Citation: Li Haomiao, Dong Hua, Li Jingrui, Wu Zhaoxin. Recent Advances in Tin-Based Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200700. doi: 10.3866/PKU.WHXB202007006 shu

Recent Advances in Tin-Based Perovskite Solar Cells

  • Corresponding author: Wu Zhaoxin, zhaoxinwu@mail.xjtu.edu.cn
  • Received Date: 2 July 2020
    Revised Date: 31 July 2020
    Accepted Date: 3 August 2020
    Available Online: 7 August 2020

  • Since 2009, organic-inorganic halide perovskites have been widely studied in the field of optoelectric materials due to their unique optical and electrical properties. Pb-based halide perovskite solar cells (PSCs), in particular, currently have a record efficiency of 25.2%, thus showing strong potential in commercialization. However, the market prospects of PSCs have been hampered by the toxicity of lead-based materials. Therefore the seeking of less toxic and environmentally friendly elements that can replace Pb is of great interest. Tin-based perovskites are the most promising choice at present due to its similar electronic configuration as Pb, and can even have more superior semiconductor properties. As a rising star of lead-free perovskite solar cells, tin-based PSCs have drawn much attention and made promising progress during the past few years. However, it is still challenging to obtain efficient and stable tin-based PSCs because of the low defects formation energy and the oxidation of bivalent tin. Among all Pb-free perovskite materials that show photovoltaic performance, formamidinium tin tri-iodide (FASnI3) based PSCs are the most promising because of the suitable band gap, low exciton bind energy, and high carrier mobility. The main drawbacks of tin-based perovskite material are its instability because of the easy oxidation of Sn2+ into Sn4+ and high dark current which arises from high p-type carrier concentration. The latter originates from the low formation energy of Sn vacancies. Many strategies have been developed to overcome these problems and promote the performance of tin-based PSCs. On one type of pursuit to avoid the oxidation of Sn2+, reduction additives (e.g., SnF2, pyrazine, hydrazine vapor, hydroxybenzene sulfonic acid or its salt, and π-conjugated polymer) and solvent-free processing have been introduced and shown to be effective up to a point. In another type, Cs or Br alloying and construction of low-dimensional structures in tin-based perovskite have also been shown to be promising. In this review, the optical and electrical properties of tin-based perovskite are systematically discussed. And then, the film fabrication methods and different device architectures of tin-based PSCs are summarized. Finally, the current challenges and a future outlook for tin-based PSCs are discussed.
  • 加载中
    1. [1]

      Moller, C. K. Nature 1958, 182, 1436. doi: 10.1038/1821436a0  doi: 10.1038/1821436a0

    2. [2]

      Weber, D. Z. Naturforsch. B: Chem. Sci. 1978, 33b, 1443. doi: 10.1515/znb-1978-1214  doi: 10.1515/znb-1978-1214

    3. [3]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    4. [4]

      Lee, B.; He, J.; Chang, R. P.; Kanatzidis, M. G. Nature 2012, 485, 486. doi: 10.1038/nature11067  doi: 10.1038/nature11067

    5. [5]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    6. [6]

      Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. Sci Rep. 2012, 2, 591. doi: 10.1038/srep00591  doi: 10.1038/srep00591

    7. [7]

      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Nature 2014, 345, 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    8. [8]

      Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316. doi: 10.1038/nature12340  doi: 10.1038/nature12340

    9. [9]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    10. [10]

      Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. Nano Lett. 2013, 13, 3124. doi: 10.1021/nl401044q  doi: 10.1021/nl401044q

    11. [11]

      Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Science 2015, 350, 944. doi: 10.1126/science.aad1015  doi: 10.1126/science.aad1015

    12. [12]

      Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395. doi: 10.1038/nature12509  doi: 10.1038/nature12509

    13. [13]

      Li, X.; Bi, D.; Yi, C.; Décoppet, J. D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Science 2016, 353, 58. doi: 10.1126/science.aaf8060  doi: 10.1126/science.aaf8060

    14. [14]

      Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Science 2017, 358, 739. doi: 10.1126/science.aam6323  doi: 10.1126/science.aam6323

    15. [15]

      Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281  doi: 10.1002/adma.201306281

    16. [16]

      Shockley, W.; Queisser, H. J.; J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034  doi: 10.1063/1.1736034

    17. [17]

      Saparov, B.; Sun, J. P.; Meng, W.; Xiao, Z.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2016, 28, 2315. doi: 10.1021/acs.chemmater.6b00433  doi: 10.1021/acs.chemmater.6b00433

