Citation: Yuecheng Xiong, Fei Yu, Jie Ma. Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200603. doi: 10.3866/PKU.WHXB202006037 shu

Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization

  • Corresponding author: Jie Ma, jma@tongji.edu.cn
  • Received Date: 12 June 2020
    Revised Date: 2 July 2020
    Accepted Date: 7 July 2020
    Available Online: 13 July 2020

    Fund Project: the National Natural Science Foundation of China 21777118

  • Sustainable freshwater supply is a grave challenge to the society because of the severe water scarcity and global pollution. Seawater is an inexhaustible source of industrial and potable water. The relevant desalination technologies with a high market share include reverse osmosis and thermal distillation, which are energy-intensive. Capacitive deionization (CDI) is a desalination technology that is gaining extensive attention because of its low energy consumption and low chemical intensity. In CDI, charged species are removed from the aqueous environment via applying a voltage onto the anode and cathode. For desalination, Na+ and Cl- ions are removed by the cathode and anode, respectively. With the boom in electrode materials for rechargeable batteries, the Na+ removal electrode (cathode) has evolved from a carbon-based electrode to a faradaic electrode, and the desalination performance of CDI has also been significantly enhanced. A conventional carbon-based electrode captures ions in the electrical double layer (EDL) and suffers from low charge efficiency, thus being unsuitable for use in water with high salinity. On the other hand, a faradaic electrode stores Na+ ions through a reversible redox process or intercalation, leading to high desalination capacity.However, the Cl- removal electrode (anode) has not yet seen notable development. Most research groups employ activated carbon to remove Cl-, and therefore, summarizing Cl- storage electrodes for CDI is necessary to guide the design of electrode systems with better desalination performance. First, this review outlines the evolution of CDI configuration based on the electrode materials, suggesting that the anode and cathode are of equal importance in CDI. Second, a systematic summary of the anode materials used in CDI and a comparison of the characteristics of different electrodes, including those based on Ag/AgCl, Bi/BiOCl, 2-dimensional (2D) materials (layered double hydroxide (LDH) and MXene), redox polymers, and electrolytes, are presented. Then, the underlying mechanism for Cl- storage is refined. Similar to the case of Na+ storage, traditional carbon electrodes store Cl- via electrosorption based on the EDL. Ag/AgCl and Bi/BiOCl remove Cl- through a conversion reaction, i.e., phase transformation during the reaction with Cl-. 2D materials store Cl- in the space between adjacent layers, a process referred as ion intercalation, with layered double hydroxide (LDH) and MXene showing higher Cl- storage potential. Redox polymers and electrolytes allow for Cl- storage via redox reactions. Among all the materials mentioned above, Bi/BiOCl and LDH are the most promising for the construction of CDI anodes because of their high capacity and low cost. Finally, to spur the development of novel anodes for CDI, the electrodes applied in a chlorine ion battery are introduced. This is the first paper to comb through reports on the development of anode materials for CDI, thus laying the theoretical foundation for future materials design.
  • 加载中
    1. [1]

      Hoekstra, A. Y.; Mekonnen, M. M.; Chapagain, A. K.; Mathews, R. E.; Richter, B. D. PLoS One 2012, 7, e32688. doi: 10.1371/journal.pone.0032688  doi: 10.1371/journal.pone.0032688

    2. [2]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    3. [3]

      Subramani, A.; Jacangelo, J. G. Water Res. 2015, 75, 164. doi: 10.1016/j.watres.2015.02.032  doi: 10.1016/j.watres.2015.02.032

    4. [4]

      Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater. Sci. 2013, 58, 1388. doi: 10.1016/j.pmatsci.2013.03.005  doi: 10.1016/j.pmatsci.2013.03.005

    5. [5]

      Tan, C.; He, C.; Fletcher, J.; Waite, T. D. Water Res. 2020, 168, 115146. doi: 10.1016/j.watres.2019.115146  doi: 10.1016/j.watres.2019.115146

    6. [6]

      Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. Energy Environ. Sci. 2018, 11, 1985. doi: 10.1039/c8ee00567b  doi: 10.1039/c8ee00567b

    7. [7]

      Liu, Y.; Jiang, Z.; Zhang, X.; Shen, P. K. J. Mater. Chem. A 2018, 6, 20037. doi: 10.1039/c8ta07587e  doi: 10.1039/c8ta07587e

    8. [8]

      Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Energy Environ. Sci. 2015, 8, 2296. doi: 10.1039/c5ee00519a  doi: 10.1039/c5ee00519a

