Cross-Linkable Yet Biodegradable Polymer Films
- Corresponding author: Jianglei Qin, qinhbu@iccas.ac.cn Jianzhong Du, jzdu@tongji.edu.cn
Citation:
Shuai Chen, Jianglei Qin, Jianzhong Du. Cross-Linkable Yet Biodegradable Polymer Films[J]. Acta Physico-Chimica Sinica,
;2022, 38(8): 200602.
doi:
10.3866/PKU.WHXB202006029
Polymer films are versatile materials that can be used in tissue engineering, artificial organs, and biomedical devices 1, 2. They can also play very important roles in electronic devices, food packaging, and gas separation technologies 3-5. Unfortunately, natural polymer films usually lack chemical diversity and are difficult to process 6, 7. Synthetic polymer films can be obtained from polymers with complex architecture such as polymer brushes, which are widely used as anti-fouling surfaces 8-10. Although synthetic polymers are easily prepared, and suitable for processing, they can be potentially toxic 11, 12. Besides, synthetic polymers are generally not biodegradable; however, a low molecular weight supports this desired characteristic. Additionally, this can be achieved by incorporating biodegradable bonds (ester bond, peptide bond, disulfide bond, etc.) 13. A common example of biodegradable synthetic polymers is polycaprolactone (PCL). This polymer is biocompatible and biodegradable, and is therefore widely used as tissue engineering scaffolds 14, drug delivery vehicles 15, 16, and biomedical films 17, 18. Unfortunately, in vivo degradation of PCL lasts several days, or even months 19, 20. A faster and adjustable polymer degradability would allow the preparation of more diversified materials. Therefore, the effective regulation of the degradability of PCL-based materials is an important challenge.
Polymer materials can be cross-linked by various methods 21. For example, poly(2-cinnamoyloxyethyl methacrylate) (PCEMA) can be photocross-linked under ultraviolet (UV) light 22, and the same approach applies to coumarin-incorporated polymers 23-25. Other well-known examples include polybutadiene, which is cross-linked by radical polymerization 26, and poly(3-(trimethoxysilyl)propyl methacrylate) or poly(3-(triethoxysilyl)propyl methacrylate) that can be cross-linked by hydrolysis 27, 28. The undegradable nature of these cross-linked polymer materials prevents disassociation 29. Cross-linking polymer films can effectively increase their strength and stability. This makes them abrasion-resistant and resilient to internal stresses 3, 6. However, cross-linking usually leads to a reduction in biodegradability and structural flexibility 30, 31. These disadvantages restrict usage of these materials in biomedical applications 32.
A variety of cross-linking strategies were developed for the preparation of biodegradable (nano)materials. For example, Matyjaszewski and coworkers 33, 34 prepared degradable core-cross-linked star polymers and gels. These materials were prepared from disulfide-containing initiators and disulfide cross-linkers. Furthermore, they studied their redox-responsive degradation behaviors. Jiang et al. 35 synthesized stepwise cleavable star polymers and polymeric gels by atom transfer radical polymerization and atom transfer radical coupling. The degradation of these two materials is based on redox-responsiveness of disulfide bond and base-catalyzed hydrolysis of ester bond. Qiao and Wiltshire 36, 37 reported a variety of degradable core-cross-linked star polymers by polymerizing bifunctional 4, 4'-bioxepanyl-7, 7'-dione and 2, 2-bis(ɛ-caprolactone-4-yl) propane as cores. The polymers have similar structures to PCL, thus the cores of the star polymer can be degraded under acidic conditions. Deng et al. 38 prepared a self-healing hydrogel. The introduction of dynamic acylhydrazone linkages allowed a reversible sol-gel transition. This innovation attracted great interest in reversible cross-linking strategies 39, 40. Other degradable gels with cross-linked structures were also reported 41, 42. These examples utilize an uncontrolled cross-linking reaction that occurred simultaneously with the polymerization (or coupling reaction). Therefore, this characteristic limits the strategies to the formation of core-cross-linked star polymers and gels. And the strategies are not suitable for the preparation of polymer films, which require post-polymerization cross-linking to guarantee the morphology.
Various PCL cross-linking strategies have been reported. Most literature examples describe un-controlled cross-linking strategies 43, 44. However, functionalization of PCL via click chemistry was reported 45. The same strategy can be used for the preparation of PCL-based polymer brushes 46. Based on these methods, cross-linkable groups can be introduced to achieve controlled cross-linking of PCL. As a typical photocross-linkable functional group, cinnamate can be cross-linked using UV irradiation, which causes a [2 + 2] cycloaddition 47, 48. Besides, cinnamate-derived compounds are generally nontoxic 49 and therefore ideal for usage in biomedical applications. Our previous report demonstrated that UV irradiation can effectively cross-link dispersed cinnamate-containing polymersomes 50. These cross-linked membranes can be degraded in an acidic environment, or with the usage of lipase. Moreover, the introduction of side groups attenuates the crystallization of PCL backbone. This makes the polymersome more susceptible to degradation. Varying the degree of cross-linking allows fine control over the degradability of membranes. This characteristic is also potentially applicable to polymer films.
