Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation
- Corresponding author: Zhang Wei, zw@snnu.edu.cn Cao Rui, ruicao@ruc.edu.cn
 
	            Citation:
	            
		            Gao Xueqing, Yang Shujiao, Zhang Wei, Cao Rui. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation[J]. Acta Physico-Chimica Sinica,
							;2021, 37(7): 200703.
						
							doi:
								10.3866/PKU.WHXB202007031
						
					
				
					
				
	        
	                
				Dogutan, D. K.; Nocera, D. G. Acc. Chem. Res. 2019, 52, 3143. doi: 10.1021/acs.accounts.9b00380
												 doi: 10.1021/acs.accounts.9b00380
											
										
				Gao, X.; Chen, Y.; Sun, T.; Huang, J.; Zhang, W.; Wang, Q.; Cao, R. Energy Environ. Sci. 2020, 13, 174. doi: 10.1039/c9ee02380a
												 doi: 10.1039/c9ee02380a
											
										
				Li, P.; Zhao, R.; Chen, H.; Wang, H.; Wei, P.; Huang, H.; Liu, Q.; Li, T.; Shi, X.; Zhang, Y.; et al. Small 2019,  15, 1805103. doi: 10.1002/smll.201805103
												 doi: 10.1002/smll.201805103
											
										
				Odella, E.; Mora, S. J.; Wadsworth, B. L.; Goings, J. J.; Gervaldo, M. A.; Sereno, L. E.; Groy, T. L.; Gust, D.; Moore, T. A.; Moore, G. F.; et al. Chem. Sci. 2020, 11, 3820. doi: 10.1039/c9sc06010c
												 doi: 10.1039/c9sc06010c
											
										
				Devi, T.; Lee, Y. -M.; Nam, W.; Fukuzumi, S. Coord. Chem. Rev. 2020,  410, 213219. doi: 10.1016/j.ccr.2020.213219
												 doi: 10.1016/j.ccr.2020.213219
											
										
				Siegbahn, P. E. M. Acc. Chem. Res. 2009,  42, 1871. doi: 10.1021/ar900117k
												 doi: 10.1021/ar900117k
											
										
				Harriman, A. Eur. J. Inorg. Chem. 2014, 573. doi: 10.1002/ejic.201301540
												 doi: 10.1002/ejic.201301540
											
										
				Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020,  49, 2215. doi: 10.1039/c9cs00869a
												 doi: 10.1039/c9cs00869a
											
										
				Ye, S.; Ding, C.; Liu, M.; Wang, A.; Huang, Q.; Li, C. Adv. Mater. 2019,  31, 1902069. doi: 10.1002/adma.201902069
												 doi: 10.1002/adma.201902069
											
										
				Fukuzumi, S.; Lee, Y.-M.; Nam, W. Dalton Trans. 2019,  48, 779. doi: 10.1039/c8dt04341h
												 doi: 10.1039/c8dt04341h
											
										
				Mavrokefalos, C. K.; Patzke, G. R. Inorganics 2019,  7, 29. doi: 10.3390/inorganics7030029
												 doi: 10.3390/inorganics7030029
											
										
				Sun, W.; Lin, J.; Liang, X.; Yang, J.; Ma, B.; Ding, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905025.
												 doi: 10.3866/PKU.WHXB201905025
											
										
				Shaffer, D. W.; Xie, Y.; Concepcion, J. J. Chem. Soc. Rev. 2017,  46, 6170. doi: 10.1039/c7cs00542c
												 doi: 10.1039/c7cs00542c
											
										
				Shen, J. R. Annu. Rev. Plant Physiol. 2015, 66, 23. doi: 10.1146/annurev-arplant-050312-120129
												 doi: 10.1146/annurev-arplant-050312-120129
											
										
				Yano, J.; Yachandra, V. Chem. Rev. 2014,  114, 4175. doi: 10.1021/cr4004874
												 doi: 10.1021/cr4004874
											
										
				Lubitz, W.; Chrysina, M.; Cox, N. Photosynth. Res. 2019,  142, 105. doi: 10.1007/s11120-019-00648-3
												 doi: 10.1007/s11120-019-00648-3
											
