SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells
- Corresponding author: Zhang Xiaoliang, xiaoliang.zhang@buaa.edu.cn
Citation: Wang Yunfei, Liu Jianhua, Yu Mei, Zhong Jinyan, Zhou Qisen, Qiu Junming, Zhang Xiaoliang. SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 200603. doi: 10.3866/PKU.WHXB202006030
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131 (17), 6050. doi: 10.1021/ja809598r
doi: 10.1021/ja809598r
https://www.nrel.gov/pv/cell-efficiency.html (Accessed on 11 December 2019).
Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7 (1), 399. doi: 10.1039/C3EE43161D
doi: 10.1039/C3EE43161D
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982
doi: 10.1126/science.1243982
Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Nat. Phys. 2015, 11, 582. doi: 10.1038/nphys3357
doi: 10.1038/nphys3357
Lin, Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Nat. Photon. 2014, 9, 106. doi: 10.1038/nphoton.2014.284
doi: 10.1038/nphoton.2014.284
Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628. doi: 10.1039/c3ta10518k
doi: 10.1039/c3ta10518k
Chen, J.; Park, N. G. Adv. Mater. 2018, 31 (47), 1803019. doi: 10.1002/adma.201803019
doi: 10.1002/adma.201803019
Tress, W.; Marinova, N.; Inganas, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M. Adv. Energy Mater. 2015, 5 (3), 6. doi: 10.1002/aenm.201400812
doi: 10.1002/aenm.201400812
Wang, N.; Zhao, K.; Ding, T.; Liu, W.; Ahmed, A. S.; Wang, Z.; Tian, M.; Sun, X. W.; Zhang, Q. Adv. Energy Mater. 2017, 7 (18), 1700522. doi: 10.1002/aenm.201700522
doi: 10.1002/aenm.201700522
Peng, J.; Wu, Y.; Ye, W.; Jacobs, D. A.; Shen, H.; Fu, X.; Wan, Y.; Duong, T.; Wu, N.; Barugkin, C.; et al. Energy Environ. Sci. 2017, 10 (8), 1792. doi: 10.1039/c7ee01096f
doi: 10.1039/c7ee01096f
Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345 (6196), 542. doi: 10.1126/science.1254050
doi: 10.1126/science.1254050
Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; de Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C.; et al. Science 2017, 355 (6326), 722. doi: 10.1126/science.aai9081
doi: 10.1126/science.aai9081
Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; de Villers, B. J. T.; Sellinger, A.; Berry, J. J.; Luther, J. M. Nat. Energy 2018, 3 (1), 68. doi: 10.1038/s41560-017-0067-y
doi: 10.1038/s41560-017-0067-y
Li, Y.; Zhu, J.; Huang, Y.; Liu, F.; Lv, M.; Chen, S.; Hu, L.; Tang, J.; Yao, J.; Dai, S. RSC Adv. 2015, 5 (36), 28424. doi: 10.1039/C5RA01540E
doi: 10.1039/C5RA01540E
Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. J. Am. Chem. Soc. 2015, 137 (21), 6730. doi: 10.1021/jacs.5b01994
doi: 10.1021/jacs.5b01994
Jiang, Q.; Zhang, L. Q.; Wang, H. L.; Yang, X. L.; Meng, J. H.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Nat. Energy 2017, 2 (1), 1. doi: 10.1038/Nenergy.2016.177
doi: 10.1038/Nenergy.2016.177
Jung, K. H.; Seo, J. Y.; Lee, S.; Shin, H.; Park, N. G. J. Mater. Chem. A 2017, 5 (47), 24790. doi: 10.1039/c7ta08040a
doi: 10.1039/c7ta08040a
Xiong, L. B.; Guo, Y. X.; Wen, J.; Liu, H. R.; Yang, G.; Qin, P. L.; Fang, G. J. Adv. Funct. Mater. 2018, 28 (35), 1802757. doi: 10.1002/adfm.201802757
doi: 10.1002/adfm.201802757
Liu, X.; Tsai, K.W.; Zhu, Z.; Sun, Y.; Chueh, C. C.; Jen, A. K. Y. Adv. Mater. Interfaces 2016, 3 (13). doi: 10.1002/admi.201600122
doi: 10.1002/admi.201600122
Bu, T. L.; Li, J.; Zheng, F.; Chen, W. J.; Wen, X. M.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Nat. Commun. 2018, 9, 4609. doi: 10.1038/s41467-018-07099-9
doi: 10.1038/s41467-018-07099-9
Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; Yang, D. ACS Nano 2017, 11 (9), 9176. doi: 10.1021/acsnano.7b04070
doi: 10.1021/acsnano.7b04070
Wang, C.; Zhao, D.; Grice, C. R.; Liao, W.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P. J.; Chen, J.; Yu, Z.; et al. J. Mater. Chem. A 2016, 4 (31), 12080. doi: 10.1039/c6ta04503k
doi: 10.1039/c6ta04503k
Tao, C.; Neutzner, S.; Colella, L.; Marras, S.; Kandada, A. R. S.; Gandini, M.; De Bastiani, M.; Pace, G.; Manna, L.; Caironi, M.; et al. Energy Environ. Sci. 2015, 8 (8), 2365. doi: 10.1039/c5ee01720c
doi: 10.1039/c5ee01720c
Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. Z. Nat. Commun. 2018, 9, 3239. doi: 10.1038/s41467-018-05760-x
