Citation: Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200606. doi: 10.3866/PKU.WHXB202006064 shu

Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation

  • Corresponding author: Run Long, runlong@bun.edu.cn
  • Received Date: 24 June 2020
    Revised Date: 24 July 2020
    Accepted Date: 25 July 2020
    Available Online: 4 August 2020

    Fund Project: the National Natural Science Foundation of China 21973006

  • Black phosphorus (BP) is a promising candidate for photovoltaic and optoelectronic applications owing to its excellent electronic and optical properties. It is believed that defects generally accelerate non-radiative electron-hole recombination in BP and hinder improvement of device performance. Experiments defy this expectation. Using state-of-the-art ab initio time-dependent density functional theory combined with non-adiabatic molecular dynamics, we investigate the non-radiative electron-hole recombination in monolayer (MBP) and MBP containing nanopore defects (MBP-ND). We demonstrate that non-radiative electron-hole recombination is promoted by the P-P stretching vibrations, and the recombination time of MBP-ND is approximately 5.5 times longer than that of the MBP system. This is mainly attributed to the following three factors: First, the nanopore creates no mid-gap state when increasing the bandgap by 0.22 eV owing to the downshift of the valence band maximum, caused by the decrease in the inter-layer P-P bond length, thereby weakening the antibonding interaction. Second, the nanopore reduces the overlap of electron and hole wave functions by diminishing the charge densities near the defect. Simultaneously, the nanopore significantly inhibits the thermal-driven atomic fluctuations. The increased bandgap correlated with the decreased wave function overlap and slowed thermal motions of the nuclei in the MBP-ND system reduces the non-adiabatic coupling by a factor of approximately 2 with respect to the pristine system. Third, the slow atomic motions weaken the electron-vibrational interaction and decrease the intensity of the major vibration mode at 440 cm−1, which is the main source for creating non-adiabatic coupling, leading to loss of coherence formed between a pair of electronic states via non-adiabatic coupling and causing electron-hole recombination that results in a 1.5-fold increase in the coherence time in the MBP-ND system with respect to the MBP system. Consequently, the increased bandgap and decreased non-adiabatic coupling compete successfully with the prolonged coherence time, extending the excited-state lifetime to 2.74 ns in the system containing nanopore defects, which is only 480 ps in the pristine system. These phenomena arise owing to a complex interplay of the unusual chemical, structural, electrostatic, and quantum properties of BP with and without nanopore defects. This study is of great significance for understanding the excited-state properties of BP. The detailed mechanistic understanding of the prolonged charge carriers lifetime of MBP decorated with nanopore defects provides key insights for defect engineering in BP and other 2-dimensional materials for a broad range of solar and electro-optic applications by reducing the non-radiative charge and energy losses.
  • 加载中
    1. [1]

      Fuhrer, M.; Hone, J. Nat. Nanothchnol. 2013, 8, 146. doi: 10.1038/nnano.2013.30  doi: 10.1038/nnano.2013.30

    2. [2]

      Ma, N.; Jena, D. Phys. Rev. X 2014, 4, 011043. doi: 10.1103/PhysRevX.4.011043  doi: 10.1103/PhysRevX.4.011043

    3. [3]

      Xia, F.; Wang, H.; Jia, Y. Nat. Commun. 2014, 5, 4458. doi: 10.1038/ncomms5458  doi: 10.1038/ncomms5458

    4. [4]

      Mao, N.; Wang, X.; Lin, Y.; Sumpter, B. G.; Ji, Q.; Palacios, T.; Huang, S.; Meunier, V.; Dresselhaus, M. S.; Tisdale, W. A.; et al. J. Am. Chem. Soc. 2019, 4, 18994. doi: 10.1021/jacs.9b07974  doi: 10.1021/jacs.9b07974

    5. [5]

      Qiao, J.; Kong, X.; Hu, Z. -X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5, 4475. doi: 10.1038/ncomms5475  doi: 10.1038/ncomms5475

    6. [6]

      Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 235319. doi: 10.1103/PhysRevB.89.235319  doi: 10.1103/PhysRevB.89.235319

