Recent Advances in Tin-Based Perovskite Solar Cells
- Corresponding author: Wu Zhaoxin, zhaoxinwu@mail.xjtu.edu.cn
Citation: Li Haomiao, Dong Hua, Li Jingrui, Wu Zhaoxin. Recent Advances in Tin-Based Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200700. doi: 10.3866/PKU.WHXB202007006
Moller, C. K. Nature 1958, 182, 1436. doi: 10.1038/1821436a0
doi: 10.1038/1821436a0
Weber, D. Z. Naturforsch. B: Chem. Sci. 1978, 33b, 1443. doi: 10.1515/znb-1978-1214
doi: 10.1515/znb-1978-1214
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r
doi: 10.1021/ja809598r
Lee, B.; He, J.; Chang, R. P.; Kanatzidis, M. G. Nature 2012, 485, 486. doi: 10.1038/nature11067
doi: 10.1038/nature11067
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604
doi: 10.1126/science.1228604
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. Sci Rep. 2012, 2, 591. doi: 10.1038/srep00591
doi: 10.1038/srep00591
Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Nature 2014, 345, 542. doi: 10.1126/science.1254050
doi: 10.1126/science.1254050
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316. doi: 10.1038/nature12340
doi: 10.1038/nature12340
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272
doi: 10.1126/science.aaa9272
Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. Nano Lett. 2013, 13, 3124. doi: 10.1021/nl401044q
doi: 10.1021/nl401044q
Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Science 2015, 350, 944. doi: 10.1126/science.aad1015
doi: 10.1126/science.aad1015
Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395. doi: 10.1038/nature12509
doi: 10.1038/nature12509
Li, X.; Bi, D.; Yi, C.; Décoppet, J. D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Science 2016, 353, 58. doi: 10.1126/science.aaf8060
doi: 10.1126/science.aaf8060
Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Science 2017, 358, 739. doi: 10.1126/science.aam6323
doi: 10.1126/science.aam6323
Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281
doi: 10.1002/adma.201306281
Shockley, W.; Queisser, H. J.; J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034
doi: 10.1063/1.1736034
Saparov, B.; Sun, J. P.; Meng, W.; Xiao, Z.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2016, 28, 2315. doi: 10.1021/acs.chemmater.6b00433
doi: 10.1021/acs.chemmater.6b00433
Mitzi, D. B. J. Chem. Soc. Dalton Trans. 2001, 1, 1. doi: 10.1039/B007070J
doi: 10.1039/B007070J
Scaife, D. E.; Weller, P. F.; Fisher, W. G. J. Solid State Chem. 1974, 9, 308. doi: 10.1016/0022-4596(74)90088-7
doi: 10.1016/0022-4596(74)90088-7
Parry, D. E.; Tricker, M. J.; Donaldson, J. D. J. Solid State Chem. 1979, 28, 401. doi: 10.1016/0022-4596(79)90092-6
doi: 10.1016/0022-4596(79)90092-6
Clark, S. J.; Flint, C. D.; Donaldson, J. D. J. Phys. Chem. Solids. 1981, 42, 133. doi: 10.1016/0022-3697(81)90072-X
doi: 10.1016/0022-3697(81)90072-X
Yamada, K.; Nose, S.; Umehara, T.; Okuda, T.; Ichiba, S. Bull. Chem. Soc. Jpn. 1988, 61, 4265. doi: 10.1246/bcsj.61.4265
doi: 10.1246/bcsj.61.4265
Yamada, K.; Matsui, T.; Tsuritani, T.; Okuda, T.; Ichiba, S. Z. Naturforsch. A: Phys. Sci. 1990, 45a, 307. doi: 10.1515/zna-1990-3-416
doi: 10.1515/zna-1990-3-416
Yamada, K.; Kuranaga, Y.; Ueda, K.; Goto, S.; Okuda, T.; Furukawa, Y. Bull. Chem. Soc. Jpn. 1998, 71, 127. doi: 10.1246/bcsj.71.127