    18. [18]

      Mitzi, D. B. J. Chem. Soc. Dalton Trans. 2001, 1, 1. doi: 10.1039/B007070J  doi: 10.1039/B007070J

    19. [19]

      Scaife, D. E.; Weller, P. F.; Fisher, W. G. J. Solid State Chem. 1974, 9, 308. doi: 10.1016/0022-4596(74)90088-7  doi: 10.1016/0022-4596(74)90088-7

    20. [20]

      Parry, D. E.; Tricker, M. J.; Donaldson, J. D. J. Solid State Chem. 1979, 28, 401. doi: 10.1016/0022-4596(79)90092-6  doi: 10.1016/0022-4596(79)90092-6

    21. [21]

      Clark, S. J.; Flint, C. D.; Donaldson, J. D. J. Phys. Chem. Solids. 1981, 42, 133. doi: 10.1016/0022-3697(81)90072-X  doi: 10.1016/0022-3697(81)90072-X

    22. [22]

      Yamada, K.; Nose, S.; Umehara, T.; Okuda, T.; Ichiba, S. Bull. Chem. Soc. Jpn. 1988, 61, 4265. doi: 10.1246/bcsj.61.4265  doi: 10.1246/bcsj.61.4265

    23. [23]

      Yamada, K.; Matsui, T.; Tsuritani, T.; Okuda, T.; Ichiba, S. Z. Naturforsch. A: Phys. Sci. 1990, 45a, 307. doi: 10.1515/zna-1990-3-416  doi: 10.1515/zna-1990-3-416

    24. [24]

      Yamada, K.; Kuranaga, Y.; Ueda, K.; Goto, S.; Okuda, T.; Furukawa, Y. Bull. Chem. Soc. Jpn. 1998, 71, 127. doi: 10.1246/bcsj.71.127  doi: 10.1246/bcsj.71.127

    25. [25]

      Mitzi, D. B.; Feild, C.; Harrison, W.; Guloy, A. Nature 1994, 369, 467. doi: 10.1038/369467a0  doi: 10.1038/369467a0

    26. [26]

      Mitzi, D.; Wang, S.; Feild, C.; Chess, C.; Guloy, A. Science 1995, 267, 1473. doi: 10.1126/science.267.5203.1473  doi: 10.1126/science.267.5203.1473

    27. [27]

      Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Chem. Mater. 2001, 13, 3728. doi: 10.1021/cm010105g  doi: 10.1021/cm010105g

    28. [28]

      Chen, Z.; Wang, J. J.; Ren, Y.; Yu, C.; Shum, K. Appl. Phys. Lett. 2012, 101, 093901. doi: 10.1063/1.4748888  doi: 10.1063/1.4748888

    29. [29]

      Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489. doi: 10.1038/nphoton.2014.82  doi: 10.1038/nphoton.2014.82

    30. [30]

      Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974. doi: 10.1021/jacs.6b00142  doi: 10.1021/jacs.6b00142

    31. [31]

      Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G. Adv. Mater. 2016, 28, 9333. doi: 10.1002/adma.201602992  doi: 10.1002/adma.201602992

    32. [32]

      Cao, D. H.; Stoumpos, C. C.; Yokoyama, T.; Logsdon, J. L.; Song, T. B.; Farha, O. K.; Wasielewski, M. R.; Hupp, J. T.; Kanatzidis, M. G. ACS Energy Lett. 2017, 2, 982. doi: 10.1021/acsenergylett.7b00202  doi: 10.1021/acsenergylett.7b00202

    33. [33]

      Ke, W.; Stoumpos, C. C.; Spanopoulos, I.; Mao, L.; Chen, M.; Wasielewski, M. R.; Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 14800. doi: 10.1021/jacs.7b09018  doi: 10.1021/jacs.7b09018

    34. [34]

      Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L.; et al. Nat. Commun. 2020, 11, 1. doi: 10.1038/s41467-020-15078-2  doi: 10.1038/s41467-020-15078-2

    35. [35]

      Ran, C.; Gao, W.; Li, J.; Xi, J.; Li, L.; Dai, J.; Yang, Y.; Gao, X.; Dong, H.; Jiao, B.; et al. Joule 2019, 3, 3072. doi: 10.1016/j.joule.2019.08.023  doi: 10.1016/j.joule.2019.08.023

