Citation: Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200502. doi: 10.3866/PKU.WHXB202005027 shu

Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2

  • Corresponding author: Zuzeng Qin, qinzuzeng@gxu.edu.cn Hongbing Ji, jihb@mail.sysu.edu.cn
  • Received Date: 11 May 2020
    Revised Date: 10 June 2020
    Accepted Date: 18 June 2020
    Available Online: 24 June 2020

    Fund Project: the National Natural Science Foundation of China 21968007the National Natural Science Foundation of China 21938001Guangxi Natural Science Foundation, China 2016GXNSFFA380015Guangxi Natural Science Foundation, China 2019GXNSFAA245006

  • The acceleration of industrialization and the continuous upgradation of consumption structure has increased the atmospheric content of CO2 far beyond the past levels, leading to a serious global environmental problem. Photocatalytic reduction of CO2 is one of the most promising methods to solve the problem of rising atmospheric CO2 content. The core of this technology is to develop efficient, environment-friendly, and affordable photocatalysts. A photocatalyst is a semiconductor that can absorb photons from sunlight and produce electron-hole pairs to initiate a redox reaction. Owing to their low specific surface areas, significant electron-hole recombination, and less surface-active sites, bulk photocatalysts are not satisfactory. Ultrathin layered materials have shown great potential for photocatalytic CO2 reduction owing to their characteristics of large specific surface area, a large number of low-coordination surface atoms, short transfer distance from the inside to the catalyst surface, along with other advantages. Photoexcited electrons only need to cover a short distance to transfer to the nanowafer surface, and the speed of migrating electrons on the nanowafer surface is much higher than that in the layers or in the bulk catalyst. The ultrathin structure leads to significant coordinative unsaturation and even vacancy defects in the lattice structure of the atoms; while the former can be used as active sites for CO2 adsorption and reaction, the latter can improve the separation of the electron-hole pair. This review summarizes the latest developments in ultrathin layered photocatalysts for CO2 reduction. First, the photocatalytic reduction mechanism of CO2 is introduced briefly, and the factors governing product selectivity are explained. Second, the existing catalysts, such as g-C3N4, black phosphorus (BP), graphene oxide (GO), metal oxide, transition metal dichalcogenides (TMDCs), perovskite, BiOX (X = Cl, Br, I), layered double hydroxide (LDH), 2D-MOF, MXene, and two-dimensional honeycomb-like Ge―Si alloy compounds (gersiloxenes), are classified. In addition, the prevalent preparation methods are summarized, including mechanical stripping, gas stripping, liquid stripping, chemical etching, chemical vapor deposition (CVD), template method, self-assembly of surfactant, and the intermediate precursor method of lamellar Bi-oleate complex. Finally, we introduced the strategy of improving photocatalyst performance on the premise of maintaining its layered structure, including the factors of thickness adjustment, doping, structural defects, composite, etc. The future opportunities and challenges of ultrathin layered photocatalysts for the reduction of carbon dioxide have also been proposed.
  • 加载中
    1. [1]

      Vergara, J.; McKesson, C.; Walczak, M. Energy Policy 2012, 49, 333. doi: 10.1016/j.enpol.2012.06.026  doi: 10.1016/j.enpol.2012.06.026

    2. [2]

      Zhao, Y.; Liu, Z. Chin. J. Chem. 2018, 36 (5), 455. doi: 10.1002/cjoc.201800014  doi: 10.1002/cjoc.201800014

    3. [3]

      Steinlechner, C.; Junge, H. Angew. Chem. Int. Edit. 2018, 57 (1), 44. doi: 10.1002/anie.201709032  doi: 10.1002/anie.201709032

    4. [4]

      Guo, S. H.; Zhou, J.; Zhao, X.; Sun, C. Y.; You, S. Q.; Wang, X. L.; Su, Z. M. J. Catal. 2019, 369, 201. doi: 10.1016/j.jcat.2018.11.004  doi: 10.1016/j.jcat.2018.11.004

    5. [5]

      Li, A.; Wang, T.; Li, C.; Huang, Z.; Luo, Z.; Gong, J. Angew. Chem. Int. Edit. 2019, 58 (12), 3804. doi: 10.1002/anie.201812773  doi: 10.1002/anie.201812773

    6. [6]

