Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation
- Corresponding author: Zhang Wei, zw@snnu.edu.cn Cao Rui, ruicao@ruc.edu.cn
Citation: Gao Xueqing, Yang Shujiao, Zhang Wei, Cao Rui. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200703. doi: 10.3866/PKU.WHXB202007031
Dogutan, D. K.; Nocera, D. G. Acc. Chem. Res. 2019, 52, 3143. doi: 10.1021/acs.accounts.9b00380
doi: 10.1021/acs.accounts.9b00380
Gao, X.; Chen, Y.; Sun, T.; Huang, J.; Zhang, W.; Wang, Q.; Cao, R. Energy Environ. Sci. 2020, 13, 174. doi: 10.1039/c9ee02380a
doi: 10.1039/c9ee02380a
Li, P.; Zhao, R.; Chen, H.; Wang, H.; Wei, P.; Huang, H.; Liu, Q.; Li, T.; Shi, X.; Zhang, Y.; et al. Small 2019, 15, 1805103. doi: 10.1002/smll.201805103
doi: 10.1002/smll.201805103
Odella, E.; Mora, S. J.; Wadsworth, B. L.; Goings, J. J.; Gervaldo, M. A.; Sereno, L. E.; Groy, T. L.; Gust, D.; Moore, T. A.; Moore, G. F.; et al. Chem. Sci. 2020, 11, 3820. doi: 10.1039/c9sc06010c
doi: 10.1039/c9sc06010c
Devi, T.; Lee, Y. -M.; Nam, W.; Fukuzumi, S. Coord. Chem. Rev. 2020, 410, 213219. doi: 10.1016/j.ccr.2020.213219
doi: 10.1016/j.ccr.2020.213219
Siegbahn, P. E. M. Acc. Chem. Res. 2009, 42, 1871. doi: 10.1021/ar900117k
doi: 10.1021/ar900117k
Harriman, A. Eur. J. Inorg. Chem. 2014, 573. doi: 10.1002/ejic.201301540
doi: 10.1002/ejic.201301540
Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020, 49, 2215. doi: 10.1039/c9cs00869a
doi: 10.1039/c9cs00869a
Ye, S.; Ding, C.; Liu, M.; Wang, A.; Huang, Q.; Li, C. Adv. Mater. 2019, 31, 1902069. doi: 10.1002/adma.201902069
doi: 10.1002/adma.201902069
Fukuzumi, S.; Lee, Y.-M.; Nam, W. Dalton Trans. 2019, 48, 779. doi: 10.1039/c8dt04341h
doi: 10.1039/c8dt04341h
Mavrokefalos, C. K.; Patzke, G. R. Inorganics 2019, 7, 29. doi: 10.3390/inorganics7030029
doi: 10.3390/inorganics7030029
Sun, W.; Lin, J.; Liang, X.; Yang, J.; Ma, B.; Ding, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905025.
doi: 10.3866/PKU.WHXB201905025
Shaffer, D. W.; Xie, Y.; Concepcion, J. J. Chem. Soc. Rev. 2017, 46, 6170. doi: 10.1039/c7cs00542c
doi: 10.1039/c7cs00542c
Shen, J. R. Annu. Rev. Plant Physiol. 2015, 66, 23. doi: 10.1146/annurev-arplant-050312-120129
doi: 10.1146/annurev-arplant-050312-120129
Yano, J.; Yachandra, V. Chem. Rev. 2014, 114, 4175. doi: 10.1021/cr4004874
doi: 10.1021/cr4004874
Lubitz, W.; Chrysina, M.; Cox, N. Photosynth. Res. 2019, 142, 105. doi: 10.1007/s11120-019-00648-3
doi: 10.1007/s11120-019-00648-3
Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Chem. Rev. 2018, 118, 5201. doi: 10.1021/acs.chemrev.7b00286
doi: 10.1021/acs.chemrev.7b00286
Li, Z.; Wang, W.; Ding, C.; Wang, Z.; Liao, S.; Li, C. Energy Environ. Sci. 2017, 10, 765. doi: 10.1039/c6ee03401b
doi: 10.1039/c6ee03401b
Zaharieva, I.; Najafpour, M. M.; Wiechen, M.; Haumann, M.; Kurz, P.; Dau, H. Energy Environ. Sci. 2011, 4, 2400. doi: 10.1039/c0ee00815j
doi: 10.1039/c0ee00815j
Najafpour, M. M.; Zarei Ghobadi, M.; Sarvi, B.; Madadkhani, S.; Jafarian Sedigh, D.; Rafighi, P.; Tavahodi, M.; Shen, J. -R.; Allakhverdiev, S. I. Int. J. Hydrog. Energy 2016, 41, 5504. doi: 10.1016/j.ijhydene.2016.01.131
doi: 10.1016/j.ijhydene.2016.01.131
McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. J. Am. Chem. Soc. 2011, 133, 11446. doi: 10.1021/ja203877y
doi: 10.1021/ja203877y
Ye, S.; Ding, C.; Chen, R.; Fan, F.; Fu, P.; Yin, H.; Wang, X.; Wang, Z.; Du, P.; Li, C. J. Am. Chem. Soc. 2018, 140, 3250. doi: 10.1021/jacs.7b10662
doi: 10.1021/jacs.7b10662
Zhang, T.; Wang, C.; Liu, S.; Wang, J. L.; Lin, W. J. Am. Chem. Soc. 2014, 136, 273. doi: 10.1021/ja409267p
doi: 10.1021/ja409267p