    36. [36]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    37. [37]

      Hasegawa, H.; Kobayashi, K.; Takahashi, Y.; Harada, J.; Inabe, T. J. Phys. Chem. C 2017, 5, 4048. doi: 10.1039/C7TC00446J  doi: 10.1039/C7TC00446J

    38. [38]

      Zhang, M.; Lyu, M.; Yun, J. H.; Noori, M.; Zhou, X.; Cooling, N. A.; Wang, Q.; Yu, H.; Dastoor, P. C.; Wang, L. Nano Res. 2016, 9, 1570. doi: 10.1007/s12274-016-1051-8  doi: 10.1007/s12274-016-1051-8

    39. [39]

      Dang, Y.; Zhou, Y.; Liu, X.; Ju, D.; Xia, S.; Xia, H.; Tao, X. Angew. Chem. Int. Ed. 2016, 55, 3447. doi: 10.1002/anie.201511792  doi: 10.1002/anie.201511792

    40. [40]

      Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. Mathews, J. Mater. Chem. A 2015, 3, 14996. doi: 10.1039/C5TA00190K  doi: 10.1039/C5TA00190K

    41. [41]

      Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Adv. Funct. Mater. 2016, 26, 3417. doi: 10.1002/adfm.201505127  doi: 10.1002/adfm.201505127

    42. [42]

      Maughan, A. E.; Ganose, A. M.; Candia, A. M.; Granger, J. T.; Scanlon, D. O.; Neilson, J. R. Chem. Mater. 2018, 30, 472. doi: 10.1021/acs.chemmater.7b04516  doi: 10.1021/acs.chemmater.7b04516

    43. [43]

      Shi, T.; Zhang, H. S.; Meng, W.; Teng, Q.; Liu, M.; Yang, X.; Yan, Y.; Yip, H. L.; Zhao, Y. J. J. Mater. Chem. A 2017, 5, 15124. doi: 10.1039/C7TA02662E  doi: 10.1039/C7TA02662E

    44. [44]

      Jokar, E.; Chien, C. H.; Tsai, C. M.; Fathi, A.; Diau, E. W. G. Adv. Mater. 2019, 31 (2), 1804835. doi: 10.1002/adma.201804835  doi: 10.1002/adma.201804835

    45. [45]

      Li, X. Y.; Zhou, C. C.; Wang, Y. H.; Ding, F. F.; Zhou, H. W.; Zhang, X. X. Prog. Chem. 2019, 31 (6), 882.  doi: 10.7536/PC181103

    46. [46]

      Liu, C.; Tu, J.; Hu, X.; Huang, Z.; Meng, X.; Yang, J.; Duan, X.; Tan, L.; Li, Z.; Chen, Y. Adv. Funct. Mater. 2019, 29 (18), 1808059. doi: 10.1002/adfm.201808059  doi: 10.1002/adfm.201808059

    47. [47]

      Liu, X.; Yan, K.; Tan, D.; Liang, X.; Zhang, H.; Huang, W. Acs Energy Lett. 2018, 3 (11), 2701. doi: 10.1021/acsenergylett.8b01588  doi: 10.1021/acsenergylett.8b01588

    48. [48]

      Shao, S.; Liu, J.; Portale, G.; Fang, H. H.; Blake, G. R.; ten Brink, G. H.; Koster, L. J. A.; Loi, M. A. Adv. Energy Mater. 2018, 8 (4), 1702019. doi: 10.1002/aenm.201702019  doi: 10.1002/aenm.201702019

    49. [49]

      Shao, S.; Dong, J.; Duim, H.; Gert, H.; Blake, G. R.; Portale, G.; Loi, M. A. Nano Energy 2019, 60, 810. doi: 10.1016/j.nanoen.2019.04.040  doi: 10.1016/j.nanoen.2019.04.040

    50. [50]

      Song, T. B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M. G. Acs Energy Lett. 2017, 2 (4), 897. doi: 10.1021/acsenergylett.7b00171  doi: 10.1021/acsenergylett.7b00171

    51. [51]

      Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J. Angew. Chem. Int. Ed. 2015, 54, 3240. doi: 10.1002/anie.201410214  doi: 10.1002/anie.201410214

    52. [52]

      He, M.; Zheng, D.; Wang, M.; Lin, C.; Lin, Z. J. Mater. Chem. A 2014, 2, 5994. doi: 10.1039/C3TA14160H  doi: 10.1039/C3TA14160H