In this paper, we fabricated two cross-linkable, yet biodegradable, polymer films which were prepared from poly[α-(cinnamoyloxymethyl)-1, 2, 3-triazol caprolactone] (PCTCL133) and the copolymer of P(CL156-stat-CTCL28) (Scheme 1). UV irradiation on the polymer films efficiently cross-linked them and makes them undissolvable in tetrahydrofuran (THF, a good solvent for the un-cross-linked polymer film). Despite the robust cross-linked structure, the network can be completely degraded by acid-catalyzed degradation of ester linkages within PCL backbones and the side groups. The degradable characteristics, and the film transparency, can be conveniently adjusted by copolymerization with caprolactone, which results in different crystallinity of the polymer. In addition, the degradation rate of the polymer films can also be adjusted by varying the cross-linking density. This strategy is based on the following principles: primarily, the densely-grafted side groups in PCTCL impede the crystallization of the PCL backbone. This leads to an upper limit for the biodegradation rate. Additionally, an increased fraction of copolymerized CL lowers the biodegradation rate, and the transparency of the film. The weight percentage of the PCL segments in the polymer film, and the photocross-linking density, can be accurately tuned to control the biodegradable character and the stability of this material. In this way, these degradable PCTCL-based films show great potential for biomedical applications such as drug delivery, tissue engineering, or artificial organs.
A PCTCL133 homopolymer was prepared according to a previously reported protocol (see Scheme S1 (Supporting Information (SI))) 50. Briefly, α-chloro-caprolactone (αClεCL) monomer was prepared via Baeyer-Villiger oxidation of α-chloro-cyclohexanone 45, 51. Then the ring-opening polymerization (ROP) of αClεCL was initiated by isopropanol for the preparation of P(αClCL)133. This polymer was allowed to react with sodium azide to afford P(N3CL)133. (The 1H NMR spectra of αClεCL, P(αClCL)133 and P(N3CL)133 are shown in Fig. S1 (SI).) After azide substitution, the peak at 4.29 ppm, representing the proton adjacent to carbonyl groups on P(αClCL), shifted to 3.85 ppm. This indicates that all chlorine atoms were substituted by azide groups. These groups were then reacted with propargyl cinnamate to afford the final homopolymer PCTCL133 using click chemistry 45. (Propargyl cinnamate was synthesized from propargyl alcohol and cinnamoyl chloride.) The 1H NMR spectrum of propargyl cinnamate is shown in Fig. 1c. By comparing the peak area of m (4.85 ppm) derived from propargyl alcohol and n (6.51 ppm) derived from cinnamoyl chloride, we can conclude that the product was of high purity.
The chemical composition of the final PCTCL133 homopolymer, was confirmed by 1H NMR spectroscopy. The 1H NMR spectra of PCTCL133 and its precursors are shown in Fig. 1. After click reaction with propargyl cinnamate, the proton a' (t, OCH2) on P(N3CL) shifted from 4.20 to 4.08 ppm (a'') (see Fig. 1a–b). Proton f' (t, CHN3CO) shifted from 3.85 to 5.36 ppm (f''). The complete shift indicated a high efficiency of the click reaction. Additionally, the introduction of the propargyl cinnamate to PCTCL caused the proton m (s, OCH) to shift from 4.85 to 5.28 ppm (m'), and the proton k (s, CCH) shifted from 2.53 to 7.88 ppm (k') (Fig. 1a and c). These 1H NMR analyses suggested that the final PCTCL133 was well-defined, and that the synthetic procedures were well-controlled.
The statistical copolymer, P(CL156-stat-CTCL28), was synthesized according to the same protocol as was used for the PCTCL133 synthesis, as described above (see Scheme S1). The 1H NMR spectra of P[CL156-stat-(N3CL)28] and P(CL156-stat-CTCL28) are shown in Fig. 2. Functionalization caused a change in the chemical shift of the protons adjacent to oxygen (h) from 4.20 to 4.05 ppm (Fig. 2b), causing these protons to overlap with the existing peak of this chemical shift (a). Similar to PCTCL133, the P[CL156-stat-(N3CL)28] became completely functionalized and formed P(CL156-stat-CTCL28), as shown in Fig. 2a (also see the magnification of the spectrum in Fig. 2a). The degree of polymerization for CTCL monomers was calculated from this analysis and was 28. After functionalization, the molecular weight ratio of PCL segment in the copolymer decreased from 80.4% to 64.9% and the PCTCL segment occupied 35.1% of the total molecular weight in P(CL156-stat-CTCL28).
SEC analysis of P(αClCL)133 and P(N3CL) homopolymers showed similar number-average molecular weights (Mn) and dispersities (Ð), 19700 (Ð = 1.30) and 20300 (Ð = 1.31), respectively (see Fig. S2 (SI)). Compared to the precursors, the molecular weight of the functionalized PCTCL133 significantly increased, while maintaining a relatively low dispersity (Mn = 45400, Ð = 1.36). This was because the overall molecular weight of PCTCL133 is 120% larger than the polymer precursor, P(N3CL)133. These SEC results also confirm that the PCL chains are stable during substitution, and that the ester bonds do not react with azide ions. Similar results were obtained for P(CL156-stat-CTCL28). Details of the final homopolymer and statistical copolymer are shown in Table 1.
Polymer a | Mn b | Ð b | weight ratio (CTCL%) c |
PCTCL133 | 45400 | 1.36 | 100 |
P(CL156-stat-CTCL28) | 27300 | 1.18 | 35.1 |
a The composition of the polymer was determined by 1H NMR. b Mn and Ð were determined by SEC. c The weight ratio equals to molecular weight percentage of CTCL. |
The functionalization of the homopolymer and the statistical copolymer was also characterized using FT-IR spectroscopy (see Fig. S3 (SI)). Propargyl cinnamate exhibited an absorbance at 1632 cm−1 which corresponds to the double bond that is conjugated with the carbonyl group. The sharp peak at 2127 cm−1 was ascribed to the alkynyl group.The azide side group P(N3CL) exhibited a strong absorbance at 2113 cm−1 (see Fig. S3b)52, 53. The absorbance of the carbonyl group in this polymer was 35 cm−1 higher than that of propargyl cinnamate (1747 cm−1 in comparison to 1712 cm−1, respectively). This is because the carbonyl group on propargyl cinnamate is conjugated with double bond and the benzene ring. After the click reaction, both the absorbance of the azide group on P(N3CL) and the propargyl group on propargyl cinnamate disappeared. As expected, a peak at 1632 cm−1 remained. This peak corresponds to the double bond introduced from propargyl cinnamate to PCTCL (see Fig. S3c). This indicated that the efficiency of the click reaction was high and all azide groups in P(N3CL) were consumed.However, the absorbance of carbonyl groups was the same after click reaction because the reaction did not change the chemical environment of carbonyl groups from propargyl cinnamate.