      Zhou, B.; Song, J.; Xie, C.; Chen, C.; Qian, Q.; Han, B. ACS Sustain. Chem. Eng. 2018, 6 (5), 5754. doi: 10.1021/acssuschemeng.8b00956  doi: 10.1021/acssuschemeng.8b00956

    7. [7]

      Ye, J.; He, J.; Wang, S.; Zhou, X.; Zhang, Y.; Liu, G.; Yang, Y. Sep. Purif. Technol. 2019, 220, 8. doi: 10.1016/j.seppur.2019.03.042  doi: 10.1016/j.seppur.2019.03.042

    8. [8]

      Ávila-López, M. A.; Luévano-Hipólito, E.; Torres-Martínez, L. M. J. Photochem. Photobiol. A 2019, 382, 111933. doi: 10.1016/j.jphotochem.2019.111933  doi: 10.1016/j.jphotochem.2019.111933

    9. [9]

      Wang, Z. -J.; Song, H.; Pang, H.; Ning, Y.; Dao, T. D.; Wang, Z.; Chen, H.; Weng, Y.; Fu, Q.; Nagao, T.; et al. Appl. Catal. B 2019, 250, 10. doi: 10.1016/j.apcatb.2019.03.003  doi: 10.1016/j.apcatb.2019.03.003

    10. [10]

      Wang, H.; Zhang, L.; Wang, K.; Sun, X.; Wang, W. Appl. Catal. B 2019, 243, 771. doi: 10.1016/j.apcatb.2018.11.021  doi: 10.1016/j.apcatb.2018.11.021

    11. [11]

      Qin, Z.; Tian, H.; Su, T.; Ji, H.; Guo, Z. RSC Adv. 2016, 6 (58), 52665. doi: 10.1039/C6RA03340G  doi: 10.1039/C6RA03340G

    12. [12]

      Su, T.; Tian, H.; Qin, Z.; Ji, H. Appl. Catal. B 2017, 202, 364. doi: 10.1016/j.apcatb.2016.09.035  doi: 10.1016/j.apcatb.2016.09.035

    13. [13]

      Teh, Y. W.; Goh, Y. W.; Kong, X. Y.; Ng, B. -J.; Yong, S. -T.; Chai, S. -P. ChemCatChem 2019, 11 (24), 6431. doi: 10.1002/cctc.201901653  doi: 10.1002/cctc.201901653

    14. [14]

      Li, P.; Xu, H.; Liu, L.; Kako, T.; Umezawa, N.; Abe, H.; Ye, J. J. Mater. Chem. A 2014, 2 (16), 5606. doi: 10.1039/C4TA00105B  doi: 10.1039/C4TA00105B

    15. [15]

      Shen, W. J. Acta Phys. -Chim. Sin. 2017, 33 (3), 455.  doi: 10.3866/PKU.WHXB201702231

    16. [16]

      Pang, H.; Meng, X.; Song, H.; Zhou, W.; Yang, G.; Zhang, H.; Izumi, Y.; Takei, T.; Jewasuwan, W.; Fukata, N.; et al. Appl. Catal. B 2019, 244, 1013. doi: 10.1016/j.apcatb.2018.12.010  doi: 10.1016/j.apcatb.2018.12.010

    17. [17]

      Zhang, P.; Wang, S.; Guan, B. Y.; Lou, X. W. Energy Environ. Sci. 2019, 12 (1), 164. doi: 10.1039/C8EE02538J  doi: 10.1039/C8EE02538J

    18. [18]

      Xia, W.; Wu, J.; Hu, J. C.; Sun, S.; Li, M. -D.; Liu, H.; Lan, M.; Wang, F. ChemSusChem 2019, 12 (20), 4617. doi: 10.1002/cssc.201901633  doi: 10.1002/cssc.201901633

    19. [19]

      Zhou, L; Zhang, X. H.; Lin, L.; Li, P.; Shao, K. J.; Li, C. Z.; He, T. Acta Phys. -Chim. Sin. 2017, 33 (9), 1884.  doi: 10.3866/PKU.WHXB201705084

    20. [20]

      Zhang, Y.; Zhou, Y.; Tang, L.; Wang, M.; Li, P.; Tu, W.; Liu, J.; Zou, Z. Part. Part. Syst. Charact. 2016, 33 (8), 583. doi: 10.1002/ppsc.201500235  doi: 10.1002/ppsc.201500235

    21. [21]