										
				Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Chem. Rev. 2018,  118, 5201. doi: 10.1021/acs.chemrev.7b00286
												 doi: 10.1021/acs.chemrev.7b00286
											
										
				Li, Z.; Wang, W.; Ding, C.; Wang, Z.; Liao, S.; Li, C. Energy Environ. Sci. 2017, 10, 765. doi: 10.1039/c6ee03401b
												 doi: 10.1039/c6ee03401b
											
										
				Zaharieva, I.; Najafpour, M. M.; Wiechen, M.; Haumann, M.; Kurz, P.; Dau, H. Energy Environ. Sci. 2011, 4, 2400. doi: 10.1039/c0ee00815j
												 doi: 10.1039/c0ee00815j
											
										
				Najafpour, M. M.; Zarei Ghobadi, M.; Sarvi, B.; Madadkhani, S.; Jafarian Sedigh, D.; Rafighi, P.; Tavahodi, M.; Shen, J. -R.; Allakhverdiev, S. I. Int. J. Hydrog. Energy 2016, 41, 5504. doi: 10.1016/j.ijhydene.2016.01.131
												 doi: 10.1016/j.ijhydene.2016.01.131
											
										
				McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. J. Am. Chem. Soc. 2011,  133, 11446. doi: 10.1021/ja203877y
												 doi: 10.1021/ja203877y
											
										
				Ye, S.; Ding, C.; Chen, R.; Fan, F.; Fu, P.; Yin, H.; Wang, X.; Wang, Z.; Du, P.; Li, C. J. Am. Chem. Soc. 2018,  140, 3250. doi: 10.1021/jacs.7b10662
												 doi: 10.1021/jacs.7b10662
											
										
				Zhang, T.; Wang, C.; Liu, S.; Wang, J. L.; Lin, W. J. Am. Chem. Soc. 2014,  136, 273. doi: 10.1021/ja409267p
												 doi: 10.1021/ja409267p
											
										
				Hou, H. J. M. Materials 2011, 4, 1693. doi: 10.3390/ma4101693
												 doi: 10.3390/ma4101693
											
										
				Yamaguchi, A.; Inuzuka, R.; Takashima, T.; Hayashi, T.; Hashimoto, K.; Nakamura, R. Nat. Commun. 2014, 5, 4256. doi: 10.1038/ncomms5256
												 doi: 10.1038/ncomms5256
											
										
				Kurz, P. Top. Curr. Chem. 2016,  371, 49. doi: 10.1007/128_2015_634
												 doi: 10.1007/128_2015_634
											
										
				Najafpour, M. M.; Ghobadi, M. Z.; Haghighi, B.; Eaton-Rye, J. J.; Tomo, T.; Shen, J. R.; Allakhverdiev, S. I. Biochemistry-Moscow 2014,  79, 324. doi: 10.1134/s0006297914040026
												 doi: 10.1134/s0006297914040026
											
										
				Jin, K.; Park, J.; Lee, J.; Yang, K. D.; Pradhan, G. K.; Sim, U.; Jeong, D.; Jang, H. L.; Park, S.; Kim, D.; et al. J. Am. Chem. Soc. 2014,  136, 7435. doi: 10.1021/ja5026529
												 doi: 10.1021/ja5026529
											
										
				Najafpour, M. M.; Renger, G.; Holynska, M.; Moghaddam, A. N.; Aro, E. -M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen, J. -R.; Allakhverdiev, S. I. Chem. Rev. 2016, 116, 2886. doi: 10.1021/acs.chemrev.5b00340
												 doi: 10.1021/acs.chemrev.5b00340
											
										
				Najafpour, M. M.; Zaharieva, I.; Zand, Z.; Hosseini, S. M.; Kouzmanova, M.; Holynska, M.; Tranca, I.; Larkum, A. W.; Shen, J. -R.; Allakhverdiev, S. I. Coord. Chem. Rev. 2020,  409, 213183. doi: 10.1016/j.ccr.2020.213183
												 doi: 10.1016/j.ccr.2020.213183
											