Differential scanning calorimetry (DSC) was used to assess the thermal properties of the final PCTCL133 and P(CL156-stat-CTCL28)50. P(CL156-stat-CTCL28) exhibits a melting point of 59.2 ℃. PCTCL133 is an amorphous polymer with a glass transition temperature (Tg) of 53.7 ℃ under a heating rate of 10 ℃∙ min−1. In contrast to crystallizable PCL, the amorphous PCTCL with a moderate Tg is desired for further processing of the polymer.
In summary, well-defined PCTCL133 and P(CL156-stat-CTCL28) were synthesized and characterized. In the next section, films of these polymer were subsequently prepared and successfully cross-linked using UV irradiation.
Polymer films were prepared from PCTCL133 homopolymer and P(CL156-stat-CTCL28) by solution casting (see Scheme S2 (SI)). First, a polymer solution (50 mg∙mL−1) was prepared from either the homopolymer or the statistical copolymer in THF. This solution was spread onto a Teflon plate, and was allowed to evaporate until a polymer film of ~0.2 mm was formed. Subsequently, residual organic solvent was removed from the polymer film in vacuo at 40 ℃ for 12 h. The obtained PCTCL133 film appeared transparent, which is likely because of its amorphous character; and the P(CL156-stat-CTCL28) film appeared translucent, which is likely because of the crystalline PCL segments (see Fig. 3a–b). Finally, both polymer films were cross-linked. Irradiation from an 800 W UV lamp caused the cinnamate groups to react with each other. After 1 h of irradiation, the films were immersed in THF and shaken periodically to investigate if they became insoluble. In contrast to the un-cross-linked films, which dissolved after several minutes, the cross-linked films remained undissolved for more than 24 h (Fig. 3c–d). This indicated that both cross-linked films formed stable polymer networks. Furthermore, the shapes of the polymer films were perceived, indicating that the chemical networks were pretty tough. Additionally, both cross-linked films remained relatively unswollen, indicating a high cross-linking density.
These observations from the cross-linked films suggest that cinnamate can efficiently be used as a photocross-linkable group. However, it was noticed that the volume of the P(CL156-stat-CTCL28) film reduced and that the color of the solvent turned light brown, as shown in Fig. 3d. SEC analysis confirmed that a significant amount of dissolved P(CL156-stat-CTCL28) copolymer was present in the THF solution (see Fig. S4 (SI)). In contrast, no dissolved homopolymer was observed in the corresponding solvent phase of the PCTCL133 film in THF. This indicates that this homopolymer film was completely cross-linked. The lower degree of cross-linking of the P(CL156-stat-CTCL28) film likely relates to the crystallizable PCL segments. These segments were responsible for the translucent character of the copolymer film, resulting in less efficient UV-cross-linking reactions in the bulk of this dense film. This suggests that ultrathin P(CL156-stat-CTCL28) films, or nano-objects (such as polymersomes and micelles), can be more efficiently cross-linked than the assessed film which had a thickness of 0.2 mm. Furthermore, these experiments suggest that the cross-linking efficiency of dense films (or bulk materials) can be increased by increasing the fraction of PCTCL in this copolymer.
The degradable character of the cross-linked and un-cross-linked PCTCL133 film was assessed. Both films were submerged in a 0.12 mol∙L−1 HCl/THF solution. The un-cross-linked film degraded within 2 h, and the cross-linked film degraded in 36 h. In this way, the degradation rate dropped by more than 94.4% after 1 h of UV irradiation. SEC analysis further confirmed the required degradation time of the PCTCL133 films, since no polymer peaks were visible at the original retention time of this polymer 50. The appearance of low molecular weight peaks in the SEC chromatogram indicated that the degradation products were small molecules. Another indication regarding the size of the degraded material was that it could pass through a 0.22 μm filter without any resistance. These two aspects suggest that the cross-linked PCTCL film was degraded. The degradation rate of the cross-linked PCTCL film under acidic conditions is significantly decreased after photocross-linking. It is likely that this is related to the high cross-linking density of this material, which reduces the permeability of this film. Degradation likely occurs gradually from the surface to the center of this material. SEC analysis of the degraded polymer solution indicated solely the presence of small molecules. These data indicate that the PCTCL133 film remained completely degradable, even after photocross-linking. A possible chemical structure of the cross-linked polymeric network and its small molecule degradation products are shown in Scheme S3 (SI).
TGA analysis of the un-cross-linked and cross-linked PCTCL133 films indicated a similar thermal degradation profile (see Fig. S5 (SI)), despite the large differences observed in the previously-discussed acidic degradation experiments. The TGA data seems to imply that thermal degradation occurs as a two-stage process with onset temperatures at ca. 350 and 520 ℃ respectively.
