Citation: Shuai Chen, Jianglei Qin, Jianzhong Du. Cross-Linkable Yet Biodegradable Polymer Films[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 200602. doi: 10.3866/PKU.WHXB202006029 shu

Cross-Linkable Yet Biodegradable Polymer Films

  • Corresponding author: Jianglei Qin, qinhbu@iccas.ac.cn Jianzhong Du, jzdu@tongji.edu.cn
  • Received Date: 11 June 2020
    Revised Date: 27 July 2020
    Accepted Date: 27 July 2020
    Available Online: 31 July 2020

    Fund Project: the Natural Science Foundation of Hebei Province, China B2018201140State Key Laboratory of Organic-Inorganic Composites, China oic-202001005the National Science Fund for Distinguished Young Scholars, China 21925505the National Natural Science Foundation of China 21674081

  • Polymer films are widely used as biomaterials, electronic devices, food packaging materials and gas separation membranes. In practice, cross-linking is an effective method to enhance their stability and increase the strength of these films. However, conventional cross-linked polymer films cannot degrade under mild conditions. Herein, we fabricated two cross-linkable, yet biodegradable, polymer films of ~0.2 mm via solution casting using cinnamate-grafted polycaprolactones, namely: a poly((α-(cinnamoyloxymethyl)-1, 2, 3-triazol) caprolactone) (PCTCL133) homopolymer and a poly(caprolactone-stat-CTCL) (P(CL156-stat-CTCL28)) copolymer. The successful syntheses of the polymers were confirmed via proton nuclear magnetic resonance (1H NMR) spectroscopy, size exclusion chromatography (SEC), and Fourier transform infrared (FT-IR) spectroscopy. The PCTCL homopolymer appeared as a transparent film, owing to its side groups that impede its crystallinity; in contrast, the copolymer film appeared translucent, owing to its PCL segments that are easily crystallized. The cinnamate groups facilitated the cross-linking of the polymer films when irradiated by ultraviolet (UV) light; this is indicated by its insoluble character in tetrahydrofuran, which is a good solvent for both polymers. SEC analysis indicated that a fraction of the P(CL156-stat-CTCL28) film remained un-cross-linked after irradiation, owing to its crystalline structure. In contrast, UV irradiation caused the PCTCL homopolymer film to become homogeneously cross-linked, which exhibited a cross-linking density of 49% after 2 h as indicated by the 1H NMR results. Thermogravimetric analysis (TGA) indicated that cross-linking of the PCTCL films caused a minimal change in thermal stability. Both the cross-linked polymer films were able to degrade upon the addition of a modest amount of concentrated hydrochloric acid, as confirmed by SEC and 1H NMR. However, the degradation rate significantly decreased after cross-linking, thereby indicating its tunable character that can be altered by varying the cross-linking density. In addition, the rate of degradation can be adjusted upon varying the fraction of cross-linked PCTCL groups in the copolymer. In principle, treating the polymer films with sufficient amounts of acid could form degradation products with molecular weights less than 300 g∙mol−1. To further explore the mechanical properties of such materials, we investigated the correlation between the initial concentration used for solution casting and the Young's modulus of the film by employing molecular dynamics simulations. These results indicate that tougher films are prepared when using more concentrated polymer solutions, owing to a higher degree of chain entanglement. In summary, the prepared films with tunable degradability are promising materials for biomedical applications. In principle, this platform could be utilized in hydrogels and coating materials for a broad scope of applications.
  • 加载中
    1. [1]

      Cheng, C.; Sun, S. D.; Zhao, C. S. J. Mater. Chem. B 2014, 2, 7649. doi: 10.1039/c4tb01390e  doi: 10.1039/c4tb01390e

    2. [2]

      Chen, X. Y.; Li, J. S. Mater. Chem. Front. 2020, 4, 750. doi: 10.1039/c9qm00717b  doi: 10.1039/c9qm00717b

    3. [3]

      Tharanathan, R. N. Trends Food Sci. Technol. 2003, 14, 71. doi: 10.1016/S0924-2244(02)00280-7  doi: 10.1016/S0924-2244(02)00280-7

    4. [4]