Hou, H. J. M. Materials 2011, 4, 1693. doi: 10.3390/ma4101693
doi: 10.3390/ma4101693
Yamaguchi, A.; Inuzuka, R.; Takashima, T.; Hayashi, T.; Hashimoto, K.; Nakamura, R. Nat. Commun. 2014, 5, 4256. doi: 10.1038/ncomms5256
doi: 10.1038/ncomms5256
Kurz, P. Top. Curr. Chem. 2016, 371, 49. doi: 10.1007/128_2015_634
doi: 10.1007/128_2015_634
Najafpour, M. M.; Ghobadi, M. Z.; Haghighi, B.; Eaton-Rye, J. J.; Tomo, T.; Shen, J. R.; Allakhverdiev, S. I. Biochemistry-Moscow 2014, 79, 324. doi: 10.1134/s0006297914040026
doi: 10.1134/s0006297914040026
Jin, K.; Park, J.; Lee, J.; Yang, K. D.; Pradhan, G. K.; Sim, U.; Jeong, D.; Jang, H. L.; Park, S.; Kim, D.; et al. J. Am. Chem. Soc. 2014, 136, 7435. doi: 10.1021/ja5026529
doi: 10.1021/ja5026529
Najafpour, M. M.; Renger, G.; Holynska, M.; Moghaddam, A. N.; Aro, E. -M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen, J. -R.; Allakhverdiev, S. I. Chem. Rev. 2016, 116, 2886. doi: 10.1021/acs.chemrev.5b00340
doi: 10.1021/acs.chemrev.5b00340
Najafpour, M. M.; Zaharieva, I.; Zand, Z.; Hosseini, S. M.; Kouzmanova, M.; Holynska, M.; Tranca, I.; Larkum, A. W.; Shen, J. -R.; Allakhverdiev, S. I. Coord. Chem. Rev. 2020, 409, 213183. doi: 10.1016/j.ccr.2020.213183
doi: 10.1016/j.ccr.2020.213183
Dau, H.; Zaharieva, I.; Haumann, M. Curr. Opin. Chem. Biol. 2012, 16, 3. doi: 10.1016/j.cbpa.2012.02.011
doi: 10.1016/j.cbpa.2012.02.011
Singh, B.; Indra, A. Inorg. Chim. Acta 2020, 506, 119440. doi: 10.1016/j.ica.2020.119440
doi: 10.1016/j.ica.2020.119440
Xiao, Y.; Zhu, Q.; Yang, Y.; Wang, W.; Kuang, T.; Shen, J. -R.; Han, G. Photosynth. Res. 2020, doi: 10.1007/s11120-020-00753-8
doi: 10.1007/s11120-020-00753-8
Sugiura, M.; Taniguchi, T.; Tango, N.; Nakamura, M.; Selles, J.; Boussac, A. Physiol. Plant. 2020, doi: 10.1111/ppl.13115
doi: 10.1111/ppl.13115
Lee, Y. V.; Tian, B. Nano Lett. 2019, 19, 2189. doi: 10.1021/acs.nanolett.9b00388
doi: 10.1021/acs.nanolett.9b00388
Petrie, S.; Terrett, R.; Stranger, R.; Pace, R. J. ChemPhysChem 2020, 21, 785. doi: 10.1002/cphc.201901106
doi: 10.1002/cphc.201901106
Mueh, F.; Zouni, A. Protein Sci. 2020, 29, 1090. doi: 10.1002/pro.3841
doi: 10.1002/pro.3841
Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Nature 2011, 473, 55. doi: 10.1038/nature09913
doi: 10.1038/nature09913
Vogt, L.; Vinyard, D. J.; Khan, S.; Brudvig, G. W. Curr. Opin. Chem. Biol. 2015, 25, 152. doi: 10.1016/j.cbpa.2014.12.040
doi: 10.1016/j.cbpa.2014.12.040
Guerra, F.; Siemers, M.; Mielack, C.; Bondar, A. -N. J. Phys. Chem. B 2018, 122, 4625. doi: 10.1021/acs.jpcb.8b00649
doi: 10.1021/acs.jpcb.8b00649
Isobe, H.; Shoji, M.; Shen, J. -R.; Yamaguchi, K. J. Phys. Chem. B 2015, 119, 13922. doi: 10.1021/acs.jpcb.5b05740
doi: 10.1021/acs.jpcb.5b05740
Shoji, M.; Isobe, H.; Yamanaka, S.; Umena, Y.; Kawakami, K.; Kamiya, N.; Shen, J. -R.; Nakajima, T.; Yamaguchi, K. Mol. Phys. 2015, 113, 359. doi: 10.1080/00268976.2014.960021
doi: 10.1080/00268976.2014.960021
Li, Y.; Yao, R.; Chen, Y.; Xu, B.; Chen, C.; Zhang, C. Catalysts 2020, 10, 185. doi: 10.3390/catal10020185
doi: 10.3390/catal10020185
Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935. doi: 10.1021/ar900249x
doi: 10.1021/ar900249x
Escobal, J.; Pizarro, J. L.; Mesa, J. L.; Lezama, L.; Olazcuaga, R.; Arriortua, M. I.; Rojo, T. Chem. Mater. 2000, 12, 376. doi: 10.1021/cm9910815
doi: 10.1021/cm9910815
Zhao, H. R.; Xue, C.; Li, C. P.; Zhang, K. M.; Luo, H. B.; Liu, S. X.; Ren, X. M. Inorg. Chem. 2016, 55, 8971. doi: 10.1021/acs.inorgchem.6b01438
doi: 10.1021/acs.inorgchem.6b01438
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012