Citation: Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200505. doi: 10.3866/PKU.WHXB202005054 shu

Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte

  • Corresponding author: Huachao Yang, huachao@zju.edu.cn
  • Received Date: 21 May 2020
    Revised Date: 16 June 2020
    Accepted Date: 1 July 2020
    Available Online: 3 July 2020

    Fund Project: the National Natural Science Foundation of China 51722604the Zhejiang Provincial Natural Science Foundation of China LR17E060002the Key R & D Program of Zhejiang Province, China 2019C01044the China Postdoctoral Science Foundation 2019M662048

  • Supercapacitors that can withstand extremely low temperatures have become desirable in applications including portable electronic devices, hybrid electric vehicles, and renewable energy conversion systems. Graphene is considered as a promising electrode material for supercapacitors owing to its high specific surface area (up to 2675 m2·g-1) and electrical conductivity (approximately 2 × 102 S·m-1). However, the restacking of graphene sheets decreases the accessible surface area, reduces the ion diffusion rate and prolongs the ion transport pathways, thereby limiting the energy storage performance at low temperatures (typically < 100 F·g-1 at sub-zero temperatures). Herein, we fabricate a supercapacitor based on holey graphene and mixed-solvent organic electrolyte for ultra-low-temperature applications (e.g., -60 ℃). Reduced holey graphene oxide (rHGO) was synthesized as the electrode material via an oxidative-etching process with H2O2. Methyl formate was mixed with propylene carbonate to improve the electrolyte conductivity at temperatures ranging from -60 to 25 ℃. The as-fabricated supercapacitor showed a high room-temperature capacitance of 150.5 F·g-1 at 1 A·g-1, which was almost 1.5 times greater than that of the supercapacitor using untreated reduced graphene oxide (rGO; 101.4 F·g-1). The improved capacitance could be attributed to the increased accessible surface rendered by the abundant mesopores and macropores on the holey surface. As the temperature decreased to -60 ℃, the rHGO supercapacitor still delivered a high capacitance of 106.2 F·g-1 with a retention of 70.6%, which was superior to other state-of-the-art graphene-based supercapacitors. Electrochemical impedance spectra tests revealed that the ion diffusion resistance in rHGO was significantly smaller than that in rGO and less influenced by temperature with a lower activation energy. This was because the holey morphology can provide transport pathways for ions and reduce the ion diffusion length during charging/discharging, consequently diminishing the diffusion resistance at low temperatures. Specifically, at -60 ℃, the energy density of supercapacitor reached up to 26.9 Wh·kg-1 at 1 A·g-1 with a maximum power density of 18.7 kW·kg-1 at 20 A·g-1, surpassing the low-temperature performance of conventional carbon-based supercapacitors. Moreover, after 10000 cycles at -60 ℃ with a current density of 5 A·g-1, 89.1% of capacitance was retained, suggesting the stable and reliable power output of the current supercapacitor at extremely low temperatures.
  • 加载中
    1. [1]

      Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/B813846J  doi: 10.1039/B813846J

    2. [2]

      Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297  doi: 10.1038/nmat2297

    3. [3]

      Simon, P.; Gogotsi, Y. Acc. Chem. Res. 2013, 46, 1094. doi: 10.1021/ar200306b  doi: 10.1021/ar200306b

    4. [4]

      Huang, P.; Pech, D.; Lin, R.; Mcdonough, J. K.; Brunet, M.; Taberna, P.; Gogotsi, Y.; Simon, P. Electrochem. Commun. 2013, 36, 53. doi: 10.1016/j.elecom.2013.09.003  doi: 10.1016/j.elecom.2013.09.003

    5. [5]

      Li, X.; Wei, B. Nano Energy 2013, 2, 159. doi: 10.1016/j.nanoen.2012.09.008  doi: 10.1016/j.nanoen.2012.09.008

    6. [6]

      Brandon, E. J.; West, W. C.; Smart, M. C.; Whitcanack, L. D.; Plett, G. A. J. Power Sources 2007, 170, 225. doi: 10.1016/j.jpowsour.2007.04.001  doi: 10.1016/j.jpowsour.2007.04.001