doi: 10.1246/bcsj.71.127
Mitzi, D. B.; Feild, C.; Harrison, W.; Guloy, A. Nature 1994, 369, 467. doi: 10.1038/369467a0
doi: 10.1038/369467a0
Mitzi, D.; Wang, S.; Feild, C.; Chess, C.; Guloy, A. Science 1995, 267, 1473. doi: 10.1126/science.267.5203.1473
doi: 10.1126/science.267.5203.1473
Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Chem. Mater. 2001, 13, 3728. doi: 10.1021/cm010105g
doi: 10.1021/cm010105g
Chen, Z.; Wang, J. J.; Ren, Y.; Yu, C.; Shum, K. Appl. Phys. Lett. 2012, 101, 093901. doi: 10.1063/1.4748888
doi: 10.1063/1.4748888
Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489. doi: 10.1038/nphoton.2014.82
doi: 10.1038/nphoton.2014.82
Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974. doi: 10.1021/jacs.6b00142
doi: 10.1021/jacs.6b00142
Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G. Adv. Mater. 2016, 28, 9333. doi: 10.1002/adma.201602992
doi: 10.1002/adma.201602992
Cao, D. H.; Stoumpos, C. C.; Yokoyama, T.; Logsdon, J. L.; Song, T. B.; Farha, O. K.; Wasielewski, M. R.; Hupp, J. T.; Kanatzidis, M. G. ACS Energy Lett. 2017, 2, 982. doi: 10.1021/acsenergylett.7b00202
doi: 10.1021/acsenergylett.7b00202
Ke, W.; Stoumpos, C. C.; Spanopoulos, I.; Mao, L.; Chen, M.; Wasielewski, M. R.; Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 14800. doi: 10.1021/jacs.7b09018
doi: 10.1021/jacs.7b09018
Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L.; et al. Nat. Commun. 2020, 11, 1. doi: 10.1038/s41467-020-15078-2
doi: 10.1038/s41467-020-15078-2
Ran, C.; Gao, W.; Li, J.; Xi, J.; Li, L.; Dai, J.; Yang, Y.; Gao, X.; Dong, H.; Jiao, B.; et al. Joule 2019, 3, 3072. doi: 10.1016/j.joule.2019.08.023
doi: 10.1016/j.joule.2019.08.023
Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x
doi: 10.1021/ic401215x
Hasegawa, H.; Kobayashi, K.; Takahashi, Y.; Harada, J.; Inabe, T. J. Phys. Chem. C 2017, 5, 4048. doi: 10.1039/C7TC00446J
doi: 10.1039/C7TC00446J
Zhang, M.; Lyu, M.; Yun, J. H.; Noori, M.; Zhou, X.; Cooling, N. A.; Wang, Q.; Yu, H.; Dastoor, P. C.; Wang, L. Nano Res. 2016, 9, 1570. doi: 10.1007/s12274-016-1051-8
doi: 10.1007/s12274-016-1051-8
Dang, Y.; Zhou, Y.; Liu, X.; Ju, D.; Xia, S.; Xia, H.; Tao, X. Angew. Chem. Int. Ed. 2016, 55, 3447. doi: 10.1002/anie.201511792
doi: 10.1002/anie.201511792
Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. Mathews, J. Mater. Chem. A 2015, 3, 14996. doi: 10.1039/C5TA00190K
doi: 10.1039/C5TA00190K
Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Adv. Funct. Mater. 2016, 26, 3417. doi: 10.1002/adfm.201505127
doi: 10.1002/adfm.201505127
Maughan, A. E.; Ganose, A. M.; Candia, A. M.; Granger, J. T.; Scanlon, D. O.; Neilson, J. R. Chem. Mater. 2018, 30, 472. doi: 10.1021/acs.chemmater.7b04516
doi: 10.1021/acs.chemmater.7b04516
Shi, T.; Zhang, H. S.; Meng, W.; Teng, Q.; Liu, M.; Yang, X.; Yan, Y.; Yip, H. L.; Zhao, Y. J. J. Mater. Chem. A 2017, 5, 15124. doi: 10.1039/C7TA02662E
doi: 10.1039/C7TA02662E
Jokar, E.; Chien, C. H.; Tsai, C. M.; Fathi, A.; Diau, E. W. G. Adv. Mater. 2019, 31 (2), 1804835. doi: 10.1002/adma.201804835
doi: 10.1002/adma.201804835
Li, X. Y.; Zhou, C. C.; Wang, Y. H.; Ding, F. F.; Zhou, H. W.; Zhang, X. X. Prog. Chem. 2019, 31 (6), 882.