										
				Dau, H.; Zaharieva, I.; Haumann, M. Curr. Opin. Chem. Biol. 2012, 16, 3. doi: 10.1016/j.cbpa.2012.02.011
												 doi: 10.1016/j.cbpa.2012.02.011
											
										
				Singh, B.; Indra, A. Inorg. Chim. Acta 2020,  506, 119440. doi: 10.1016/j.ica.2020.119440
												 doi: 10.1016/j.ica.2020.119440
											
										
				Xiao, Y.; Zhu, Q.; Yang, Y.; Wang, W.; Kuang, T.; Shen, J. -R.; Han, G. Photosynth. Res. 2020, doi: 10.1007/s11120-020-00753-8
												 doi: 10.1007/s11120-020-00753-8
											
										
				Sugiura, M.; Taniguchi, T.; Tango, N.; Nakamura, M.; Selles, J.; Boussac, A. Physiol. Plant. 2020, doi: 10.1111/ppl.13115
												 doi: 10.1111/ppl.13115
											
										
				Lee, Y. V.; Tian, B. Nano Lett. 2019,  19, 2189. doi: 10.1021/acs.nanolett.9b00388
												 doi: 10.1021/acs.nanolett.9b00388
											
										
				Petrie, S.; Terrett, R.; Stranger, R.; Pace, R. J. ChemPhysChem 2020,  21, 785. doi: 10.1002/cphc.201901106
												 doi: 10.1002/cphc.201901106
											
										
				Mueh, F.; Zouni, A. Protein Sci. 2020,  29, 1090. doi: 10.1002/pro.3841
												 doi: 10.1002/pro.3841
											
										
				Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Nature 2011,  473, 55. doi: 10.1038/nature09913
												 doi: 10.1038/nature09913
											
										
				Vogt, L.; Vinyard, D. J.; Khan, S.; Brudvig, G. W. Curr. Opin. Chem. Biol. 2015,  25, 152. doi: 10.1016/j.cbpa.2014.12.040
												 doi: 10.1016/j.cbpa.2014.12.040
											
										
				Guerra, F.; Siemers, M.; Mielack, C.; Bondar, A. -N. J. Phys. Chem. B 2018, 122, 4625. doi: 10.1021/acs.jpcb.8b00649
												 doi: 10.1021/acs.jpcb.8b00649
											
										
				Isobe, H.; Shoji, M.; Shen, J. -R.; Yamaguchi, K. J. Phys. Chem. B 2015,  119, 13922. doi: 10.1021/acs.jpcb.5b05740
												 doi: 10.1021/acs.jpcb.5b05740
											
										
				Shoji, M.; Isobe, H.; Yamanaka, S.; Umena, Y.; Kawakami, K.; Kamiya, N.; Shen, J. -R.; Nakajima, T.; Yamaguchi, K. Mol. Phys. 2015,  113, 359. doi: 10.1080/00268976.2014.960021
												 doi: 10.1080/00268976.2014.960021
											
										
				Li, Y.; Yao, R.; Chen, Y.; Xu, B.; Chen, C.; Zhang, C. Catalysts 2020, 10, 185. doi: 10.3390/catal10020185
												 doi: 10.3390/catal10020185
											
										
				Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009,  42, 1935. doi: 10.1021/ar900249x
												 doi: 10.1021/ar900249x
											
										
				Escobal, J.; Pizarro, J. L.; Mesa, J. L.; Lezama, L.; Olazcuaga, R.; Arriortua, M. I.; Rojo, T. Chem. Mater. 2000,  12, 376. doi: 10.1021/cm9910815
												 doi: 10.1021/cm9910815
											
										
				Zhao, H. R.; Xue, C.; Li, C. P.; Zhang, K. M.; Luo, H. B.; Liu, S. X.; Ren, X. M. Inorg. Chem. 2016,  55, 8971. doi: 10.1021/acs.inorgchem.6b01438
												 doi: 10.1021/acs.inorgchem.6b01438
											
										
						
						
						
	                Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Lin Zhang , Jianlong Li , Maoyuan Hu , Yao Xu , Xiaoli Xiong , Zhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
Qing Li , Yumei Feng , Yuhua Xie , Qi Xu , Yifei Li , Yingjie Yu , Fang Luo , Zehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074