doi: 10.1038/s41467-018-05760-x
Choi, K.; Lee, J.; Kim, H. I.; Park, C. W.; Kim, G.W.; Choi, H.; Park, S.; Park, S. A.; Park, T. Energy Environ. Sci. 2018, 11 (11), 3238. doi: 10.1039/C8EE02242A
doi: 10.1039/C8EE02242A
Liu, X.; Zhang, Y.; Shi, L.; Liu, Z.; Huang, J.; Yun, J. S.; Zeng, Y.; Pu, A.; Sun, K.; Hameiri, Z.; et al. Adv. Energy Mater. 2018, 8 (20), 1800138. doi: 10.1002/aenm.201800138
doi: 10.1002/aenm.201800138
Liu, Z.; Deng, K.; Hu, J.; Li, L. Angew. Chem. Int. Ed. 2019, 58 (33), 11497. doi: 10.1002/anie.201904945
doi: 10.1002/anie.201904945
Qiao, H. W.; Yang, S.; Wang, Y.; Chen, X.; Wen, T. Y.; Tang, L. J.; Cheng, Q.; Hou, Y.; Zhao, H.; Yang, H. G. Adv. Mater. 2019, 31 (5), 1804217. doi: 10.1002/adma.201804217
doi: 10.1002/adma.201804217
Zhang, B.; Su, J.; Guo, X.; Zhou, L.; Lin, Z.; Feng, L.; Zhang, J.; Chang, J.; Hao, Y. Adv. Sci. 2020, 7 (11), 1903044. doi: 10.1002/advs.201903044
doi: 10.1002/advs.201903044
Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6 (1), 15. doi: 10.1016/0927-0256(96)00008-0
doi: 10.1016/0927-0256(96)00008-0
Blöchl, P. E.; Först, C. J.; Schimpl, J. Bull. Mater. Sci. 2003, 26 (1), 33. doi: 10.1007/BF02712785
doi: 10.1007/BF02712785
Perdew; Burke; Wang. Phys. Rev. B 1996, 54 (23), 16533. doi: 10.1103/PhysRevB.54.16533
doi: 10.1103/PhysRevB.54.16533
Lin, W.; Zhang, Y. F.; Li, Y.; Chen, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2006, 22 (1), 76.
doi: 10.3866/pku.Whxb20060115
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132 (15), 19. doi: 10.1063/1.3382344
doi: 10.1063/1.3382344
Tang, W.; Sanville, E.; Henkelman, G. J. Phys. Condens. Matter 2009, 21 (8), 7. doi: 10.1088/0953-8984/21/8/084204
doi: 10.1088/0953-8984/21/8/084204
http://vaspkit.sourceforge.net (14 5 2020).
https://wiki.fysik.dtu.dk/ase/about.html (14 5 2020).
Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energy Environ. Sci. 2015, 8 (7), 2118. doi: 10.1039/c5ee01265a
doi: 10.1039/c5ee01265a
Fu, F.; Pisoni, S.; Jeangros, Q.; Sastre-Pellicer, J.; Kawecki, M.; Paracchino, A.; Moser, T.; Werner, J.; Andres, C.; Duchêne, L.; et al. Energy Environ. Sci. 2019, 12 (10), 3074. doi: 10.1039/c9ee02043h
doi: 10.1039/c9ee02043h
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348 (6240), 1234. doi: 10.1126/science.aaa9272
doi: 10.1126/science.aaa9272
Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; et al. Nature 2018, 555 (7697), 497. doi: 10.1038/nature25989
doi: 10.1038/nature25989
Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Energy Environ. Sci. 2017, 10 (2), 516. doi: 10.1039/c6ee02941h
doi: 10.1039/c6ee02941h
Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater. 2014, 24 (45), 7102. doi: 10.1002/adfm.201401872
doi: 10.1002/adfm.201401872
Yang, C. H.; Tang, A. W.; Teng, F.; Jiang, K. J. Acta Phys. -Chim. Sin. 2018, 34 (11), 1197.
doi: 10.3866/PKU.WHXB201804097
Yan, L.; Xue, Q. F.; Liu, M. Y.; Zhu, Z. L.; Tian, J. J.; Li, Z. C.; Chen, Z.; Chen, Z. M.; Yan, H.; Yip, H. L.; Cao, Y. Adv. Mater. 2018, 30 (33), 1802509. doi: 10.1002/adma.201802509
doi: 10.1002/adma.201802509
Hu, W. P.; Zhou, W. R.; Lei, X. Y.; Zhou, P. C.; Zhang, M. M.; Chen, T.; Zeng, H. L.; Zhu, J.; Dai, S. Y.; Yang, S. H.; Yang, S. F. Adv. Mater. 2019, 31 (8), 12. doi: 10.1002/adma.201806095
doi: 10.1002/adma.201806095
Kim, H. S.; Jang, I. H.; Ahn, N.; Choi, M.; Guerrero, A.; Bisquert, J.; Park, N. G. J. Phys. Chem. Lett. 2015, 6 (22), 4633. doi: 10.1021/acs.jpclett.5b02273
doi: 10.1021/acs.jpclett.5b02273
Son, D. Y.; Kim, S. G.; Seo, J. Y.; Lee, S. H.; Shin, H.; Lee, D.; Park, N. G. J. Am. Chem. Soc. 2018, 140 (4), 1358. doi: 10.1021/jacs.7b10430
doi: 10.1021/jacs.7b10430
Liu, Q. P.; Huang, H. J.; Zhou, Y.; Duan, Y. D.; Sun, Q. W.; Lin, Y. Acta Phys. -Chim. Sin. 2012, 28 (3), 591.
doi: 10.3866/PKU.WHXB201112161
Minemoto, T.; Murata, M. Sol. Energy Mater. Sol. Cells 2015, 133, 8. doi: 10.1016/j.solmat.2014.10.036
doi: 10.1016/j.solmat.2014.10.036
Zhao, P.; Lin, Z.; Wang, J.; Yue, M.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. ACS Appl. Energy Mater. 2019, 2 (6), 4504. doi: 10.1021/acsaem.9b00755
doi: 10.1021/acsaem.9b00755
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262