    7. [7]

      Liang, L.; Wang, J.; Lin, W.; Sumpter, B. G.; Meunier, V.; Pan, M. Nano Lett. 2014, 14, 6400. doi: 10.1021/nl502892t  doi: 10.1021/nl502892t

    8. [8]

      Li, L. K.; Yu, Y. J.; Ye, G. J. Nat. Nanotechnol. 2014, 9, 372. doi: 10.1038/nnano.2014.35  doi: 10.1038/nnano.2014.35

    9. [9]

      Tang, P.; Xiao, J. J.; Zheng, C.; Wang, S.; Chen, R. F. Acta Phys. -Chim. Sin. 2013, 29, 667.  doi: 10.3866/PKU.WHXB201302062

    10. [10]

      Li, L.; Yang, F.; Ye, G. J.; Zhang, Z.; Lou, W.; Zhou, X.; Li, L.; Watanabe, K.; Taniguchi, T.; Chang, K.; et al. Nat. Nanotechnol. 2016, 11, 593. doi: 10.1038/nnano.2016.42  doi: 10.1038/nnano.2016.42

    11. [11]

      Fei, R.; Yang, L. Nano Lett. 2014, 14, 2884. doi: 10.1021/nl500935z  doi: 10.1021/nl500935z

    12. [12]

      Wang, X.; Lan, S. Adv. Opt. Photon. 2016, 8, 618. doi: 10.1364/aop.8.000618  doi: 10.1364/aop.8.000618

    13. [13]

      Xu, Y.; Dai, J.; Zeng, X. C. Phys. Chem. Lett. 2015, 6, 1996. doi: 10.1021/acs.jpclett.5b00510  doi: 10.1021/acs.jpclett.5b00510

    14. [14]

      Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J. A.; Lo, C.; Yang, L. Nano Lett. 2014, 14, 6393. doi: 10.1021/nl502865s  doi: 10.1021/nl502865s

    15. [15]

      Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034  doi: 10.1063/1.1736034

    16. [16]

      He, J.; He, D.; Wang, Y.; Cui, Q.; Belllus, M. Z.; Chiu, H. -Y.; Zhao, H. ACS Nano 2015, 9, 6436. doi: 10.1021/acsnano.5b02104  doi: 10.1021/acsnano.5b02104

    17. [17]

      Suess, R.; Jadidi, M. M.; Murphy, T. E.; Mittendorff, M. Appl. Phys. Lett. 2015, 107, 081103. doi: 10.1063/1.4929403  doi: 10.1063/1.4929403

    18. [18]

      Peymon, Z.; Wei, Y.; Frank, C.; Matthew Z. B.; Samuel, D. L.; Pan, S.; Long, R.; Zhao, H. Nanoscale 2018, 10, 11307. doi: 10.1039/C8NR02540A  doi: 10.1039/C8NR02540A

    19. [19]

      Long, R.; Fang, W. H.; Alexey, V. A. J. Phys. Chem. Lett. 2016, 7, 653. doi: 10.1021/acs.jpclett.6b00001  doi: 10.1021/acs.jpclett.6b00001

    20. [20]

      Zhang, L.; Chu, W.; Zheng, Q.; Alexander, V. B.; Oleg, V. P.; Jin, Z. J. Phys. Chem. Lett. 2019, 10, 6151. doi: 10.1021/acs.jpclett.9b02620  doi: 10.1021/acs.jpclett.9b02620

    21. [21]

      Guo, H.; Chu, W.; Zheng, Q.; Zhao, J. J. Chem. Lett. 2020, 11, 4662. doi: 10.1021/acs.jpclett.0c01300  doi: 10.1021/acs.jpclett.0c01300

    22. [22]

      Cupo, A.; Das, P. M.; Chien, C. C.; Danda, G.; Kharche, N.; Tristant, D.; Drndic, M.; Meunier, V. ACS Nano 2017, 11, 7494. doi: 10.1021/acsnano.7b04031  doi: 10.1021/acsnano.7b04031

    23. [23]

      Thomas, L. H. Proc. Cambridge Phil. Soc. 1927, 33, 542. doi: 10.1017/S0305004100011683  doi: 10.1017/S0305004100011683