Finally, the cross-linking density of the homopolymer film was determined. This was assessed by determining the conversion of the double bond of the cinnamate group by 1H NMR analysis, the signal of which appears at 6.45 ppm. More specifically, the degradation products from the acidic degradation of the cross-linked PCTCL133 was examined and compared to un-cross-linked sample to evaluate the relative drop of this proton signal, which indicated 43% conversion of the cinnamate group after 1 h of UV irradiation, and 49% conversion after 2 h of irradiation. Here it is important to point out that this reduction in peak area arises from both intermolecular and intramolecular cycloaddition reactions. Fig. 4 shows the 1H NMR spectrum of the degraded film that was cross-linked by UV irradiation for 2 h. However, the cinnamate functional group cannot be completely cross-linked since the [2 + 2] cycloaddition of cinnamamide, or cinnamate, is reversible 48. Despite this limitation, the cinnamate conversion is sufficiently high for the preparation of a variety of cross-linked materials. Additionally, the emerging signal of the carboxylic acid protons (9.94 ppm) is also a strong evidence for catalyzed degradation. Eventually, the films are able to degrade to products with molecular weights no more than 300 g∙mol−1 (see Scheme S3 for the chemical structures of the most likely degradation products).
We have previously demonstrated the enzymatic and acidic biodegradation of membrane-cross-linked PCTCL-based polymersomes in water50. These studies imply that the herein reported PCTCL-based films are also biodegradable.Additionally, the degradation rate of the polymer film can be effectively tuned by varying the cross-linking density. Furthermore, film transparency and other properties can be altered by copolymerizing various amounts of caprolactone. These aspects can be used as handles to tune the characteristics of the polymer film, hence guaranteeing the diversity of PCTCL-based films for a broad range of applications.
Mechanical strength is an important factor regarding the applicability of polymer films. Herein, we used molecular dynamics (MD) simulations to evaluate the influence of the polymer concentration of the initial solution where the films were casted from. Polymer concentration dictates chain entanglement. A low polymer concentration supports a coiled polymer chain arrangement (with predominantly intramolecular interactions), whereas an increased amount of polymer leads to chain entanglements (or intermolecular interactions). More entanglements should lead to an enhanced mechanical strength 54.
The actual MD simulations were performed on different amorphous cells each consisting of 5 PCTCL10 with various initial distances between the chains (corresponding to the packing density/concentration of the initial polymer solutions, see Fig. S6 (SI)). First, the average total energy in each system was obtained based on six possible cells corresponding to each density (see Fig. S7 (SI)). As expected, the total energy significantly increased with the polymer packing density/concentration; except for the samples with densities less than 0.1 g∙cm−3. (These samples likely correspond to the lower concentration limit where intermolecular interactions can be neglected.) Secondly, the preparation of polymer films was simulated with stepwise dynamics simulations based on the ensembles of NVT (constant volume, constant temperature) and NPT (constant pressure, constant temperature), respectively. This simulates the progressively increased polymer packing as a result of solvent evaporation. These simulations were conducted at room temperature (298 K). With an additional NPT dynamics simulations at 101.3 kPa, the final densities of all evaluated cells reached an average value of 1.16 ± 0.01 g∙cm−3. Thirdly, the Young's moduli of the cells in their final state was investigated (see Fig. S8 (SI)). As expected, the average value of the Young's moduli increased with the initial density of each amorphous cell that was used in dynamics simulations. This suggests that tougher films will be produced by solution casting when increasing the initial polymer concentration. Because the actual size and total number of chains in practice are much larger than in our simulations, the influence of initial concentration on the mechanical strength of the final films can be more pronounced. Indeed, this initial polymer concentration for solution casting can be used as another handle to conveniently tune the physical characteristics of the polymer film.
In summary, we prepared two photocross-linkable, yet biodegradable, polymer films from PCTCL133 and P(CL156-stat-CTCL28). The main results are concluded as follows: (1) the polymers of PCTCL133 and P(CL156-stat-CTCL28) were synthesized and the chemical structures were confirmed; (2) polymer films were prepared from these two polymers via solution casting. Cross-linking of these polymer films was achieved by photocross-linking of the cinnamate groups. The homopolymer film appeared transparent and the copolymer film was translucent, which is likely because of the impediment of its crystalline structure; (3) The cross-linked polymer films can be completely degraded with acid. Through control over the cross-linking density or by copolymerization with PCL, the degradation rate of the films can be altered. Therefore, these polymer films can be easily modified to meet the specific demands for future applications. Additionally, the cross-linkable, yet biodegradable, structure of these films could be extended for the preparation of hydrogels and functional coatings. Overall, the easily adjustable structure makes these PCTCL-based films promising for a range of (biomedical) applications.
Cheng, C.; Sun, S. D.; Zhao, C. S. J. Mater. Chem. B 2014, 2, 7649. doi: 10.1039/c4tb01390e
doi: 10.1039/c4tb01390e
Chen, X. Y.; Li, J. S. Mater. Chem. Front. 2020, 4, 750. doi: 10.1039/c9qm00717b
doi: 10.1039/c9qm00717b
Tharanathan, R. N. Trends Food Sci. Technol. 2003, 14, 71. doi: 10.1016/S0924-2244(02)00280-7
doi: 10.1016/S0924-2244(02)00280-7
Bao, Q. Y.; Braun, S.; Wang, C. F.; Liu, X. J.; Fahlman, M. Adv. Mater. Interfaces 2019, 6, 1800897. doi: 10.1002/admi.201800897
doi: 10.1002/admi.201800897
Pandey, P.; Chauhan, R. S. Prog. Polym. Sci. 2001, 26, 853. doi: 10.1016/S0079-6700(01)00009-0
doi: 10.1016/S0079-6700(01)00009-0
Reddy, N.; Reddy, R.; Jiang, Q. R. Trends Biotechnol. 2015, 33, 362. doi: 10.1016/j.tibtech.2015.03.008
doi: 10.1016/j.tibtech.2015.03.008
Rhim, J. W.; Ng, P. K. W. Crit. Rev. Food Sci. Nutr. 2007, 47, 411. doi: 10.1080/10408390600846366
doi: 10.1080/10408390600846366
Feng, C.; Huang, X. Y. Acc. Chem. Res. 2018, 51, 2314. doi: 10.1021/acs.accounts.8b00307
doi: 10.1021/acs.accounts.8b00307
Xu, B. B.; Feng, C.; Hu, J. H.; Shi, P.; Gu, G. X.; Wang, L.; Huang, X. Y. ACS Appl. Mater. Interfaces 2016, 8, 6685. doi: 10.1021/acsami.5b12820
doi: 10.1021/acsami.5b12820
Xu, B. B.; Liu, Y. J.; Sun, X. W.; Hu, J. H.; Shi, P.; Huang, X. Y. ACS Appl. Mater. Interfaces 2017, 9, 16517. doi: 10.1021/acsami.7b03258
doi: 10.1021/acsami.7b03258
Sionkowska, A. Prog. Polym. Sci. 2011, 36, 1254. doi: 10.1016/j.progpolymsci.2011.05.003
doi: 10.1016/j.progpolymsci.2011.05.003
Baroli, B. J. Biomed. Nanotechnol. 2010, 6, 485. doi: 10.1166/jbn.2010.1147
doi: 10.1166/jbn.2010.1147
Chandra, R.; Rustgi, R. Prog. Polym. Sci. 1998, 23, 1273. doi: 10.1016/S0079-6700(97)00039-7
doi: 10.1016/S0079-6700(97)00039-7
Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. Biomaterials 2003, 24, 801. doi: 10.1016/S0142-9612(02)00370-8
doi: 10.1016/S0142-9612(02)00370-8
Chen, L. S.; Hong, Y. X.; He, S. S.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1910059.