    9. [9]

      Cao, J.; Wang, Y.; Chen, C.; Yu, F.; Ma, J. J. Colloid Interface Sci. 2018, 518, 69. doi: 10.1016/j.jcis.2018.02.019  doi: 10.1016/j.jcis.2018.02.019

    10. [10]

      Ma, J.; Wang, L.; Yu, F. Electrochim. Acta 2018, 263, 40. doi: 10.1016/j.electacta.2018.01.041  doi: 10.1016/j.electacta.2018.01.041

    11. [11]

      Suss, M. E.; Presser, V. Joule 2018, 2, 10. doi: 10.1016/j.joule.2017.12.010  doi: 10.1016/j.joule.2017.12.010

    12. [12]

      Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T. D. Water Res. 2018, 128, 314. doi: 10.1016/j.watres.2017.10.024  doi: 10.1016/j.watres.2017.10.024

    13. [13]

      Yu, F.; Wang, L.; Wang, Y.; Shen, X.; Cheng, Y.; Ma, J. J. Mater. Chem. A 2019, 7, 15999. doi: 10.1039/c9ta01264h  doi: 10.1039/c9ta01264h

    14. [14]

      Ma, J.; Xiong, Y.; Dai, X.; Yu, F. Environ. Sci. Technol. Lett. 2020, 7, 118. doi: 10.1021/acs.estlett.0c00027  doi: 10.1021/acs.estlett.0c00027

    15. [15]

      Pasta, M.; Wessells, C. D.; Cui, Y.; La Mantia, F. Nano Lett. 2012, 12, 839. doi: 10.1021/nl203889e  doi: 10.1021/nl203889e

    16. [16]

      Cao, J.; Wang, Y.; Wang, L.; Yu, F.; Ma, J. Nano Lett. 2019, 19, 823. doi: 10.1021/acs.nanolett.8b04006  doi: 10.1021/acs.nanolett.8b04006

    17. [17]

      Wang, K.; Liu, Y.; Ding, Z.; Li, Y.; Lu, T.; Pan, L. J. Mater. Chem. A 2019, 7, 12126. doi: 10.1039/c9ta01106d  doi: 10.1039/c9ta01106d

    18. [18]

      Ma, J.; Wang, L.; Yu, F.; Dai, X. Chem. Eng. J. 2019, 370, 938. doi: 10.1016/j.cej.2019.03.243  doi: 10.1016/j.cej.2019.03.243

    19. [19]

      Ding, Z.; Xu, X.; Li, Y.; Wang, K.; Lu, T.; Pan, L. Desalination 2019, 468, 114078. doi: 10.1016/j.desal.2019.114078  doi: 10.1016/j.desal.2019.114078

    20. [20]

      Zhao, Y.; Liang, B.; Wei, X.; Li, K.; Lv, C.; Zhao, Y. J. Mater. Chem. A 2019, 7, 10464. doi: 10.1039/c8ta12433g  doi: 10.1039/c8ta12433g

    21. [21]

      Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z. Adv. Mater. 2013, 25, 6270. doi: 10.1002/adma.201302223  doi: 10.1002/adma.201302223

    22. [22]

      Lee, J.; Kim, S.; Kim, C.; Yoon, J. Energy Environ. Sci. 2014, 7, 3683. doi: 10.1039/c4ee02378a  doi: 10.1039/c4ee02378a

    23. [23]

      Chen, F.; Huang, Y.; Guo, L.; Ding, M.; Yang, H. Y. Nanoscale 2017, 9, 10101. doi: 10.1039/c7nr01861d  doi: 10.1039/c7nr01861d

    24. [24]

      Nam, D. H.; Choi, K. S. J. Am. Chem. Soc. 2017, 139, 11055. doi: 10.1021/jacs.7b01119  doi: 10.1021/jacs.7b01119

    25. [25]

      Chen, F.; Huang, Y.; Guo, L.; Sun, L.; Wang, Y.; Yang, H. Y. Energy Environ. Sci. 2017, 10, 2081. doi: 10.1039/c7ee00855d  doi: 10.1039/c7ee00855d

    26. [26]

      Biesheuvel, P. M.; van der Wal, A. J. Membr. Sci. 2010, 346, 256. doi: 10.1016/j.memsci.2009.09.043  doi: 10.1016/j.memsci.2009.09.043

    27. [27]

