Citation: Wei Chunrong, Wang Fei, Pei Weihua, Liu Zhiduo, Mao Xurui, Zhao Hongze, Wang Sikai, Wang Yijun, Yang Xiaowei, Liu Yuanyuan, Zhao Shanshan, Gui Qiang, Chen Hongda. Light-Induced Noise Reduction of Lightly Doped Silicon-based Neural Electrode[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200503. doi: 10.3866/PKU.WHXB202005033 shu

Light-Induced Noise Reduction of Lightly Doped Silicon-based Neural Electrode

  • Corresponding author: Pei Weihua, peiwh@semi.ac.cn
  • Received Date: 12 May 2020
    Revised Date: 10 June 2020
    Accepted Date: 12 June 2020
    Available Online: 15 June 2020

    Fund Project: the National Key Technologies Research and Development Program of China 2016YFB0402405the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Project XDB32040200the National Natural Science Foundation of China 61671424The project was supported by the National Key Technologies Research and Development Program of China (2017YFA0205903, 2017YFA0701100, 2016YFB0402405); the National Natural Science Foundation of China (61634006, 61671424); the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Project (XDB32030100, XDB32040200); the Key Research Programs of Frontier Sciences, CAS (QYZDY-SSW-JSC004)the National Key Technologies Research and Development Program of China 2017YFA0205903the Key Research Programs of Frontier Sciences, CAS QYZDY-SSW-JSC004the National Key Technologies Research and Development Program of China 2017YFA0701100the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Project XDB32030100the National Natural Science Foundation of China 61634006

  • Silicon-based neural probes are practical tools for recording neural cell firing. A single silicon-based needle with a width of only 70 μm, prepared using the standard complementary metal-oxide-semiconductor (CMOS) process technology, can contain thousands of electrode-recording sites. Optogenetics has made control over neuronal activity more precise. By recording the electrical activity of neurons stimulated by light, more information about brain activity can be recorded and analyzed. When yellow light or blue light is used to stimulate neurons, the photon energy is greater than the forbidden bandwidth of the silicon substrate, and the valence-band electrons are excited to the conduction band, generating electron-hole pairs. The photoinduced carrier in the silicon substrate severely disrupts the probe's signal-to-noise ratio. Decreasing the disturbance caused by light is a pragmatic way to execute recording and stimulating simultaneously. The traditional noise reduction method involves using heavily doped silicon as the substrate, reducing the carrier life by increasing the impurity concentration, and then reducing the noise of the silicon electrode under illumination. However, the heavily doped silicon substrate has more lattice defects than its lightly doped counterparts, which makes the silicon electrode fragile, and this method is not compatible with the standard CMOS process technology. On analyzing the photoinduced noise mechanism of manufacturing electrodes on lightly doped silicon substrates, we found that the inhomogeneous distribution of carriers generated by light excitation polarizes lightly doped silicon substrates. The potential caused by photoinduced polarization will affect the electrodes fabricated on it. Metalizing and grounding the lightly doped silicon substrate will effectively decrease the polarization potential. On using this method, the noise amplitude caused by the illumination can drop to 0.87% of the original value. To ensure an appropriate firing rate of neurons, the photo-stimulation frequency was chosen to be 20 Hz. Under the illumination of 1 mW·mm-2, the background noise of the electrode could be controlled below 45 μV, which meets the needs for general optogenetics applications. Modification of the lightly doped silicon substrate will meet the requirements of the neural electrode for optogenetics applications. Unlike the traditional method of reducing light-induced noise by heavily doping the entire substrate, the noise reduction method of lightly doped silicon substrate is compatible with the standard CMOS process technology. It provides a noise cancellation method for the preparation of silicon-based neural microelectrodes with dense recording sites and high channel count using standard CMOS processes.
  • 加载中
    1. [1]

      Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydin, C.; et al. Nature 2017, 551 (7679), 232. doi: 10.1038/nature24636  doi: 10.1038/nature24636

    2. [2]

      Najafi, K.; Ji, J.; Wise, K. D. IEEE Trans. Biomed. Eng. 1990, 37 (1), 1. doi: 10.1109/10.43605  doi: 10.1109/10.43605

    3. [3]

      Aldaoud, A.; Soto-Breceda, A.; Tong, W.; Conductier, G.; Tonta, M. A.; Coleman, H. A.; Parkington, H. C.; Clarke, I.; Redoute, J. M.; Garrett, D. J.; et al. Sens. Actuators A-Phys. 2018, 271, 201. doi: 10.1016/j.sna.2017.12.051  doi: 10.1016/j.sna.2017.12.051

    4. [4]

