Citation: Wei Chunrong, Wang Fei, Pei Weihua, Liu Zhiduo, Mao Xurui, Zhao Hongze, Wang Sikai, Wang Yijun, Yang Xiaowei, Liu Yuanyuan, Zhao Shanshan, Gui Qiang, Chen Hongda. Light-Induced Noise Reduction of Lightly Doped Silicon-based Neural Electrode[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 200503. doi: 10.3866/PKU.WHXB202005033 shu

Light-Induced Noise Reduction of Lightly Doped Silicon-based Neural Electrode

  • Corresponding author: Pei Weihua, peiwh@semi.ac.cn
  • Received Date: 12 May 2020
    Revised Date: 10 June 2020
    Accepted Date: 12 June 2020
    Available Online: 15 June 2020

    Fund Project: the National Key Technologies Research and Development Program of China 2016YFB0402405the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Project XDB32040200the National Natural Science Foundation of China 61671424The project was supported by the National Key Technologies Research and Development Program of China (2017YFA0205903, 2017YFA0701100, 2016YFB0402405); the National Natural Science Foundation of China (61634006, 61671424); the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Project (XDB32030100, XDB32040200); the Key Research Programs of Frontier Sciences, CAS (QYZDY-SSW-JSC004)the National Key Technologies Research and Development Program of China 2017YFA0205903the Key Research Programs of Frontier Sciences, CAS QYZDY-SSW-JSC004the National Key Technologies Research and Development Program of China 2017YFA0701100the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Project XDB32030100the National Natural Science Foundation of China 61634006

  • Silicon-based neural probes are practical tools for recording neural cell firing. A single silicon-based needle with a width of only 70 μm, prepared using the standard complementary metal-oxide-semiconductor (CMOS) process technology, can contain thousands of electrode-recording sites. Optogenetics has made control over neuronal activity more precise. By recording the electrical activity of neurons stimulated by light, more information about brain activity can be recorded and analyzed. When yellow light or blue light is used to stimulate neurons, the photon energy is greater than the forbidden bandwidth of the silicon substrate, and the valence-band electrons are excited to the conduction band, generating electron-hole pairs. The photoinduced carrier in the silicon substrate severely disrupts the probe's signal-to-noise ratio. Decreasing the disturbance caused by light is a pragmatic way to execute recording and stimulating simultaneously. The traditional noise reduction method involves using heavily doped silicon as the substrate, reducing the carrier life by increasing the impurity concentration, and then reducing the noise of the silicon electrode under illumination. However, the heavily doped silicon substrate has more lattice defects than its lightly doped counterparts, which makes the silicon electrode fragile, and this method is not compatible with the standard CMOS process technology. On analyzing the photoinduced noise mechanism of manufacturing electrodes on lightly doped silicon substrates, we found that the inhomogeneous distribution of carriers generated by light excitation polarizes lightly doped silicon substrates. The potential caused by photoinduced polarization will affect the electrodes fabricated on it. Metalizing and grounding the lightly doped silicon substrate will effectively decrease the polarization potential. On using this method, the noise amplitude caused by the illumination can drop to 0.87% of the original value. To ensure an appropriate firing rate of neurons, the photo-stimulation frequency was chosen to be 20 Hz. Under the illumination of 1 mW·mm-2, the background noise of the electrode could be controlled below 45 μV, which meets the needs for general optogenetics applications. Modification of the lightly doped silicon substrate will meet the requirements of the neural electrode for optogenetics applications. Unlike the traditional method of reducing light-induced noise by heavily doping the entire substrate, the noise reduction method of lightly doped silicon substrate is compatible with the standard CMOS process technology. It provides a noise cancellation method for the preparation of silicon-based neural microelectrodes with dense recording sites and high channel count using standard CMOS processes.
  • 加载中
    1. [1]

      Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydin, C.; et al. Nature 2017, 551 (7679), 232. doi: 10.1038/nature24636  doi: 10.1038/nature24636

    2. [2]

      Najafi, K.; Ji, J.; Wise, K. D. IEEE Trans. Biomed. Eng. 1990, 37 (1), 1. doi: 10.1109/10.43605  doi: 10.1109/10.43605

    3. [3]

      Aldaoud, A.; Soto-Breceda, A.; Tong, W.; Conductier, G.; Tonta, M. A.; Coleman, H. A.; Parkington, H. C.; Clarke, I.; Redoute, J. M.; Garrett, D. J.; et al. Sens. Actuators A-Phys. 2018, 271, 201. doi: 10.1016/j.sna.2017.12.051  doi: 10.1016/j.sna.2017.12.051

    4. [4]