    24. [24]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 4A, 1133. doi: 10.1103/physrev.140.a1133  doi: 10.1103/physrev.140.a1133

    25. [25]

      Long, R.; Oleg, V. P. ACS Nano 2015, 11, 11143. doi: 10.1021/acsnano.5b05843  doi: 10.1021/acsnano.5b05843

    26. [26]

      Akimov, A. V.; Prezhdo, O. V. J. Chem. Theor. Comp. 2014, 10, 789. doi: 10.1021/ct400934c  doi: 10.1021/ct400934c

    27. [27]

      Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. J. Chem. Phys. 2012, 137, 22A545. doi: 10.1063/1.4757100  doi: 10.1063/1.4757100

    28. [28]

      John, C. T. J. Chem. Phys. 1990, 93, 1061. doi: 10.1063/1.459170  doi: 10.1063/1.459170

    29. [29]

      Prezhdo, O. V.; Rossky, P. J. J. Chem. Phys. 1997, 107, 5863. doi: 10.1063/1.474312  doi: 10.1063/1.474312

    30. [30]

      Akimov, A. V.; Prezhdo, O. V. J. Chem. Theory Comput. 2013, 9, 4959. doi: 10.1021/ct400641n  doi: 10.1021/ct400641n

    31. [31]

      Hammes-Schiffer, S.; John, C. T. J. Chem. Phys. 1994, 101, 4657. doi: 10.1063/1.467455  doi: 10.1063/1.467455

    32. [32]

      Li, L.; Long, R.; Bertolini, T.; Prezhdo, O. V. Nano Lett. 2017, 17, 7962. doi: 10.1021/acs.nanolett.7b04374  doi: 10.1021/acs.nanolett.7b04374

    33. [33]

      Skinner, J. Annu. Rev. Phys. Chem. 1988, 39, 463. doi: 10.1146/annurev.pc.39.100188.002335  doi: 10.1146/annurev.pc.39.100188.002335

    34. [34]

      Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/physrevb.54.11169  doi: 10.1103/physrevb.54.11169

    35. [35]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    36. [36]

      Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    37. [37]

      Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188  doi: 10.1103/PhysRevB.13.5188

    38. [38]

      Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tomanek, D.; Ye, P. D. ACS Nano 2014, 8, 4033. doi: 10.1021/nn501226z  doi: 10.1021/nn501226z

    39. [39]

      Liu, Y.; Xu, F.; Zhang, Z.; Penev, E. S.; Yakobson, B. I. Nano Lett. 2012, 14, 6782. doi: 10.1021/nl5021393  doi: 10.1021/nl5021393

    40. [40]

      Wang, X.; Jones, A. M.; Seyler, K. L.; Vy, T.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Nat. Nanotechnol. 2015, 10, 517. doi: 10.1038/nnano.2015.71  doi: 10.1038/nnano.2015.71

    41. [41]

      Bray, A. J.; Moore, M. A. Phys. Rev. Lett. 1982, 49, 1545. doi: 10.1103/PhysRevLett.49.1545  doi: 10.1103/PhysRevLett.49.1545

    42. [42]

      Prezhdo, O. V. Phys. Rev. Lett. 2000, 85, 4413. doi: 10.1103/PhysRevLett.85.4413  doi: 10.1103/PhysRevLett.85.4413

    43. [43]

      Prezhdo, O. V.; Rossky, P. J. Phys. Rev. Lett. 1998, 81, 5294. doi: 10.1103/PhysRevLett.81.5294  doi: 10.1103/PhysRevLett.81.5294

    44. [44]

      Englman, R.; Jortner, J. J. Lumin. 1970, 1, 134. doi: 10.1016/0022-2313(70)90029-3  doi: 10.1016/0022-2313(70)90029-3

    45. [45]

      Prezhdo, O. V.; Rossky, P. J. J. Chem. Phys. 1997, 107, 5863. doi: 10.1063/1.474312  doi: 10.1063/1.474312

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    17. [17]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(16)
  • Abstract views(1176)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return