doi: 10.3866/PKU.WHXB201910059
Song, T.; Xi, Y. J.; Du, J. Z. Acta Polym. Sin. 2018, No. 1, 119.
doi: 10.11777/j.issn1000-3304.2018.17229
Lo, H. Y.; Kuo, H. T.; Huang, Y. Y. Artif. Organs 2010, 34, 648. doi: 10.1111/j.1525-1594.2009.00949.x
doi: 10.1111/j.1525-1594.2009.00949.x
Shi, D. L.; He, T.; Tang, W. J.; Li, H. Z.; Wang, C.; Zheng, M. Z.; Hu, J.; Song, X. H.; Ding, Y. M.; Chen, Y. Y.; et al. Neurosci. Lett. 2019, 694, 161. doi: 10.1016/j.neulet.2018.12.006
doi: 10.1016/j.neulet.2018.12.006
Zhang, Q.; Jiang, Y.; Zhang, Y.; Ye, Z.; Tan, W.; Lang, M. Polym. Degrad. Stab. 2013, 98, 209. doi: 10.1016/j.polymdegradstab.2012.10.008
doi: 10.1016/j.polymdegradstab.2012.10.008
Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y. Biomaterials 2006, 27, 1735. doi: 10.1016/j.biomaterials.2005.09.019
doi: 10.1016/j.biomaterials.2005.09.019
Zou, Y. J.; He, S. S.; Du, J. Z. Chin. J. Polym. Sci. 2018, 36, 1239. doi: 10.1007/s10118-018-2156-1
doi: 10.1007/s10118-018-2156-1
Liu, G. J.; Ding, J. F.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S. Chem. Mater. 1999, 11, 2233. doi: 10.1021/cm990184k
doi: 10.1021/cm990184k
Liao, Y. Y.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1912053.
doi: 10.3866/PKU.WHXB201912053
Yuan, K.; Zhou, X.; Du, J. Z. Acta Phys. -Chim. Sin. 2017, 33, 656.
doi: 10.3866/PKU.WHXB201701162
Xiao, Y. F.; Sun, H.; Du, J. Z. J. Am. Chem. Soc. 2017, 139, 7640. doi: 10.1021/jacs.7b03219
doi: 10.1021/jacs.7b03219
Groschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Muller, A. H. E. Nat. Commun. 2012, 3, 710. doi: 10.1038/ncomms1707
doi: 10.1038/ncomms1707
Du, J. Z.; Chen, Y. M.; Zhang, Y. H.; Han, C. C.; Fischer, K.; Schmidt, M. J. Am. Chem. Soc. 2003, 125, 14710. doi: 10.1021/ja0368610
doi: 10.1021/ja0368610
Qin, J. L.; Jiang, X. B.; Gao, L.; Chen, Y. M.; Xi, F. Macromolecules 2010, 43, 8094. doi: 10.1021/ma101639w
doi: 10.1021/ma101639w
Peng, B.; Liu, Y.; Shi, Y.; Li, Z. B.; Chen, Y. M. Soft Matter 2012, 8, 12002. doi: 10.1039/c2sm26638e
doi: 10.1039/c2sm26638e
Pitt, C. G.; Hendren, R. W.; Schindler, A.; Woodward, S. C. J. Controlled Release 1984, 1, 3. doi: 10.1016/0168-3659(84)90016-6
doi: 10.1016/0168-3659(84)90016-6
Shen, J. Y.; Pan, X. Y.; Lim, C. H.; Chan-Park, M. B.; Zhu, X.; Beuerman, R. W. Biomacromolecules 2007, 8, 376. doi: 10.1021/bm060766c
doi: 10.1021/bm060766c
Gunatillake, P. A.; Adhikari, R. Eur. Cells Mater. 2003, 5, 1. doi: 10.22203/ecm.v005a01
doi: 10.22203/ecm.v005a01
Kamada, J.; Koynov, K.; Corten, C.; Juhari, A.; Yoon, J. A.; Urban, M. W.; Balazs, A. C.; Matyjaszewski, K. Macromolecules 2010, 43, 4133. doi: 10.1021/ma100365n
doi: 10.1021/ma100365n
Tsarevsky, N. V.; Matyjaszewski, K. Macromolecules 2005, 38, 3087. doi: 10.1021/ma050020r
doi: 10.1021/ma050020r
Jiang, X. B.; Chen, Y. M.; Xi, F. Macromolecules 2010, 43, 7056. doi: 10.1021/ma101460n
doi: 10.1021/ma101460n
Wiltshire, J. T.; Qiao, G. G. Macromolecules 2006, 39, 9018. doi: 10.1021/ma0622027
doi: 10.1021/ma0622027
Wiltshire, J. T.; Qiao, G. G. Macromolecules 2006, 39, 4282. doi: 10.1021/ma060712v
doi: 10.1021/ma060712v
Deng, G. H.; Tang, C. M.; Li, F. Y.; Jiang, H. F.; Chen, Y. M. Macromolecules 2010, 43, 1191. doi: 10.1021/ma9022197
doi: 10.1021/ma9022197
Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Angew. Chem., Int. Ed. 2012, 51, 1138. doi: 10.1002/anie.201104069
doi: 10.1002/anie.201104069
Haraguchi, K.; Uyama, K.; Tanimoto, H. Macromol. Rapid Commun. 2011, 32, 1253. doi: 10.1002/marc.201100248