      McGregor, J. E.; Godat, T.; Dhakal, K. R.; Parkins, K.; Strazzeri, J. M.; Bateman, B. A.; Fischer, W. S.; Williams, D. R.; Merigan, W. H. Nat. Commun. 2020, 11 (1), 1703. doi: 10.1038/s41467-020-15317-6  doi: 10.1038/s41467-020-15317-6

    5. [5]

      Tung, J. K.; Berglund, K.; Gross, R. E. Brain Stimul. 2016, 9 (6), 801. doi: 10.1016/j.brs.2016.06.055  doi: 10.1016/j.brs.2016.06.055

    6. [6]

      Royer, S.; Zemelman, B. V.; Barbic, M.; Losonczy, A.; Buzsaki, G.; Magee, J. C. Eur. J. Neurosci. 2010, 31 (12), 2279. doi: 10.1111/j.1460-9568.2010.07250.x  doi: 10.1111/j.1460-9568.2010.07250.x

    7. [7]

      Wu, F.; Stark, E.; Ku, P. C.; Wise, K. D.; Buzsáki, G.; Yoon, E. Neuron 2015, 88 (6), 1136. doi: 10.1016/j.neuron.2015.10.032  doi: 10.1016/j.neuron.2015.10.032

    8. [8]

      Bai, Q.; Wise, K. D.; Anderson, D. J. IEEE Trans. Biomed. Eng. 2000, 47 (3), 281. doi: 10.1109/10.827288  doi: 10.1109/10.827288

    9. [9]

      Scholvin, J.; Kinney, J. P.; Bernstein, J. G.; Moore-Kochlacs, C.; Kopell, N.; Fonstad, C. G.; Boyden, E. S. IEEE Trans. Biomed. Eng. 2016, 63 (1), 120. doi: 10.1109/TBME.2015.2406113  doi: 10.1109/TBME.2015.2406113

    10. [10]

      Law, M. E.; Solley, E.; Liang, M.; Burk, D. E. IEEE Electron Device Lett. 1991, 12 (8), 401. doi: 10.1109/55.119145  doi: 10.1109/55.119145

    11. [11]

      Connolly, A. T.; Vetter, R. J.; Hetke, J. F.; Teplitzky, B. A.; Kipke, D. R.; Pellinen, D. S.; Anderson, D. J.; Baker, K. B.; Vitek, J. L.; Johnson, M. D. IEEE Trans. Biomed. Eng. 2016, 63 (1), 148. doi: 10.1109/TBME.2015.2492921  doi: 10.1109/TBME.2015.2492921

    12. [12]

      Blanche, T. J.; Spacek, M. A.; Hetke, J. F.; Swindale, N. V. J. Neurophysiol. 2005, 93 (5), 2987. doi: 10.1152/jn.01023.2004  doi: 10.1152/jn.01023.2004

    13. [13]

      Chen, S. Y.; Pei, W. H.; Zhao, H.; Gui, Q.; Tang, R. Y.; Chen, Y. F.; Fang, X. L.; Hong, B.; Gao, X. R.; Chen, H. D. Sci. China Inf. Sci. 2014, 57 (5), 1. doi: 10.1007/s11432-013-4846-1  doi: 10.1007/s11432-013-4846-1

    14. [14]

      Chen, S.; Pei, W.; Gui, Q.; Tang, R.; Chen, Y.; Zhao, S.; Wang, H.; Chen, H. Sens. Actuators A-Phys. 2013, 193, 141. doi: 10.1016/j.sna.2013.01.033  doi: 10.1016/j.sna.2013.01.033

    15. [15]

      Norlin, P.; Kindlundh, M.; Mouroux, A.; Yoshida, K.; Hofmann, U. G. J. Micromech. Microeng. 2002, 12 (4), 414. doi: 10.1088/0960-1317/12/4/312  doi: 10.1088/0960-1317/12/4/312

    16. [16]

      Stark, E.; Roux, L.; Eichler, R.; Senzai, Y.; Royer, S.; Buzsáki, G. Neuron 2014, 83 (2), 467. doi: 10.1016/j.neuron.2014.06.023  doi: 10.1016/j.neuron.2014.06.023

    17. [17]

      Ferguson, J. E.; Boldt, C.; Redish, A. D. Sens. Actuators A-Phys. 2009, 156 (2), 388. doi: 10.1016/j.sna.2009.10.001  doi: 10.1016/j.sna.2009.10.001

  • 加载中
    1. [1]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    2. [2]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    3. [3]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    4. [4]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    5. [5]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    6. [6]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    9. [9]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    10. [10]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    11. [11]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    12. [12]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    13. [13]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    14. [14]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    15. [15]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    18. [18]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    19. [19]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    20. [20]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

Metrics
  • PDF Downloads(9)
  • Abstract views(861)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return