      McGregor, J. E.; Godat, T.; Dhakal, K. R.; Parkins, K.; Strazzeri, J. M.; Bateman, B. A.; Fischer, W. S.; Williams, D. R.; Merigan, W. H. Nat. Commun. 2020, 11 (1), 1703. doi: 10.1038/s41467-020-15317-6  doi: 10.1038/s41467-020-15317-6

    5. [5]

      Tung, J. K.; Berglund, K.; Gross, R. E. Brain Stimul. 2016, 9 (6), 801. doi: 10.1016/j.brs.2016.06.055  doi: 10.1016/j.brs.2016.06.055

    6. [6]

      Royer, S.; Zemelman, B. V.; Barbic, M.; Losonczy, A.; Buzsaki, G.; Magee, J. C. Eur. J. Neurosci. 2010, 31 (12), 2279. doi: 10.1111/j.1460-9568.2010.07250.x  doi: 10.1111/j.1460-9568.2010.07250.x

    7. [7]

      Wu, F.; Stark, E.; Ku, P. C.; Wise, K. D.; Buzsáki, G.; Yoon, E. Neuron 2015, 88 (6), 1136. doi: 10.1016/j.neuron.2015.10.032  doi: 10.1016/j.neuron.2015.10.032

    8. [8]

      Bai, Q.; Wise, K. D.; Anderson, D. J. IEEE Trans. Biomed. Eng. 2000, 47 (3), 281. doi: 10.1109/10.827288  doi: 10.1109/10.827288

    9. [9]

      Scholvin, J.; Kinney, J. P.; Bernstein, J. G.; Moore-Kochlacs, C.; Kopell, N.; Fonstad, C. G.; Boyden, E. S. IEEE Trans. Biomed. Eng. 2016, 63 (1), 120. doi: 10.1109/TBME.2015.2406113  doi: 10.1109/TBME.2015.2406113

    10. [10]

      Law, M. E.; Solley, E.; Liang, M.; Burk, D. E. IEEE Electron Device Lett. 1991, 12 (8), 401. doi: 10.1109/55.119145  doi: 10.1109/55.119145

    11. [11]

      Connolly, A. T.; Vetter, R. J.; Hetke, J. F.; Teplitzky, B. A.; Kipke, D. R.; Pellinen, D. S.; Anderson, D. J.; Baker, K. B.; Vitek, J. L.; Johnson, M. D. IEEE Trans. Biomed. Eng. 2016, 63 (1), 148. doi: 10.1109/TBME.2015.2492921  doi: 10.1109/TBME.2015.2492921

    12. [12]

      Blanche, T. J.; Spacek, M. A.; Hetke, J. F.; Swindale, N. V. J. Neurophysiol. 2005, 93 (5), 2987. doi: 10.1152/jn.01023.2004  doi: 10.1152/jn.01023.2004

    13. [13]

      Chen, S. Y.; Pei, W. H.; Zhao, H.; Gui, Q.; Tang, R. Y.; Chen, Y. F.; Fang, X. L.; Hong, B.; Gao, X. R.; Chen, H. D. Sci. China Inf. Sci. 2014, 57 (5), 1. doi: 10.1007/s11432-013-4846-1  doi: 10.1007/s11432-013-4846-1

    14. [14]

      Chen, S.; Pei, W.; Gui, Q.; Tang, R.; Chen, Y.; Zhao, S.; Wang, H.; Chen, H. Sens. Actuators A-Phys. 2013, 193, 141. doi: 10.1016/j.sna.2013.01.033  doi: 10.1016/j.sna.2013.01.033

    15. [15]

      Norlin, P.; Kindlundh, M.; Mouroux, A.; Yoshida, K.; Hofmann, U. G. J. Micromech. Microeng. 2002, 12 (4), 414. doi: 10.1088/0960-1317/12/4/312  doi: 10.1088/0960-1317/12/4/312

    16. [16]

      Stark, E.; Roux, L.; Eichler, R.; Senzai, Y.; Royer, S.; Buzsáki, G. Neuron 2014, 83 (2), 467. doi: 10.1016/j.neuron.2014.06.023  doi: 10.1016/j.neuron.2014.06.023

    17. [17]

      Ferguson, J. E.; Boldt, C.; Redish, A. D. Sens. Actuators A-Phys. 2009, 156 (2), 388. doi: 10.1016/j.sna.2009.10.001  doi: 10.1016/j.sna.2009.10.001

  • 加载中
    1. [1]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    2. [2]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    3. [3]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    4. [4]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    5. [5]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    6. [6]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    7. [7]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    8. [8]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    9. [9]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    10. [10]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    11. [11]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    12. [12]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    13. [13]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    14. [14]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    15. [15]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    16. [16]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    17. [17]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    18. [18]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    19. [19]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    20. [20]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

Metrics
  • PDF Downloads(9)
  • Abstract views(927)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return