      Bao, Q. Y.; Braun, S.; Wang, C. F.; Liu, X. J.; Fahlman, M. Adv. Mater. Interfaces 2019, 6, 1800897. doi: 10.1002/admi.201800897  doi: 10.1002/admi.201800897

    5. [5]

      Pandey, P.; Chauhan, R. S. Prog. Polym. Sci. 2001, 26, 853. doi: 10.1016/S0079-6700(01)00009-0  doi: 10.1016/S0079-6700(01)00009-0

    6. [6]

      Reddy, N.; Reddy, R.; Jiang, Q. R. Trends Biotechnol. 2015, 33, 362. doi: 10.1016/j.tibtech.2015.03.008  doi: 10.1016/j.tibtech.2015.03.008

    7. [7]

      Rhim, J. W.; Ng, P. K. W. Crit. Rev. Food Sci. Nutr. 2007, 47, 411. doi: 10.1080/10408390600846366  doi: 10.1080/10408390600846366

    8. [8]

      Feng, C.; Huang, X. Y. Acc. Chem. Res. 2018, 51, 2314. doi: 10.1021/acs.accounts.8b00307  doi: 10.1021/acs.accounts.8b00307

    9. [9]

      Xu, B. B.; Feng, C.; Hu, J. H.; Shi, P.; Gu, G. X.; Wang, L.; Huang, X. Y. ACS Appl. Mater. Interfaces 2016, 8, 6685. doi: 10.1021/acsami.5b12820  doi: 10.1021/acsami.5b12820

    10. [10]

      Xu, B. B.; Liu, Y. J.; Sun, X. W.; Hu, J. H.; Shi, P.; Huang, X. Y. ACS Appl. Mater. Interfaces 2017, 9, 16517. doi: 10.1021/acsami.7b03258  doi: 10.1021/acsami.7b03258

    11. [11]

      Sionkowska, A. Prog. Polym. Sci. 2011, 36, 1254. doi: 10.1016/j.progpolymsci.2011.05.003  doi: 10.1016/j.progpolymsci.2011.05.003

    12. [12]

      Baroli, B. J. Biomed. Nanotechnol. 2010, 6, 485. doi: 10.1166/jbn.2010.1147  doi: 10.1166/jbn.2010.1147

    13. [13]

      Chandra, R.; Rustgi, R. Prog. Polym. Sci. 1998, 23, 1273. doi: 10.1016/S0079-6700(97)00039-7  doi: 10.1016/S0079-6700(97)00039-7

    14. [14]

      Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. Biomaterials 2003, 24, 801. doi: 10.1016/S0142-9612(02)00370-8  doi: 10.1016/S0142-9612(02)00370-8

    15. [15]

      Chen, L. S.; Hong, Y. X.; He, S. S.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1910059.  doi: 10.3866/PKU.WHXB201910059

    16. [16]

      Song, T.; Xi, Y. J.; Du, J. Z. Acta Polym. Sin. 2018, No. 1, 119.  doi: 10.11777/j.issn1000-3304.2018.17229

    17. [17]

      Lo, H. Y.; Kuo, H. T.; Huang, Y. Y. Artif. Organs 2010, 34, 648. doi: 10.1111/j.1525-1594.2009.00949.x  doi: 10.1111/j.1525-1594.2009.00949.x

    18. [18]

      Shi, D. L.; He, T.; Tang, W. J.; Li, H. Z.; Wang, C.; Zheng, M. Z.; Hu, J.; Song, X. H.; Ding, Y. M.; Chen, Y. Y.; et al. Neurosci. Lett. 2019, 694, 161. doi: 10.1016/j.neulet.2018.12.006  doi: 10.1016/j.neulet.2018.12.006

    19. [19]

      Zhang, Q.; Jiang, Y.; Zhang, Y.; Ye, Z.; Tan, W.; Lang, M. Polym. Degrad. Stab. 2013, 98, 209. doi: 10.1016/j.polymdegradstab.2012.10.008  doi: 10.1016/j.polymdegradstab.2012.10.008

    20. [20]

      Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y. Biomaterials 2006, 27, 1735. doi: 10.1016/j.biomaterials.2005.09.019  doi: 10.1016/j.biomaterials.2005.09.019

    21. [21]

