Citation: Hongwei Yu, Shi Li, Jinlong Li, Shaohua Zhu, Chengzhen Sun. Interfacial Mass Transfer Characteristics and Molecular Mechanism of the Gas-Oil Miscibility Process in Gas Flooding[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200606. doi: 10.3866/PKU.WHXB202006061 shu

Interfacial Mass Transfer Characteristics and Molecular Mechanism of the Gas-Oil Miscibility Process in Gas Flooding

  • Corresponding author: Chengzhen Sun, sun-cz@xjtu.edu.cn
  • Received Date: 23 June 2020
    Revised Date: 28 July 2020
    Accepted Date: 29 July 2020
    Available Online: 3 August 2020

    Fund Project: the Scientific Research and Technology Development Project of PetroChina 2019B-1111the Major Science and Technology Projects of PetroChina 2018E-1805the National Natural Science Foundation of China 51876169

  • The interfacial mass transfer characteristics of the gas-oil miscibility process are important in gas flooding technology to improve oil recovery. In this study, the process of gas flooding with actual components of Jilin oilfield is investigated by using molecular dynamics simulation method. We have chosen several alkane molecules based specifically on the actual components of crucial oil as the model oil phase for our study. The pressure of the gas phase is adjusted by changing the number of gas molecules while keeping the oil phase constant in the simulation. After the simulation, we analyze the variations of density in the gas-oil phase and interfacial characteristics to obtain the minimum miscibility pressure (MMP) for different displacement gases. The results show that the density of the gas phase increases while the density of the oil phase decreases with an increase in the displacement gas pressure, resulting in efficient mixing between the gas phase and the oil phase. At higher gas pressures, the thickness of the interface between the gas and oil phases is higher while the interfacial tension is lower. At the same time, we observed that the higher the CO2 content in the displacement phase, the thicker the oil-gas interface becomes and the better the oil-gas mixing is under the same gas pressure. In this work, the gas-oil miscibility is studied with pure CO2, pure N2, and the mixture of these two gases, and it is found that the minimum miscibility pressure for pure CO2 flooding (22.3 MPa) is much lower than that for pure N2 flooding (119.0 MPa). When these two gases are mixed in 1 : 1 ratio, the MMP (50.7 MPa) is between the MMPs of the two pure gases. Moreover, the pressure required with CO2 is lower than that required with N2 to achieve the same displacement effect. Finally, we explain the mechanisms of the different miscibility processes for different gas pressure and different displacement gases from the perspective of the total energy of the system and the potential of the mean force between the gas and the oil. The total energy of the system increases with the pressure of the gas phase, implying that the number of collisions between the oil and gas molecules increases and the gas-oil miscibility is enhanced. In addition, by analyzing the potential of mean force profiles, it can be concluded that the force of attraction between the oil-phase molecules and CO2 molecules is greater than that between the oil-phase molecules and N2 molecules; thus, the CO2 molecules easily mix with oil, and the effect of displacement is more obvious. These results are of great significance for understanding the interfacial mass transfer characteristics of the gas-oil miscibility process and for guiding the optimization and design of enhanced oil recovery technology by gas flooding.
  • 加载中
    1. [1]

      Berg, S.; Ott, H.; Klapp, S. A.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Enzmann, F.; Schwarz, J. O.; et al. Proc. Natl. Acad. Sci. USA 2013, 110, 3755. doi: 10.1073/pnas.1221373110  doi: 10.1073/pnas.1221373110

    2. [2]

      Mugele, F.; Bera, B.; Cavalli, A.; Siretanu, I.; Maestro, A.; Duits, M.; Cohen-Stuart, M.; van den Ende, D.; Stocker, I.; Collins, I. Sci. Rep. 2015, 5, 10519. doi: 10.1038/srep10519  doi: 10.1038/srep10519

    3. [3]

      Hammond, P. S.; Unsal, E. Langmuir 2011, 27, 4412. doi: 10.1021/la1048503  doi: 10.1021/la1048503