doi: 10.1002/marc.201100248
Du, H.; Zha, G. Y.; Gao, L. L.; Wang, H.; Li, X. D.; Shen, Z. Q.; Zhu, W. P. Polym. Chem. 2014, 5, 4002. doi: 10.1039/c4py00030g
doi: 10.1039/c4py00030g
Atzet, S.; Curtin, S.; Trinh, P.; Bryant, S.; Ratner, B. Biomacromolecules 2008, 9, 3370. doi: 10.1021/bm800686h
doi: 10.1021/bm800686h
Darwis, D.; Mitomo, H.; Yoshii, F. Polym. Degrad. Stab. 1999, 65, 279. doi: 10.1016/S0141-3910(99)00017-8
doi: 10.1016/S0141-3910(99)00017-8
Defize, T.; Riva, R.; Raquez, J.-M.; Dubois, P.; Jérôme, C.; Alexandre, M. Macromol. Rapid Commun. 2011, 32, 1264. doi: 10.1002/marc.201100250
doi: 10.1002/marc.201100250
Riva, R.; Schmeits, S.; Stoffelbach, F.; Jérôme, C.; Jérôme, R.; Lecomte, P. Chem. Commun. 2005, No. 42, 5334. doi: 10.1039/b510282k
doi: 10.1039/b510282k
Chiu, F. C.; Wang, S. W.; Peng, K. Y.; Lee, R. S. Polymer 2012, 53, 3476. doi: 10.1016/j.polymer.2012.06.004
doi: 10.1016/j.polymer.2012.06.004
Gupta, P.; Trenor, S. R.; Long, T. E.; Wilkes, G. L. Macromolecules 2004, 37, 9211. doi: 10.1021/ma048844g
doi: 10.1021/ma048844g
Rochette, J. M.; Ashby, V. S. Macromolecules 2013, 46, 2134. doi: 10.1021/ma302354a
doi: 10.1021/ma302354a
Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J. M.; Rogers, A. E.; Saurat, J. H.; Sipes, I. G.; Tagami, H. Food Chem. Toxicol. 2007, 45, S1. doi: 10.1016/j.fct.2007.09.087
doi: 10.1016/j.fct.2007.09.087
Chen, S.; Qin, J. L.; Du, J. Z. Macromolecules 2020, 53, 3978. doi: 10.1021/acs.macromol.0c00252
doi: 10.1021/acs.macromol.0c00252
Lenoir, S.; Riva, R.; Lou, X.; Detrembleur, C.; Jérôme, R.; Lecomte, P. Macromolecules 2004, 37, 4055. doi: 10.1021/ma035003l
doi: 10.1021/ma035003l
Chen, J. C.; Liu, M. Z.; Gong, H. H.; Huang, Y. J.; Chen, C. J. Phys. Chem. B 2011, 115, 14947. doi: 10.1021/jp208494w
doi: 10.1021/jp208494w
Cintas, P.; Barge, A.; Tagliapietra, S.; Boffa, L.; Cravotto, G. Nat. Protoc. 2010, 5, 607. doi: 10.1038/nprot.2010.1
doi: 10.1038/nprot.2010.1
Ge, T.; Pierce, F.; Perahia, D.; Grest, G. S.; Robbins, M. O. Phys. Rev. Lett. 2013, 110, 098301. doi: 10.1103/PhysRevLett.110.098301
doi: 10.1103/PhysRevLett.110.098301
Cheng, C.; Sun, S. D.; Zhao, C. S. J. Mater. Chem. B 2014, 2, 7649. doi: 10.1039/c4tb01390e
doi: 10.1039/c4tb01390e
Chen, X. Y.; Li, J. S. Mater. Chem. Front. 2020, 4, 750. doi: 10.1039/c9qm00717b
doi: 10.1039/c9qm00717b
Tharanathan, R. N. Trends Food Sci. Technol. 2003, 14, 71. doi: 10.1016/S0924-2244(02)00280-7
doi: 10.1016/S0924-2244(02)00280-7
Bao, Q. Y.; Braun, S.; Wang, C. F.; Liu, X. J.; Fahlman, M. Adv. Mater. Interfaces 2019, 6, 1800897. doi: 10.1002/admi.201800897
doi: 10.1002/admi.201800897
Pandey, P.; Chauhan, R. S. Prog. Polym. Sci. 2001, 26, 853. doi: 10.1016/S0079-6700(01)00009-0
doi: 10.1016/S0079-6700(01)00009-0
Reddy, N.; Reddy, R.; Jiang, Q. R. Trends Biotechnol. 2015, 33, 362. doi: 10.1016/j.tibtech.2015.03.008
doi: 10.1016/j.tibtech.2015.03.008
Rhim, J. W.; Ng, P. K. W. Crit. Rev. Food Sci. Nutr. 2007, 47, 411. doi: 10.1080/10408390600846366
doi: 10.1080/10408390600846366
Feng, C.; Huang, X. Y. Acc. Chem. Res. 2018, 51, 2314. doi: 10.1021/acs.accounts.8b00307
doi: 10.1021/acs.accounts.8b00307
Xu, B. B.; Feng, C.; Hu, J. H.; Shi, P.; Gu, G. X.; Wang, L.; Huang, X. Y. ACS Appl. Mater. Interfaces 2016, 8, 6685. doi: 10.1021/acsami.5b12820
doi: 10.1021/acsami.5b12820
Xu, B. B.; Liu, Y. J.; Sun, X. W.; Hu, J. H.; Shi, P.; Huang, X. Y. ACS Appl. Mater. Interfaces 2017, 9, 16517. doi: 10.1021/acsami.7b03258
doi: 10.1021/acsami.7b03258