    53. [53]

      Ke, W.; Fang, G.; Wan, J.; Tao, H.; Liu, Q.; Xiong, L.; Qin, P.; Wang, J.; Lei, H.; Yang, G.; et al. Nat. Commun. 2015, 6, 6700. doi: 10.1038/ncomms7700  doi: 10.1038/ncomms7700

    54. [54]

      Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X. ACS Appl. Mater. Interfaces 2014, 6, 15959. doi: 10.1021/am503728d  doi: 10.1021/am503728d

    55. [55]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    56. [56]

      Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T. B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G. J. Phys. Chem. Lett. 2016, 7, 776. doi: 10.1021/acs.jpclett.6b00118  doi: 10.1021/acs.jpclett.6b00118

    57. [57]

      Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 11445. doi: 10.1021/jacs.5b06658  doi: 10.1021/jacs.5b06658

    58. [58]

      Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y. Adv. Mater. 2016, 28, 9333. doi: 10.1021/jacs.5b06658  doi: 10.1021/jacs.5b06658

    59. [59]

      Ke, W.; Zhao, D.; Grice, C. R.; Cimaroli, A. J.; Fang, G.; Yan, Y. J. Mater. Chem. A 2015, 3, 23888. doi: 10.1039/C5TA07829F  doi: 10.1039/C5TA07829F

    60. [60]

      Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Adv. Mater. 2014, 26, 7122. doi: 10.1002/adma.201401991  doi: 10.1002/adma.201401991

    61. [61]

      Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974. doi: 10.1021/jacs.6b00142  doi: 10.1021/jacs.6b00142

    62. [62]

      Gupta, S.; Bendikov, T.; Hodes, G.; Cahen, D. ACS Energy Lett. 2016, 1, 1028. doi: 10.1021/acsenergylett.6b00402  doi: 10.1021/acsenergylett.6b00402

    63. [63]

      Zhu, Z.; Chueh, C. C.; Li, N.; Mao, C.; Jen, A. K. Adv. Mater. 2017, 30, 1703800. doi: 10.1002/adma.201703800  doi: 10.1002/adma.201703800

    64. [64]

      Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; et al. Energy Environ. Sci. 2014, 7, 3061. doi: 10.1039/C4EE01076K  doi: 10.1039/C4EE01076K

    65. [65]

      Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. Science 2014, 345, 295. doi: 10.1126/science.1254763  doi: 10.1126/science.1254763

    66. [66]

      Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L. J. Mater. Chem. A 2016, 4, 17104. doi: 10.1039/C6TA08332C  doi: 10.1039/C6TA08332C

    67. [67]

      Correa-Baena, J. P.; Abate, A.; Saliba, M.; Tress, W.; JesperJacobsson, T.; Grätzel, M.; Hagfeldt, A. Energy Environ. Sci. 2017, 10, 710. doi: 10.1039/C6EE03397K  doi: 10.1039/C6EE03397K

    68. [68]

      Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Adv. Energy Mater. 2016, 6, 1600474. doi: 10.1002/aenm.201600474  doi: 10.1002/aenm.201600474

    69. [69]

      Wang, N.; Zhou, Y.; Ju, M. G.; Garces, H. F.; Ding, T.; Pang, S.; Zeng, X. C.; Padture, N. P.; Sun, X. W. Adv. Energy Mater. 2016, 6, 1601130. doi: 10.1002/aenm.201601130  doi: 10.1002/aenm.201601130

    70. [70]

      Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y. Adv. Mater. 2016, 28, 9333. doi: 10.1002/adma.201602992  doi: 10.1002/adma.201602992

    71. [71]

      Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L.; et al. Nat. Commun. 2020, 11 (1), 1. doi: 10.1038/s41467-020-15078-2  doi: 10.1038/s41467-020-15078-2

    72. [72]

      Chen, S.; Hou, Y.; Chen, H.; Richter, M.; Guo, F.; Kahmann, S.; Tang, X.; Stubhan, T.; Zhang, H.; Li, N.; et al. Adv. Energy Mater. 2016, 6, 1600132. doi: 10.1002/aenm.201600132  doi: 10.1002/aenm.201600132

    73. [73]

      Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A. Nat. Energy 2016, 1, 16178. doi: 10.1038/nenergy.2016.178  doi: 10.1038/nenergy.2016.178

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    14. [14]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    18. [18]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

Metrics
  • PDF Downloads(20)
  • Abstract views(579)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return