    4. [4]

      Wang, X. Z.; Kang, W. L.; Meng, X. C.; Fan, H. M., Xu, H.; Huang, J. W.; Fu, J. B.; Zhang, Y. N. Acta Phys. -Chim. Sin. 2012, 28, 2285.  doi: 10.3866/PKU.WHXB201206291

    5. [5]

      Murison, J.; Semin, B.; Baret, J. -C.; Herminghaus, S.; Schröter, M.; Brinkmann, M. Phys. Rev. Appl. 2014, 2, 034002. doi: 10.1103/PhysRevApplied.2.034002  doi: 10.1103/PhysRevApplied.2.034002

    6. [6]

      Cao, X.; Peng, B.; Ma, S.; Ni, H.; Zhang, L.; Zhang, W.; Li, M.; Hsu, C. S.; Shi, Q. Energy Fuels 2017, 31, 4996. doi: 10.1021/acs.energyfuels.7b00415  doi: 10.1021/acs.energyfuels.7b00415

    7. [7]

      Farajzadeh, R.; Andrianov, A.; Zitha, P. L. J. Ind. Eng. Chem. Res. 2010, 49, 1910. doi: 10.1021/ie901109d  doi: 10.1021/ie901109d

    8. [8]

      de Lara, L. S.; Michelon, M. F.; Miranda, C. R. J. Phys. Chem. B 2012, 116, 14667. doi: 10.1021/jp310172j  doi: 10.1021/jp310172j

    9. [9]

      Dai, Z.; Middleton, R.; Viswanathan, H.; Fessenden-Rahn, J.; Bauman, J.; Pawar, R.; Lee, S. Y.; McPherson, B. Environ. Sci. Technol. Lett. 2013, 1, 49. doi: 10.1021/ez4001033  doi: 10.1021/ez4001033

    10. [10]

      Mahdavi, E.; Zebarjad, F. S.; Taghikhani, V.; Ayatollahi, S. J. Chem. Eng. Data 2014, 59, 2563. doi:10.1021/je500369e  doi: 10.1021/je500369e

    11. [11]

      Mutailipu, M.; Liu, Y.; Jiang, L.; Zhang, Y. J. Colloid Interface Sci. 2019, 534, 605. doi: 10.1016/j.jcis.2018.09.031  doi: 10.1016/j.jcis.2018.09.031

    12. [12]

      Li, X.; Ross, D. A.; Trusler, J. P.; Maitland, G. C.; Boek, E. S. J. Phys. Chem. B 2013, 117, 5647. doi: 10.1021/jp309730m  doi: 10.1021/jp309730m

    13. [13]

      Wang, G. F.; Yao, J.; Wang, H.; Yu, G. M.; Luo, W. L. Res. Eval. Develop. 2019, 9, 14. doi: 10.13809/j.cnki.cn32-1825/te.2019.03.003  doi: 10.13809/j.cnki.cn32-1825/te.2019.03.003

    14. [14]

      Zhang, N.; Yin, M.; Wei, M.; Bai, B. Fuel 2019, 241, 459. doi: 10.1016/j.fuel.2018.12.072  doi: 10.1016/j.fuel.2018.12.072

    15. [15]

      Yao, J.; Sun, H.; Li, A.; Yang, Y.; Huang, Z.; Wang, Y.; Zhang, L.; Kou, J.; Xie, H.; Zhao, J.; et al. Chin. Sci. Bull. 2018, 63, 425. doi: 10.1360/n972017-00161  doi: 10.1360/n972017-00161

    16. [16]

      Cao, M.; Gu, Y. Fluid Phase Equilib. 2013, 356, 78. doi: 10.1016/j.fluid.2013.07.006  doi: 10.1016/j.fluid.2013.07.006

    17. [17]

      Zolghadr, A.; Escrochi, M.; Ayatollahi, S. J. Chem. Eng. Data 2013, 58, 1168. doi: 10.1021/je301283e  doi: 10.1021/je301283e