Sionkowska, A. Prog. Polym. Sci. 2011, 36, 1254. doi: 10.1016/j.progpolymsci.2011.05.003
doi: 10.1016/j.progpolymsci.2011.05.003
Baroli, B. J. Biomed. Nanotechnol. 2010, 6, 485. doi: 10.1166/jbn.2010.1147
doi: 10.1166/jbn.2010.1147
Chandra, R.; Rustgi, R. Prog. Polym. Sci. 1998, 23, 1273. doi: 10.1016/S0079-6700(97)00039-7
doi: 10.1016/S0079-6700(97)00039-7
Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. Biomaterials 2003, 24, 801. doi: 10.1016/S0142-9612(02)00370-8
doi: 10.1016/S0142-9612(02)00370-8
Chen, L. S.; Hong, Y. X.; He, S. S.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1910059.
doi: 10.3866/PKU.WHXB201910059
Song, T.; Xi, Y. J.; Du, J. Z. Acta Polym. Sin. 2018, No. 1, 119.
doi: 10.11777/j.issn1000-3304.2018.17229
Lo, H. Y.; Kuo, H. T.; Huang, Y. Y. Artif. Organs 2010, 34, 648. doi: 10.1111/j.1525-1594.2009.00949.x
doi: 10.1111/j.1525-1594.2009.00949.x
Shi, D. L.; He, T.; Tang, W. J.; Li, H. Z.; Wang, C.; Zheng, M. Z.; Hu, J.; Song, X. H.; Ding, Y. M.; Chen, Y. Y.; et al. Neurosci. Lett. 2019, 694, 161. doi: 10.1016/j.neulet.2018.12.006
doi: 10.1016/j.neulet.2018.12.006
Zhang, Q.; Jiang, Y.; Zhang, Y.; Ye, Z.; Tan, W.; Lang, M. Polym. Degrad. Stab. 2013, 98, 209. doi: 10.1016/j.polymdegradstab.2012.10.008
doi: 10.1016/j.polymdegradstab.2012.10.008
Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y. Biomaterials 2006, 27, 1735. doi: 10.1016/j.biomaterials.2005.09.019
doi: 10.1016/j.biomaterials.2005.09.019
Zou, Y. J.; He, S. S.; Du, J. Z. Chin. J. Polym. Sci. 2018, 36, 1239. doi: 10.1007/s10118-018-2156-1
doi: 10.1007/s10118-018-2156-1
Liu, G. J.; Ding, J. F.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S. Chem. Mater. 1999, 11, 2233. doi: 10.1021/cm990184k
doi: 10.1021/cm990184k
Liao, Y. Y.; Fan, Z.; Du, J. Z. Acta Phys. -Chim. Sin. 2020, 36, 1912053.
doi: 10.3866/PKU.WHXB201912053
Yuan, K.; Zhou, X.; Du, J. Z. Acta Phys. -Chim. Sin. 2017, 33, 656.
doi: 10.3866/PKU.WHXB201701162
Xiao, Y. F.; Sun, H.; Du, J. Z. J. Am. Chem. Soc. 2017, 139, 7640. doi: 10.1021/jacs.7b03219
doi: 10.1021/jacs.7b03219
Groschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Muller, A. H. E. Nat. Commun. 2012, 3, 710. doi: 10.1038/ncomms1707
doi: 10.1038/ncomms1707
Du, J. Z.; Chen, Y. M.; Zhang, Y. H.; Han, C. C.; Fischer, K.; Schmidt, M. J. Am. Chem. Soc. 2003, 125, 14710. doi: 10.1021/ja0368610
doi: 10.1021/ja0368610
Qin, J. L.; Jiang, X. B.; Gao, L.; Chen, Y. M.; Xi, F. Macromolecules 2010, 43, 8094. doi: 10.1021/ma101639w
doi: 10.1021/ma101639w
Peng, B.; Liu, Y.; Shi, Y.; Li, Z. B.; Chen, Y. M. Soft Matter 2012, 8, 12002. doi: 10.1039/c2sm26638e
doi: 10.1039/c2sm26638e
Pitt, C. G.; Hendren, R. W.; Schindler, A.; Woodward, S. C. J. Controlled Release 1984, 1, 3. doi: 10.1016/0168-3659(84)90016-6
doi: 10.1016/0168-3659(84)90016-6
Shen, J. Y.; Pan, X. Y.; Lim, C. H.; Chan-Park, M. B.; Zhu, X.; Beuerman, R. W. Biomacromolecules 2007, 8, 376. doi: 10.1021/bm060766c
doi: 10.1021/bm060766c
Gunatillake, P. A.; Adhikari, R. Eur. Cells Mater. 2003, 5, 1. doi: 10.22203/ecm.v005a01
doi: 10.22203/ecm.v005a01
Kamada, J.; Koynov, K.; Corten, C.; Juhari, A.; Yoon, J. A.; Urban, M. W.; Balazs, A. C.; Matyjaszewski, K. Macromolecules 2010, 43, 4133. doi: 10.1021/ma100365n
doi: 10.1021/ma100365n
Tsarevsky, N. V.; Matyjaszewski, K. Macromolecules 2005, 38, 3087. doi: 10.1021/ma050020r
doi: 10.1021/ma050020r
Jiang, X. B.; Chen, Y. M.; Xi, F. Macromolecules 2010, 43, 7056. doi: 10.1021/ma101460n
doi: 10.1021/ma101460n