      Wu, T.; Wang, G.; Wang, S.; Zhan, F.; Fu, Y.; Qiao, H.; Qiu, J. Environ. Sci. Technol. Let. 2018, 5, 98. doi: 10.1021/acs.estlett.7b00540  doi: 10.1021/acs.estlett.7b00540

    28. [28]

      Xi, W.; Li, H. Environ. Sci. Nano 2020, 7, 764. doi: 10.1039/c9en01238a  doi: 10.1039/c9en01238a

    29. [29]

      Smith, K. C. Electrochim. Acta 2017, 230, 333. doi: 10.1016/j.electacta.2017.02.006  doi: 10.1016/j.electacta.2017.02.006

    30. [30]

      Arulrajan, A. C.; Ramasamy, D. L.; Sillanpaa, M.; van der Wal, A.; Biesheuvel, P. M.; Porada, S.; Dykstra, J. E. Adv. Mater. 2019, 31, e1806937. doi: 10.1002/adma.201806937  doi: 10.1002/adma.201806937

    31. [31]

      Huang, Z. H.; Yang, Z.; Kang, F.; Inagaki, M. J. Mater. Chem. A 2017, 5, 470. doi: 10.1039/c6ta06733f  doi: 10.1039/c6ta06733f

    32. [32]

      Wang, L.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2017, 33, 1338.  doi: 10.3866/PKU.WHXB201704113

    33. [33]

      Liu, Y.; Nie, C.; Liu, X.; Xu, X.; Sun, Z.; Pan, L. RSC Adv. 2015, 5, 15205. doi: 10.1039/c4ra14447c  doi: 10.1039/c4ra14447c

    34. [34]

      Tang, K.; Hong, T. Z. X.; You, L.; Zhou, K. J. Mater. Chem. A 2019, 7, 26693. doi: 10.1039/c9ta08663c  doi: 10.1039/c9ta08663c

    35. [35]

      Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Nat. Rev. Mater. 2020, 5, 517. doi: 10.1038/s41578-020-0193-1  doi: 10.1038/s41578-020-0193-1

    36. [36]

      Sun, Z.; Chai, L.; Liu, M.; Shu, Y.; Li, Q.; Wang, Y.; Wang, Q.; Qiu, D. Sep. Purif. Technol. 2018, 191, 424. doi: 10.1016/j.seppur.2017.09.015  doi: 10.1016/j.seppur.2017.09.015

    37. [37]

      Zhao, W.; Guo, L.; Ding, M.; Huang, Y.; Yang, H. Y. ACS Appl. Mater. Interfaces 2018, 10, 40540. doi: 10.1021/acsami.8b14014  doi: 10.1021/acsami.8b14014

    38. [38]

      Zhao, W.; Ding, M.; Guo, L.; Yang, H. Y. Small 2019, 15, 1805505. doi: 10.1002/smll.201805505  doi: 10.1002/smll.201805505

    39. [39]

      Yue, Z.; Ma, Y.; Zhang, J.; Li, H. J. Mater. Chem. A 2019, 7, 16892. doi: 10.1039/c9ta03570b  doi: 10.1039/c9ta03570b

    40. [40]

      Srimuk, P.; Husmann, S.; Presser, V. RSC Adv. 2019, 9, 14849. doi: 10.1039/c9ra02570g  doi: 10.1039/c9ra02570g

    41. [41]

      Ahn, J.; Lee, J.; Kim, S.; Kim, C.; Lee, J.; Biesheuvel, P. M.; Yoon, J. Desalination 2020, 476, 114216. doi: 10.1016/j.desal.2019.114216  doi: 10.1016/j.desal.2019.114216

    42. [42]

      Min, X.; Zhu, M.; He, Y.; Wang, Y.; Deng, H.; Wang, S.; Jin, L.; Wang, H.; Zhang, L.; Chai, L. Chemosphere 2020, 251, 126319. doi: 10.1016/j.chemosphere.2020.126319  doi: 10.1016/j.chemosphere.2020.126319

    43. [43]

      Kong, H.; Yang, M.; Miao, Y.; Zhao, X. Energy Technol. 2019, 7, 1900835. doi: 10.1002/ente.201900835  doi: 10.1002/ente.201900835

    44. [44]

      Li, D.; Wang, S.; Wang, G.; Li, C.; Che, X.; Wang, S.; Zhang, Y.; Qiu, J. ACS Appl. Mater. Interfaces 2019, 11, 31200. doi: 10.1021/acsami.9b10307  doi: 10.1021/acsami.9b10307

    45. [45]

      Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M. C.; Aslan, M.; Suss, M. E.; Presser, V. J. Mater. Chem. A 2016, 4, 18265. doi: 10.1039/c6ta07833h  doi: 10.1039/c6ta07833h

    46. [46]

      Khan, A. I.; O'Hare, D. J. Mater. Chem. 2002, 12, 3191. doi: 10.1039/b204076j  doi: 10.1039/b204076j

    47. [47]

      Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Mater. Today 2016, 19, 213. doi: 10.1016/j.mattod.2015.10.006  doi: 10.1016/j.mattod.2015.10.006

    48. [48]

      Lv, L.; Yang, Z.; Chen, K.; Wang, C.; Xiong, Y. Adv. Energy Mater. 2019, 9, 1803358. doi: 10.1002/aenm.201803358  doi: 10.1002/aenm.201803358

    49. [49]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124. doi: 10.1021/cr200434v  doi: 10.1021/cr200434v

    50. [50]

      Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47, 3556. doi: 10.1039/c0cc05420h  doi: 10.1039/c0cc05420h

    51. [51]

      Wimalasiri, Y.; Fan, R.; Zhao, X. S.; Zou, L. Electrochim. Acta 2014, 134, 127. doi: 10.1016/j.electacta.2014.04.129  doi: 10.1016/j.electacta.2014.04.129

    52. [52]

      Quan, W.; Tang, Z. L.; Wang, S. T.; Hong, Y.; Zhang, Z. T. Chem. Commun. 2016, 52, 3694. doi: 10.1039/c5cc08744a  doi: 10.1039/c5cc08744a

    53. [53]

      Cai, P.; Zheng, H.; Wang, C.; Ma, H.; Hu, J.; Pu, Y.; Liang, P. J. Hazard. Mater. 2012, 213-214, 100. doi: 10.1016/j.jhazmat.2012.01.069  doi: 10.1016/j.jhazmat.2012.01.069

    54. [54]

      Wang, J.; Gao, F.; Du, X.; Ma, X.; Hao, X.; Ma, W.; Wang, K.; Guan, G.; Abudula, A. Electrochim. Acta 2020, 331, 135288. doi: 10.1016/j.electacta.2019.135288  doi: 10.1016/j.electacta.2019.135288

    55. [55]

      Ren, Q.; Wang, G.; Wu, T.; He, X.; Wang, J.; Yang, J.; Yu, C.; Qiu, J. Ind. Eng. Chem. Res. 2018, 57, 6417. doi: 10.1021/acs.iecr.7b04983  doi: 10.1021/acs.iecr.7b04983

    56. [56]

      Hu, C.; Dong, J.; Wang, T.; Liu, R.; Liu, H.; Qu, J. Chem. Eng. J. 2018, 335, 475. doi: 10.1016/j.cej.2017.10.167  doi: 10.1016/j.cej.2017.10.167

    57. [57]

      Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Nat. Commun. 2015, 6, 6544. doi: 10.1038/ncomms7544  doi: 10.1038/ncomms7544

    58. [58]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138  doi: 10.1002/adma.201304138

    59. [59]

      Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. Chem. Soc. Rev. 2019, 48, 72. doi: 10.1039/c8cs00324f  doi: 10.1039/c8cs00324f

    60. [60]

      Ihsanullah, I. Nano-Micro Lett. 2020, 12, 72. doi: 10.1007/s40820-020-0411-9  doi: 10.1007/s40820-020-0411-9

    61. [61]

      Shen, X.; Xiong, Y.; Hai, R.; Yu, F.; Ma, J. Environ. Sci. Technol. 2020, 54, 4554. doi: 10.1021/acs.est.9b05759  doi: 10.1021/acs.est.9b05759

    62. [62]

      Wang, D.; Gao, Y.; Liu, Y.; Gogotsi, Y.; Meng, X.; Chen, G.; Wei, Y. J. Mater. Chem. A 2017, 5, 24720. doi: 10.1039/c7ta09057a  doi: 10.1039/c7ta09057a

    63. [63]

      Cui, H.; Li, Q.; Qian, Y.; Tang, R.; An, H.; Zhai, J. Water Res. 2011, 45, 5736. doi: 10.1016/j.watres.2011.08.049  doi: 10.1016/j.watres.2011.08.049

    64. [64]

      Silambarasan, K.; Joseph, J. Energy Technol. 2019, 7, 1800601. doi: 10.1002/ente.201800601  doi: 10.1002/ente.201800601

    65. [65]