      Zou, Y. J.; He, S. S.; Du, J. Z. Chin. J. Polym. Sci. 2018, 36, 1239. doi: 10.1007/s10118-018-2156-1  doi: 10.1007/s10118-018-2156-1

    22. [22]

      Liu, G. J.; Ding, J. F.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S. Chem. Mater. 1999, 11, 2233. doi: 10.1021/cm990184k  doi: 10.1021/cm990184k

    23. [23]

      Liao, Y. Y.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1912053.  doi: 10.3866/PKU.WHXB201912053

    24. [24]

      Yuan, K.; Zhou, X.; Du, J. Z. Acta Phys. -Chim. Sin. 2017, 33, 656.  doi: 10.3866/PKU.WHXB201701162

    25. [25]

      Xiao, Y. F.; Sun, H.; Du, J. Z. J. Am. Chem. Soc. 2017, 139, 7640. doi: 10.1021/jacs.7b03219  doi: 10.1021/jacs.7b03219

    26. [26]

      Groschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Muller, A. H. E. Nat. Commun. 2012, 3, 710. doi: 10.1038/ncomms1707  doi: 10.1038/ncomms1707

    27. [27]

      Du, J. Z.; Chen, Y. M.; Zhang, Y. H.; Han, C. C.; Fischer, K.; Schmidt, M. J. Am. Chem. Soc. 2003, 125, 14710. doi: 10.1021/ja0368610  doi: 10.1021/ja0368610

    28. [28]

      Qin, J. L.; Jiang, X. B.; Gao, L.; Chen, Y. M.; Xi, F. Macromolecules 2010, 43, 8094. doi: 10.1021/ma101639w  doi: 10.1021/ma101639w

    29. [29]

      Peng, B.; Liu, Y.; Shi, Y.; Li, Z. B.; Chen, Y. M. Soft Matter 2012, 8, 12002. doi: 10.1039/c2sm26638e  doi: 10.1039/c2sm26638e

    30. [30]

      Pitt, C. G.; Hendren, R. W.; Schindler, A.; Woodward, S. C. J. Controlled Release 1984, 1, 3. doi: 10.1016/0168-3659(84)90016-6  doi: 10.1016/0168-3659(84)90016-6

    31. [31]

      Shen, J. Y.; Pan, X. Y.; Lim, C. H.; Chan-Park, M. B.; Zhu, X.; Beuerman, R. W. Biomacromolecules 2007, 8, 376. doi: 10.1021/bm060766c  doi: 10.1021/bm060766c

    32. [32]

      Gunatillake, P. A.; Adhikari, R. Eur. Cells Mater. 2003, 5, 1. doi: 10.22203/ecm.v005a01  doi: 10.22203/ecm.v005a01

    33. [33]

      Kamada, J.; Koynov, K.; Corten, C.; Juhari, A.; Yoon, J. A.; Urban, M. W.; Balazs, A. C.; Matyjaszewski, K. Macromolecules 2010, 43, 4133. doi: 10.1021/ma100365n  doi: 10.1021/ma100365n

    34. [34]

      Tsarevsky, N. V.; Matyjaszewski, K. Macromolecules 2005, 38, 3087. doi: 10.1021/ma050020r  doi: 10.1021/ma050020r

    35. [35]

      Jiang, X. B.; Chen, Y. M.; Xi, F. Macromolecules 2010, 43, 7056. doi: 10.1021/ma101460n  doi: 10.1021/ma101460n

    36. [36]

      Wiltshire, J. T.; Qiao, G. G. Macromolecules 2006, 39, 9018. doi: 10.1021/ma0622027  doi: 10.1021/ma0622027

    37. [37]

      Wiltshire, J. T.; Qiao, G. G. Macromolecules 2006, 39, 4282. doi: 10.1021/ma060712v  doi: 10.1021/ma060712v

    38. [38]

      Deng, G. H.; Tang, C. M.; Li, F. Y.; Jiang, H. F.; Chen, Y. M. Macromolecules 2010, 43, 1191. doi: 10.1021/ma9022197  doi: 10.1021/ma9022197

    39. [39]

      Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Angew. Chem., Int. Ed. 2012, 51, 1138. doi: 10.1002/anie.201104069  doi: 10.1002/anie.201104069