Wiltshire, J. T.; Qiao, G. G. Macromolecules 2006, 39, 9018. doi: 10.1021/ma0622027
doi: 10.1021/ma0622027
Wiltshire, J. T.; Qiao, G. G. Macromolecules 2006, 39, 4282. doi: 10.1021/ma060712v
doi: 10.1021/ma060712v
Deng, G. H.; Tang, C. M.; Li, F. Y.; Jiang, H. F.; Chen, Y. M. Macromolecules 2010, 43, 1191. doi: 10.1021/ma9022197
doi: 10.1021/ma9022197
Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Angew. Chem., Int. Ed. 2012, 51, 1138. doi: 10.1002/anie.201104069
doi: 10.1002/anie.201104069
Haraguchi, K.; Uyama, K.; Tanimoto, H. Macromol. Rapid Commun. 2011, 32, 1253. doi: 10.1002/marc.201100248
doi: 10.1002/marc.201100248
Du, H.; Zha, G. Y.; Gao, L. L.; Wang, H.; Li, X. D.; Shen, Z. Q.; Zhu, W. P. Polym. Chem. 2014, 5, 4002. doi: 10.1039/c4py00030g
doi: 10.1039/c4py00030g
Atzet, S.; Curtin, S.; Trinh, P.; Bryant, S.; Ratner, B. Biomacromolecules 2008, 9, 3370. doi: 10.1021/bm800686h
doi: 10.1021/bm800686h
Darwis, D.; Mitomo, H.; Yoshii, F. Polym. Degrad. Stab. 1999, 65, 279. doi: 10.1016/S0141-3910(99)00017-8
doi: 10.1016/S0141-3910(99)00017-8
Defize, T.; Riva, R.; Raquez, J.-M.; Dubois, P.; Jérôme, C.; Alexandre, M. Macromol. Rapid Commun. 2011, 32, 1264. doi: 10.1002/marc.201100250
doi: 10.1002/marc.201100250
Riva, R.; Schmeits, S.; Stoffelbach, F.; Jérôme, C.; Jérôme, R.; Lecomte, P. Chem. Commun. 2005, No. 42, 5334. doi: 10.1039/b510282k
doi: 10.1039/b510282k
Chiu, F. C.; Wang, S. W.; Peng, K. Y.; Lee, R. S. Polymer 2012, 53, 3476. doi: 10.1016/j.polymer.2012.06.004
doi: 10.1016/j.polymer.2012.06.004
Gupta, P.; Trenor, S. R.; Long, T. E.; Wilkes, G. L. Macromolecules 2004, 37, 9211. doi: 10.1021/ma048844g
doi: 10.1021/ma048844g
Rochette, J. M.; Ashby, V. S. Macromolecules 2013, 46, 2134. doi: 10.1021/ma302354a
doi: 10.1021/ma302354a
Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J. M.; Rogers, A. E.; Saurat, J. H.; Sipes, I. G.; Tagami, H. Food Chem. Toxicol. 2007, 45, S1. doi: 10.1016/j.fct.2007.09.087
doi: 10.1016/j.fct.2007.09.087
Chen, S.; Qin, J. L.; Du, J. Z. Macromolecules 2020, 53, 3978. doi: 10.1021/acs.macromol.0c00252
doi: 10.1021/acs.macromol.0c00252
Lenoir, S.; Riva, R.; Lou, X.; Detrembleur, C.; Jérôme, R.; Lecomte, P. Macromolecules 2004, 37, 4055. doi: 10.1021/ma035003l
doi: 10.1021/ma035003l
Chen, J. C.; Liu, M. Z.; Gong, H. H.; Huang, Y. J.; Chen, C. J. Phys. Chem. B 2011, 115, 14947. doi: 10.1021/jp208494w
doi: 10.1021/jp208494w
Cintas, P.; Barge, A.; Tagliapietra, S.; Boffa, L.; Cravotto, G. Nat. Protoc. 2010, 5, 607. doi: 10.1038/nprot.2010.1
doi: 10.1038/nprot.2010.1
Ge, T.; Pierce, F.; Perahia, D.; Grest, G. S.; Robbins, M. O. Phys. Rev. Lett. 2013, 110, 098301. doi: 10.1103/PhysRevLett.110.098301
doi: 10.1103/PhysRevLett.110.098301
Xiang Wang , Qingping Song , Zixiang He , Gong Zhang , Tengfei Miao , Xiaoxiao Cheng , Wei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Xiaobo Li , Qunyan Wu , Congzhi Wang , Jianhui Lan , Meng Zhang , Weiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Lingfeng Zheng , Chengyuan Lv , Wenlin Cai , Qingze Pan , Zuokai Wang , Wenkai Liu , Jiangli Fan , Xiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
Jianing He , Xiao Wang , Zijian Wang , Ruize Jiang , Ke Wang , Rui Zhang , Huilin Wang , Baokang Geng , Hongyi Gao , Shuyan Song , Hongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640
Haowen Shang , Yujie Yang , Bingjie Xue , Yikai Wang , Zhiyi Su , Wenlong Liu , Youzhi Wu , Xinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401