      Li, Y.; Ding, Z.; Li, J.; Wang, K.; Lu, T.; Pan, L. Desalination 2020, 481, 114379. doi: 10.1016/j.desal.2020.114379  doi: 10.1016/j.desal.2020.114379

    66. [66]

      Shi, Y.; Zhou, X.; Yu, G. Acc. Chem. Res. 2017, 50, 2642. doi: 10.1021/acs.accounts.7b00402  doi: 10.1021/acs.accounts.7b00402

    67. [67]

      Wang, Z.; Xu, X.; Kim, J.; Malgras, V.; Mo, R.; Li, C.; Lin, Y.; Tan, H.; Tang, J.; Pan, L.; et al. Mater. Horiz. 2019, 6, 1433. doi: 10.1039/c9mh00306a  doi: 10.1039/c9mh00306a

    68. [68]

      Dai, J.; Wang, J.; Hou, X.; Ru, Q.; He, Q.; Srimuk, P.; Presser, V.; Chen, F. ChemSusChem 2020, 13, 2792. doi: 10.1002/cssc.202000188  doi: 10.1002/cssc.202000188

    69. [69]

      Dai, J.; Pyae, N. L. W.; Chen, F.; Liang, M.; Wang, S.; Ramalingam, K.; Zhai, S.; Su, C.; Shi, Y.; Tan, S. C.; et al. ACS Appl. Mater. Interfaces 2020, 12, 25728. doi: 10.1021/acsami.0c02822  doi: 10.1021/acsami.0c02822

    70. [70]

      Zhao, X.; Ren, S.; Bruns, M.; Fichtner, M. J. Power Sources 2014, 245, 706. doi: 10.1016/j.jpowsour.2013.07.001  doi: 10.1016/j.jpowsour.2013.07.001

    71. [71]

      Gao, P.; Reddy, M. A.; Mu, X.; Diemant, T.; Zhang, L.; Zhao-Karger, Z.; Chakravadhanula, V. S.; Clemens, O.; Behm, R. J.; Fichtner, M. Angew. Chem. Int. Ed. 2016, 55, 4285. doi: 10.1002/anie.201509564  doi: 10.1002/anie.201509564

    72. [72]

      Lakshmi, K. P.; Janas, K. J.; Shaijumon, M. M. J. Power Sources 2019, 433, 126685. doi: 10.1016/j.jpowsour.2019.05.091  doi: 10.1016/j.jpowsour.2019.05.091

    73. [73]

      Zhao, X.; Zhao, Z.; Yang, M.; Xia, H.; Yu, T.; Shen, X. ACS Appl. Mater. Interfaces 2017, 9, 2535. doi: 10.1021/acsami.6b14755  doi: 10.1021/acsami.6b14755

    74. [74]

      Zhao, Z.; Yu, T.; Miao, Y.; Zhao, X. Electrochim. Acta 2018, 270, 30. doi: 10.1016/j.electacta.2018.03.077  doi: 10.1016/j.electacta.2018.03.077

    75. [75]

      Yu, T.; Yang, R.; Zhao, X.; Shen, X. ChemElectroChem 2019, 6, 1761. doi: 10.1002/celc.201801803  doi: 10.1002/celc.201801803

    76. [76]

      Yang, R.; Yu, T.; Zhao, X. J. Alloys Compd. 2019, 788, 407. doi: 10.1016/j.jallcom.2019.02.234  doi: 10.1016/j.jallcom.2019.02.234

    77. [77]

      Chen, F.; Leong, Z. Y.; Yang, H. Y. Energy Storage Mater. 2017, 7, 189. doi: 10.1016/j.ensm.2017.02.001  doi: 10.1016/j.ensm.2017.02.001

    78. [78]

      Hu, X.; Chen, F.; Wang, S.; Ru, Q.; Chu, B.; Wei, C.; Shi, Y.; Ye, Z.; Chu, Y.; Hou, X.; et al. ACS Appl. Mater. Interfaces 2019, 11, 9144. doi: 10.1021/acsami.8b21652  doi: 10.1021/acsami.8b21652

    79. [79]

      Yin, Q.; Rao, D.; Zhang, G.; Zhao, Y.; Han, J.; Lin, K.; Zheng, L.; Zhang, J.; Zhou, J.; Wei, M. Adv. Funct. Mater. 2019, 29, 1900983. doi: 10.1002/adfm.201900983  doi: 10.1002/adfm.201900983

  • 加载中
    1. [1]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    19. [19]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(32)
  • Abstract views(1608)
  • HTML views(464)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return