    18. [18]

      Bessie`res, D.; Saint-Guirons, H.; Daridon, J. L. J. Chem. Eng. Data 2001, 46, 1136. doi: 10.1021/je010016k  doi: 10.1021/je010016k

    19. [19]

      Zhao, L.; Tao, L.; Lin, S. Ind. Eng. Chem. Res. 2015, 54, 2489. doi:10.1021/ie505048c  doi: 10.1021/ie505048c

    20. [20]

      Sun, C.; Zhou, R.; Zhao, Z.; Bai, B. J. Phys. Chem. Lett. 2020, 11, 4678. doi: 10.1021/acs.jpclett.0c00591  doi: 10.1021/acs.jpclett.0c00591

    21. [21]

      Zhao, Z.; Sun, C.; Zhou, R. Int. J. Heat Mass Transfer 2020, 152, 119502. doi: 10.1016/j.ijheatmasstransfer.2020.119502  doi: 10.1016/j.ijheatmasstransfer.2020.119502

    22. [22]

      Zhang, J.; Pan, Z.; Liu, K.; Burke, N. Energy Fuels 2013, 27, 2741. doi: 10.1021/ef400283n  doi: 10.1021/ef400283n

    23. [23]

      Yang, Z.; Li, M.; Peng, B.; Lin, M.; Dong, Z. J. Chem. Eng. Data 2012, 57, 882. doi: 10.1021/je201114g  doi: 10.1021/je201114g

    24. [24]

      Mohammed, S.; Mansoori, G. A. Energy Fuels 2018, 32, 5409. doi: 10.1021/acs.energyfuels.8b00488  doi: 10.1021/acs.energyfuels.8b00488

    25. [25]

      Kiran, E.; Po1hler, H.; Xiong, Y. J. Chem. Eng. Data 1996, 41, 158. doi: 10.1021/je9501503  doi: 10.1021/je9501503

    26. [26]

      Ayirala, S. C.; Rao, D. N. J. Can. Pet. Technol. 2011, 50, 71. doi: 10.2118/99606-PA  doi: 10.2118/99606-PA

    27. [27]

      Rao, D. N.; Lee, J. I. J. Pet. Sci. Eng. 2002, 35, 247. doi: 10.1016/S0920-4105(02)00246-2  doi: 10.1016/S0920-4105(02)00246-2

    28. [28]

      Sun, C.; Zhu, S.; Liu, M.; Shen, S.; Bai, B. J. Phys. Chem. Lett. 2019, 10, 7188. doi: 10.1021/acs.jpclett.9b02715  doi: 10.1021/acs.jpclett.9b02715

    29. [29]

      Peng, F.; Wang, R.; Guo, Z.; Feng, G. J. Phys. Commun. 2018, 2, 25. doi: 10.1088/2399-6528/aaf090  doi: 10.1088/2399-6528/aaf090

    30. [30]

      Frenkel, D.; Smit, B. Understanding Molecular Simulations: From Algorithms to Applications, 2nd ed.; Academic Press: San Diego, CA, USA, 2002.

    31. [31]

      Wen, B.; Sun, C.; Bai, B.; Gatapova, E. Y.; Kabov, O. A. Phys. Chem. Chem. Phys. 2017, 19, 14606. doi: 10.1039/c7cp01826f  doi: 10.1039/c7cp01826f

    32. [32]

      Orr, F. M.; Jessen, K. Fluid Phase Equilib. 2007, 255, 99. doi: 10.1016/j.fluid.2007.04.002  doi: 10.1016/j.fluid.2007.04.002

    33. [33]

      Nobakht, M.; Moghadam, S.; Gu, Y. Ind. Eng. Chem. Res. 2008, 47, 8918. doi: 10.1021/ie800358g  doi: 10.1021/ie800358g

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    4. [4]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    9. [9]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(24)
  • Abstract views(1225)
  • HTML views(257)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return