    7. [7]

      Shi, Z.; Yu, X.; Wang, J.; Hu, H.; Wu, C. Electrochim. Acta 2015, 174, 215. doi: 10.1016/j.electacta.2015.05.133  doi: 10.1016/j.electacta.2015.05.133

    8. [8]

      Jänes, A.; Lust, E. J. Electroanal. Chem. 2006, 588, 285. doi: 10.1016/j.jelechem.2006.01.003  doi: 10.1016/j.jelechem.2006.01.003

    9. [9]

      Cheng, F.; Yu, X.; Wang, J.; Shi, Z.; Wu, C. Electrochim. Acta 2016, 200, 106. doi: 10.1016/j.electacta.2016.03.113  doi: 10.1016/j.electacta.2016.03.113

    10. [10]

      Orita, A.; Kamijima, K.; Yoshida, M. J. Power Sources 2010, 195, 7471. doi: 10.1016/j.jpowsour.2010.05.066  doi: 10.1016/j.jpowsour.2010.05.066

    11. [11]

      Anouti, M.; Timperman, L. Phys. Chem. Chem. Phys. 2013, 15, 6539. doi: 10.1039/C3CP44680H  doi: 10.1039/C3CP44680H

    12. [12]

      Ruiz, V.; Huynh, T.; Sivakkumar, S. R.; Pandolfo, A. RSC Adv. 2012, 2, 5591. doi: 10.1039/C2RA20177A  doi: 10.1039/C2RA20177A

    13. [13]

      Lang, J.; Zhang, X.; Liu, L.; Yang, B.; Yang, J.; Yan, X. J. Power Sources 2019, 423, 271. doi: 10.1016/j.jpowsour.2019.03.096  doi: 10.1016/j.jpowsour.2019.03.096

    14. [14]

      Kang, J.; Jayaram, S. H.; Rawlins, J.; Wen, J. Electrochim. Acta 2014, 144, 200. doi: 10.1016/j.electacta.2014.07.158  doi: 10.1016/j.electacta.2014.07.158

    15. [15]

      Korenblit, Y.; Kajdos, A.; West, W. C.; Smart, M. C.; Brandon, E. J.; Kvit, A.; Jagiello, J.; Yushin, G. Adv. Funct. Mater. 2012, 22, 1655. doi: 10.1002/adfm.201102573  doi: 10.1002/adfm.201102573

    16. [16]

      Xu, J.; Yuan, N.; Razal, J. M.; Zheng, Y.; Zhou, X.; Ding, J.; Cho, K.; Ge, S.; Zhang, R.; Gogotsi, Y.; Baughman, R. H. Energy Storage Mater. 2019, 22, 323. doi: 10.1016/j.ensm.2019.02.016  doi: 10.1016/j.ensm.2019.02.016

    17. [17]

      Ye, L.; Liang, Q.; Huang, Z. H.; Lei, Y.; Zhan, C.; Bai, Y.; Li, H.; Kang, F.; Yang, Q. H. J. Mater. Chem. A 2015, 3, 18860. doi: 10.1039/C5TA04581A  doi: 10.1039/C5TA04581A

    18. [18]

      Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q  doi: 10.1021/nl102661q

    19. [19]

      Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. Nat. Mater. 2015, 14, 271. doi: 10.1038/nmat4170  doi: 10.1038/nmat4170

    20. [20]

      Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034  doi: 10.1016/j.carbon.2007.02.034

    21. [21]

      Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 4554. doi: 10.1038/ncomms5554  doi: 10.1038/ncomms5554

    22. [22]

      Lin, Z.; Taberna, P. L.; Simon, P. Electrochim. Acta 2016, 206, 446. doi: 10.1016/j.electacta.2015.12.097  doi: 10.1016/j.electacta.2015.12.097

    23. [23]

      Kang, J.; Atashin, S.; Jayaram, S. H.; Wen, J. Z. Carbon 2017, 111, 338. doi: 10.1016/j.carbon.2016.10.017  doi: 10.1016/j.carbon.2016.10.017

