, A.; Cheng, J. Phys. Rev. Lett. 2017, 119, 016801. doi: 10.1103/PhysRevLett.119.016801  doi: 10.1103/PhysRevLett.119.016801

    73. [73]

      Kristoffersen, H. H.; Vegge, T.; Hansen, H. A. Chem Sci 2018, 9, 6912. doi: 10.1039/c8sc02495b  doi: 10.1039/c8sc02495b

    74. [74]

      Le, J. B.; Cuesta, A.; Cheng, J. J. Electroanal. Chem. 2018, 819, 87. doi: 10.1016/j.jelechem.2017.09.002  doi: 10.1016/j.jelechem.2017.09.002

    75. [75]

      Sakong, S.; Gross, A. J. Chem. Phys. 2018, 149, 084705. doi: 10.1063/1.5040056  doi: 10.1063/1.5040056

    76. [76]

      Groß, A.; Sakong, S. Curr. Opin. Electrochem. 2019, 14, 1. doi: 10.1016/j.coelec.2018.09.005  doi: 10.1016/j.coelec.2018.09.005

    77. [77]

      Mogelhoj, A.; Kelkkanen, A. K.; Wikfeldt, K. T.; Schiotz, J.; Mortensen, J. J.; Pettersson, L. G.; Lundqvist, B. I.; Jacobsen, K. W.; Nilsson, A.; Norskov, J. K. J. Phys. Chem. B 2011, 115, 14149. doi: 10.1021/jp2040345  doi: 10.1021/jp2040345

    78. [78]

      Pedroza, L. S.; Poissier, A.; Fernandez-Serra, M. V. J. Chem. Phys. 2015, 142, 034706. doi: 10.1063/1.4905493  doi: 10.1063/1.4905493

    79. [79]

      Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 4200. doi: 10.1073/pnas.1301596110  doi: 10.1073/pnas.1301596110

    80. [80]

      Cao, Z.; Kumar, R.; Peng, Y.; Voth, G. A. J. Phys. Chem. C 2015, 119, 14675. doi: 10.1021/jp5129244  doi: 10.1021/jp5129244

    81. [81]

      Limmer, D. T.; Willard, A. P.; Madden, P. A.; Chandler, D. J. Phys. Chem. C 2015, 119, 24016. doi: 10.1021/acs.jpcc.5b08137  doi: 10.1021/acs.jpcc.5b08137

    82. [82]

      Willard, A. P.; Limmer, D. T.; Madden, P. A.; Chandler, D. J. Chem. Phys. 2013, 138, 184702. doi: 10.1063/1.4803503  doi: 10.1063/1.4803503

    83. [83]

      Schnur, S.; Groß, A. New J. Phys. 2009, 11, 125003. doi: 10.1088/1367-2630/11/12/125003  doi: 10.1088/1367-2630/11/12/125003

    84. [84]

      Sundararaman, R.; Goddard, W. A., 3rd; Arias, T. A. J. Chem. Phys. 2017, 146, 114104. doi: 10.1063/1.4978411

    85. [85]

      Andreussi, O.; Fisicaro, G. Int. J. Quantum. Chem. 2019, 119, e25725. doi: 10.1002/qua.25725  doi: 10.1002/qua.25725

    86. [86]

      Roudgar, A.; Groß, A. Chem. Phys. Lett. 2005, 409, 157. doi: 10.1016/j.cplett.2005.04.103  doi: 10.1016/j.cplett.2005.04.103

    87. [87]

      Michaelides, A. Appl. Phys. A 2006, 85, 415. doi: 10.1007/s00339-006-3695-9  doi: 10.1007/s00339-006-3695-9

    88. [88]

      Skulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jonsson, H.; Norskov, J. K. Phys. Chem. Chem. Phys. 2007, 9, 3241. doi: 10.1039/b700099e  doi: 10.1039/b700099e

    89. [89]

      Hansen, M. H.; Jin, C.; Thygesen, K. S.; Rossmeisl, J. J. Phys. Chem. C 2016, 120, 13485. doi: 10.1021/acs.jpcc.6b00721  doi: 10.1021/acs.jpcc.6b00721

    90. [90]

      Szabová, L.; Camellone, M. F.; Ribeiro, F. N.; Matolín, V.; Tateyama, Y.; Fabris, S. J. Phys. Chem. C 2018, 122, 27507. doi: 10.1021/acs.jpcc.8b09154  doi: 10.1021/acs.jpcc.8b09154

    91. [91]

      Bellarosa, L.; García-Muelas, R.; Revilla-López, G.; López, N. ACS Cent. Sci. 2016, 2, 109. doi: 10.1021/acscentsci.5b00349  doi: 10.1021/acscentsci.5b00349

    92. [92]

      Uudsemaa, M.; Tamm, T. J. Phys. Chem. A 2003, 107, 9997. doi: 10.1021/jp0362741  doi: 10.1021/jp0362741

    93. [93]

      Morawietz, T.; Singraber, A.; Dellago, C.; Behler, J. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 8368. doi: 10.1073/pnas.1602375113  doi: 10.1073/pnas.1602375113

    94. [94]

      Lozovoi, A. Y.; Alavi, A.; Kohanoff, J.; Lynden-Bell, R. M. J. Chem. Phys. 2001, 115, 1661. doi: 10.1063/1.4978411  doi: 10.1063/1.4978411

    95. [95]

      Bonnet, N.; Morishita, T.; Sugino, O.; Otani, M. Phys. Rev. Lett. 2012, 109, 266101. doi: 10.1103/PhysRevLett.109.266101  doi: 10.1103/PhysRevLett.109.266101

    96. [96]

      Bouzid, A.; Pasquarello, A. J. Chem. Theory Comput. 2017, 13, 1769. doi: 10.1021/acs.jctc.6b01232  doi: 10.1021/acs.jctc.6b01232

    97. [97]

      Bouzid, A.; Pasquarello, A. J. Phys. Chem. Lett. 2018, 9, 1880. doi: 10.1021/acs.jpclett.8b00573  doi: 10.1021/acs.jpclett.8b00573

    98. [98]

      Cheng, J.; Sprik, M. Phys. Chem. Chem. Phys. 2012, 14, 11245. doi: 10.1039/c2cp41652b  doi: 10.1039/c2cp41652b

    99. [99]

      Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys. 2014, 140, 084106. doi: 10.1063/1.4865107  doi: 10.1063/1.4865107

    100. [100]

      Lamoureux, P. S.; Singh, A. R.; Chan, K. ACS Catal. 2019, 9, 6194. doi: 10.1021/acscatal.9b00268  doi: 10.1021/acscatal.9b00268

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(225)
  • Abstract views(3874)
  • HTML views(1726)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return