    40. [40]

      Haraguchi, K.; Uyama, K.; Tanimoto, H. Macromol. Rapid Commun. 2011, 32, 1253. doi: 10.1002/marc.201100248  doi: 10.1002/marc.201100248

    41. [41]

      Du, H.; Zha, G. Y.; Gao, L. L.; Wang, H.; Li, X. D.; Shen, Z. Q.; Zhu, W. P. Polym. Chem. 2014, 5, 4002. doi: 10.1039/c4py00030g  doi: 10.1039/c4py00030g

    42. [42]

      Atzet, S.; Curtin, S.; Trinh, P.; Bryant, S.; Ratner, B. Biomacromolecules 2008, 9, 3370. doi: 10.1021/bm800686h  doi: 10.1021/bm800686h

    43. [43]

      Darwis, D.; Mitomo, H.; Yoshii, F. Polym. Degrad. Stab. 1999, 65, 279. doi: 10.1016/S0141-3910(99)00017-8  doi: 10.1016/S0141-3910(99)00017-8

    44. [44]

      Defize, T.; Riva, R.; Raquez, J.-M.; Dubois, P.; Jérôme, C.; Alexandre, M. Macromol. Rapid Commun. 2011, 32, 1264. doi: 10.1002/marc.201100250  doi: 10.1002/marc.201100250

    45. [45]

      Riva, R.; Schmeits, S.; Stoffelbach, F.; Jérôme, C.; Jérôme, R.; Lecomte, P. Chem. Commun. 2005, No. 42, 5334. doi: 10.1039/b510282k  doi: 10.1039/b510282k

    46. [46]

      Chiu, F. C.; Wang, S. W.; Peng, K. Y.; Lee, R. S. Polymer 2012, 53, 3476. doi: 10.1016/j.polymer.2012.06.004  doi: 10.1016/j.polymer.2012.06.004

    47. [47]

      Gupta, P.; Trenor, S. R.; Long, T. E.; Wilkes, G. L. Macromolecules 2004, 37, 9211. doi: 10.1021/ma048844g  doi: 10.1021/ma048844g

    48. [48]

      Rochette, J. M.; Ashby, V. S. Macromolecules 2013, 46, 2134. doi: 10.1021/ma302354a  doi: 10.1021/ma302354a

    49. [49]

      Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J. M.; Rogers, A. E.; Saurat, J. H.; Sipes, I. G.; Tagami, H. Food Chem. Toxicol. 2007, 45, S1. doi: 10.1016/j.fct.2007.09.087  doi: 10.1016/j.fct.2007.09.087

    50. [50]

      Chen, S.; Qin, J. L.; Du, J. Z. Macromolecules 2020, 53, 3978. doi: 10.1021/acs.macromol.0c00252  doi: 10.1021/acs.macromol.0c00252

    51. [51]

      Lenoir, S.; Riva, R.; Lou, X.; Detrembleur, C.; Jérôme, R.; Lecomte, P. Macromolecules 2004, 37, 4055. doi: 10.1021/ma035003l  doi: 10.1021/ma035003l

    52. [52]

      Chen, J. C.; Liu, M. Z.; Gong, H. H.; Huang, Y. J.; Chen, C. J. Phys. Chem. B 2011, 115, 14947. doi: 10.1021/jp208494w  doi: 10.1021/jp208494w

    53. [53]

      Cintas, P.; Barge, A.; Tagliapietra, S.; Boffa, L.; Cravotto, G. Nat. Protoc. 2010, 5, 607. doi: 10.1038/nprot.2010.1  doi: 10.1038/nprot.2010.1

    54. [54]

      Ge, T.; Pierce, F.; Perahia, D.; Grest, G. S.; Robbins, M. O. Phys. Rev. Lett. 2013, 110, 098301. doi: 10.1103/PhysRevLett.110.098301  doi: 10.1103/PhysRevLett.110.098301

  • 加载中
    1. [1]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    2. [2]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    3. [3]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    4. [4]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    5. [5]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    11. [11]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    12. [12]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    13. [13]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    16. [16]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

Metrics
  • PDF Downloads(32)
  • Abstract views(971)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return