doi: 10.7536/PC181103
Liu, C.; Tu, J.; Hu, X.; Huang, Z.; Meng, X.; Yang, J.; Duan, X.; Tan, L.; Li, Z.; Chen, Y. Adv. Funct. Mater. 2019, 29 (18), 1808059. doi: 10.1002/adfm.201808059
doi: 10.1002/adfm.201808059
Liu, X.; Yan, K.; Tan, D.; Liang, X.; Zhang, H.; Huang, W. Acs Energy Lett. 2018, 3 (11), 2701. doi: 10.1021/acsenergylett.8b01588
doi: 10.1021/acsenergylett.8b01588
Shao, S.; Liu, J.; Portale, G.; Fang, H. H.; Blake, G. R.; ten Brink, G. H.; Koster, L. J. A.; Loi, M. A. Adv. Energy Mater. 2018, 8 (4), 1702019. doi: 10.1002/aenm.201702019
doi: 10.1002/aenm.201702019
Shao, S.; Dong, J.; Duim, H.; Gert, H.; Blake, G. R.; Portale, G.; Loi, M. A. Nano Energy 2019, 60, 810. doi: 10.1016/j.nanoen.2019.04.040
doi: 10.1016/j.nanoen.2019.04.040
Song, T. B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M. G. Acs Energy Lett. 2017, 2 (4), 897. doi: 10.1021/acsenergylett.7b00171
doi: 10.1021/acsenergylett.7b00171
Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J. Angew. Chem. Int. Ed. 2015, 54, 3240. doi: 10.1002/anie.201410214
doi: 10.1002/anie.201410214
He, M.; Zheng, D.; Wang, M.; Lin, C.; Lin, Z. J. Mater. Chem. A 2014, 2, 5994. doi: 10.1039/C3TA14160H
doi: 10.1039/C3TA14160H
Ke, W.; Fang, G.; Wan, J.; Tao, H.; Liu, Q.; Xiong, L.; Qin, P.; Wang, J.; Lei, H.; Yang, G.; et al. Nat. Commun. 2015, 6, 6700. doi: 10.1038/ncomms7700
doi: 10.1038/ncomms7700
Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X. ACS Appl. Mater. Interfaces 2014, 6, 15959. doi: 10.1021/am503728d
doi: 10.1021/am503728d
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014
doi: 10.1038/nmat4014
Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T. B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G. J. Phys. Chem. Lett. 2016, 7, 776. doi: 10.1021/acs.jpclett.6b00118
doi: 10.1021/acs.jpclett.6b00118
Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 11445. doi: 10.1021/jacs.5b06658
doi: 10.1021/jacs.5b06658
Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y. Adv. Mater. 2016, 28, 9333. doi: 10.1021/jacs.5b06658
doi: 10.1021/jacs.5b06658
Ke, W.; Zhao, D.; Grice, C. R.; Cimaroli, A. J.; Fang, G.; Yan, Y. J. Mater. Chem. A 2015, 3, 23888. doi: 10.1039/C5TA07829F
doi: 10.1039/C5TA07829F
Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Adv. Mater. 2014, 26, 7122. doi: 10.1002/adma.201401991
doi: 10.1002/adma.201401991
Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974. doi: 10.1021/jacs.6b00142
doi: 10.1021/jacs.6b00142
Gupta, S.; Bendikov, T.; Hodes, G.; Cahen, D. ACS Energy Lett. 2016, 1, 1028. doi: 10.1021/acsenergylett.6b00402
doi: 10.1021/acsenergylett.6b00402
Zhu, Z.; Chueh, C. C.; Li, N.; Mao, C.; Jen, A. K. Adv. Mater. 2017, 30, 1703800. doi: 10.1002/adma.201703800
doi: 10.1002/adma.201703800
Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; et al. Energy Environ. Sci. 2014, 7, 3061. doi: 10.1039/C4EE01076K
doi: 10.1039/C4EE01076K
Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. Science 2014, 345, 295. doi: 10.1126/science.1254763
doi: 10.1126/science.1254763
Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L. J. Mater. Chem. A 2016, 4, 17104. doi: 10.1039/C6TA08332C
doi: 10.1039/C6TA08332C
Correa-Baena, J. P.; Abate, A.; Saliba, M.; Tress, W.; JesperJacobsson, T.; Grätzel, M.; Hagfeldt, A. Energy Environ. Sci. 2017, 10, 710. doi: 10.1039/C6EE03397K
doi: 10.1039/C6EE03397K
Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Adv. Energy Mater. 2016, 6, 1600474. doi: 10.1002/aenm.201600474
doi: 10.1002/aenm.201600474
Wang, N.; Zhou, Y.; Ju, M. G.; Garces, H. F.; Ding, T.; Pang, S.; Zeng, X. C.; Padture, N. P.; Sun, X. W. Adv. Energy Mater. 2016, 6, 1601130. doi: 10.1002/aenm.201601130
doi: 10.1002/aenm.201601130
Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y. Adv. Mater. 2016, 28, 9333. doi: 10.1002/adma.201602992
doi: 10.1002/adma.201602992
Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L.; et al. Nat. Commun. 2020, 11 (1), 1. doi: 10.1038/s41467-020-15078-2
doi: 10.1038/s41467-020-15078-2
Chen, S.; Hou, Y.; Chen, H.; Richter, M.; Guo, F.; Kahmann, S.; Tang, X.; Stubhan, T.; Zhang, H.; Li, N.; et al. Adv. Energy Mater. 2016, 6, 1600132. doi: 10.1002/aenm.201600132
doi: 10.1002/aenm.201600132
Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A. Nat. Energy 2016, 1, 16178. doi: 10.1038/nenergy.2016.178
doi: 10.1038/nenergy.2016.178
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Yaofeng Yuan , Keyin Ye , Chunfa Xu , Hong Yan , Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073