    24. [24]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017  doi: 10.1021/ja01539a017

    25. [25]

      Du, W. S.; Lü, Y. K.; Cai, Z. W.; Zhang, C. Acta Phys. -Chim. Sin. 2017, 33, 1828.  doi: 10.3866/PKU.WHXB201705089

    26. [26]

      Yang, K.; Shuai, X. R.; Yang, H. C.; Yan, J. H.; Cen, K. F. Acta Phys. -Chim. Sin. 2019, 35, 755.  doi: 10.3866/PKU.WHXB201810009

    27. [27]

      Xu, Y.; Chen, C. Y.; Zhao, Z.; Lin, Z.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. Nano Lett. 2015, 15, 4605. doi: 10.1021/acs.nanolett.5b01212  doi: 10.1021/acs.nanolett.5b01212

    28. [28]

      Peng, L.; Fang, Z.; Zhu, Y.; Yan, C.; Yu, G. Adv. Energy Mater. 2018, 8, 1702179. doi: 10.1002/aenm.201702179  doi: 10.1002/aenm.201702179

    29. [29]

      Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214. doi: 10.1103/PhysRevLett.85.5214  doi: 10.1103/PhysRevLett.85.5214

    30. [30]

      Haynes, W. M. CRC Handbook of Chemistry and Physics. 95th ed.; CRC Press: Boca Raton, 2014.

    31. [31]

      Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2015, 44, 7484. doi: 10.1039/C5CS00303B  doi: 10.1039/C5CS00303B

    32. [32]

      Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Chem. Rev. 2016, 116, 9438. doi: 10.1021/acs.chemrev.6b00070  doi: 10.1021/acs.chemrev.6b00070

    33. [33]

      Izadi-Najafabadi, A.; Yamada, T.; Futaba, D. N.; Hatori, H.; Iijima, S.; Hata, K. Electrochem. Commun. 2010, 12, 1678. doi: 10.1016/j.elecom.2010.09.020  doi: 10.1016/j.elecom.2010.09.020

    34. [34]

      Tsai, W. Y.; Lin, R.; Murali, S.; Li, Zhang, L.; McDonough, J. K.; Ruoff, R. S.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Nano Energy 2013, 2, 403. doi: 10.1016/j.nanoen.2012.11.006  doi: 10.1016/j.nanoen.2012.11.006

    35. [35]

      Vellacheri, R.; Al-Haddad, A.; Zhao, H.; Wang, W.; Wang, C.; Lei, Y. Nano Energy 2014, 8, 231. doi: 10.1016/j.nanoen.2014.06.015  doi: 10.1016/j.nanoen.2014.06.015

    36. [36]

      Zhang, S.; Pan, N. Adv. Energy Mater. 2015, 5, 1401401. doi: 10.1002/aenm.201401401  doi: 10.1002/aenm.201401401

    37. [37]

      Mathis, T. S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Adv. Energy Mater. 2019, 9, 1902007. doi: 10.1002/aenm.201902007  doi: 10.1002/aenm.201902007

    38. [38]

      Bo, Z.; Zhu, W.; Ma, W.; Wen, Z.; Shuai, X.; Chen, J.; Yan, J.; Wang, Z.; Cen, K.; Feng, X. Adv. Mater. 2013, 25, 5799. doi: 10.1002/adma.201301794  doi: 10.1002/adma.201301794

    39. [39]

      Chen, L.; Li, H.; Yoshitake, H.; Qi, L.; Gu, N.; Wang, H. Electrochim. Acta 2015, 157, 333. doi: 10.1016/j.electacta.2014.09.161  doi: 10.1016/j.electacta.2014.09.161

    40. [40]

      Hung, K.; Masarapu, C.; Ko, T.; Wei, B. J. Power Sources 2009, 193, 944. doi: 10.1016/j.jpowsour.2009.01.083  doi: 10.1016/j.jpowsour.2009.01.083

  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

Metrics
  • PDF Downloads(15)
  • Abstract views(383)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return