      Pan, Z. M.; Liu, M. H.; Niu, P. P.; Guo, F. S.; Fu, X. Z.; Wang, X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014.  doi: 10.3866/PKU.WHXB201906014

    22. [22]

      Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; Smith, L. J.; O'Hare, D.; Zhang, T. Adv. Mater. 2015, 27 (47), 7824. doi: 10.1002/adma.201503730  doi: 10.1002/adma.201503730

    23. [23]

      Wu, H. -Z.; Bandaru, S.; Huang, X. -L.; Liu, J.; Li, L. -L.; Wang, Z. Phys. Chem. Chem. Phys. 2019, 21 (3), 1514. doi: 10.1039/C8CP06956E  doi: 10.1039/C8CP06956E

    24. [24]

      Han, C.; Wang, B.; Wu, C.; Shen, S.; Zhang, X.; Sun, L.; Tian, Q.; Lei, Y.; Wang, Y. ChemistrySelect 2019, 4 (7), 2211. doi: 10.1002/slct.201900102  doi: 10.1002/slct.201900102

    25. [25]

      Sun, S.; Watanabe, M.; Wang, P.; Ishihara, T. ACS Appl. Energy Mater. 2019, 2 (3), 2104. doi: 10.1021/acsaem.8b02153  doi: 10.1021/acsaem.8b02153

    26. [26]

      Kulandaivalu, T.; Abdul Rashid, S.; Sabli, N.; Tan, T. L. Diam. Relat. Mater. 2019, 91, 64. doi: 10.1016/j.diamond.2018.11.002  doi: 10.1016/j.diamond.2018.11.002

    27. [27]

      Du, F.; Lu, H.; Lu, S.; Wang, J.; Xiao, Y.; Xue, W.; Cao, S. Int. J. Hydrog. Energy 2018, 43 (6), 3223. doi: 10.1016/j.ijhydene.2017.12.181  doi: 10.1016/j.ijhydene.2017.12.181

    28. [28]

      Feng, L. P.; Li, A.; Wang, P. C.; Liu, Z. T. J. Phys. Chem. C 2018, 122 (42), 24359. doi: 10.1021/acs.jpcc.8b06211  doi: 10.1021/acs.jpcc.8b06211

    29. [29]

      Meng, M.; Gan, Z.; Zhang, J.; Liu, K.; Wang, L.; Li, S.; Yao, Y.; Zhu, Y.; Li, J. Phys. Status Solidi B 2017, 254 (7), 1700011. doi: 10.1002/pssb.201700011  doi: 10.1002/pssb.201700011

    30. [30]

      Liu, C.; Huang, H.; Ye, L.; Yu, S.; Tian, N.; Du, X.; Zhang, T.; Zhang, Y. Nano Energy 2017, 41, 738. doi: 10.1016/j.nanoen.2017.10.031  doi: 10.1016/j.nanoen.2017.10.031

    31. [31]

      Hu, S.; Zhu, M. ChemCatChem 2019, 11 (24), 6147. doi: 10.1002/cctc.201901597  doi: 10.1002/cctc.201901597

    32. [32]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116 (12), 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    33. [33]

      Wang, L.; Hou, Y.; Xiao, S.; Bi, F.; Zhao, L.; Li, Y.; Zhang, X.; Gai, G.; Dong, X. RSC Adv. 2019, 9 (67), 39304. doi: 10.1039/C9RA08922E  doi: 10.1039/C9RA08922E

    34. [34]

      Samanta, S.; Yadav, R.; Kumar, A.; Kumar Sinha, A.; Srivastava, R. Appl. Catal. B 2019, 259, 118054. doi: 10.1016/j.apcatb.2019.118054  doi: 10.1016/j.apcatb.2019.118054

    35. [35]

      Niu, P.; Yang, Y.; Yu, J. C.; Liu, G.; Cheng, H. -M. Chem. Commun. 2014, 50 (74), 10837. doi: 10.1039/C4CC03060E  doi: 10.1039/C4CC03060E

    36. [36]

      Ding, F.; Yang, D.; Tong, Z.; Nan, Y.; Wang, Y.; Zou, X.; Jiang, Z. Environ. Sci. Nano 2017, 4 (7), 1455. doi: 10.1039/C7EN00255F  doi: 10.1039/C7EN00255F

    37. [37]

      Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H.; Castro Neto, A. H. Nat. Rev. Mater. 2016, 1 (11), 16061. doi: 10.1038/natrevmats.2016.61  doi: 10.1038/natrevmats.2016.61

    38. [38]

      Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. ACS Nano 2014, 8 (4), 4033. doi: 10.1021/nn501226z  doi: 10.1021/nn501226z

    39. [39]

      Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Nat. Photonics 2014, 8 (12), 899. doi: 10.1038/nphoton.2014.271  doi: 10.1038/nphoton.2014.271

    40. [40]

      Low, J.; Cao, S.; Yu, J.; Wageh, S. Chem. Commun. 2014, 50 (74), 10768. doi: 10.1039/C4CC02553A  doi: 10.1039/C4CC02553A

    41. [41]

      Guo, Z.; Chen, S.; Wang, Z.; Yang, Z.; Liu, F.; Xu, Y.; Wang, J.; Yi, Y.; Zhang, H.; Liao, L.; et al. Adv. Mater. 2017, 29 (42), 1703811. doi: 10.1002/adma.201703811  doi: 10.1002/adma.201703811

    42. [42]

      Wang, X.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Nat. Nanotechnol. 2015, 10 (6), 517. doi: 10.1038/nnano.2015.71  doi: 10.1038/nnano.2015.71

    43. [43]

      Ezawa, M. New J. Phys. 2014, 16 (11), 115004. doi: 10.1088/1367-2630/16/11/115004  doi: 10.1088/1367-2630/16/11/115004

    44. [44]

      Rudenko, A. N.; Katsnelson, M. I. Phys. Rev. B 2014, 89 (20), 201408. doi: 10.1103/PhysRevB.89.201408  doi: 10.1103/PhysRevB.89.201408

    45. [45]

      Han, C.; Li, J.; Ma, Z.; Xie, H.; Waterhouse, G. I. N.; Ye, L.; Zhang, T. Sci. China Mater. 2018, 61 (9), 1159. doi: 10.1007/s40843-018-9245-y  doi: 10.1007/s40843-018-9245-y

    46. [46]

      Bai, H.; Li, C.; Shi, G. Adv. Mater. 2011, 23 (9), 1089. doi: 10.1002/adma.201003753  doi: 10.1002/adma.201003753

    47. [47]

      Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39 (1), 228. doi: 10.1039/B917103G  doi: 10.1039/B917103G

    48. [48]

      Albero, J.; Mateo, D.; Garcia, H. Molecules 2019, 24 (5), 906. doi: 10.3390/molecules24050906  doi: 10.3390/molecules24050906

    49. [49]

      Yeh, T. F.; Syu, J. M.; Cheng, C.; Chang, T. H.; Teng, H. Adv. Funct. Mater. 2010, 20 (14), 2255. doi: 10.1002/adfm.201000274  doi: 10.1002/adfm.201000274

    50. [50]

      Hsu, H. C.; Shown, I.; Wei, H. Y.; Chang, Y. C.; Du, H. Y.; Lin, Y. G.; Tseng, C. A.; Wang, C. H.; Chen, L. C.; Lin, Y. C.; et al. Nanoscale 2013, 5 (1), 262. doi: 10.1039/C2NR31718D  doi: 10.1039/C2NR31718D

    51. [51]

      Zhang, X.; Yang, J.; Cai, T.; Zuo, G.; Tang, C. Appl. Surf. Sci. 2018, 443, 558. doi: 10.1016/j.apsusc.2018.02.275  doi: 10.1016/j.apsusc.2018.02.275

    52. [52]

      Liao, Y.; Hu, Z.; Gu, Q.; Xue, C. Molecules 2015, 20 (10), 18847. doi: 10.3390/molecules201018847  doi: 10.3390/molecules201018847

    53. [53]

      Shi, W.; Guo, X.; Cui, C.; Jiang, K.; Li, Z.; Qu, L.; Wang, J. C. Appl. Catal. B 2019, 243, 236. doi: 10.1016/j.apcatb.2018.09.076  doi: 10.1016/j.apcatb.2018.09.076

    54. [54]

      Chen, W.; Han, B.; Tian, C.; Liu, X.; Liang, S.; Deng, H.; Lin, Z. Appl. Catal. B 2019, 244, 996. doi: 10.1016/j.apcatb.2018.12.045  doi: 10.1016/j.apcatb.2018.12.045

    55. [55]

      Shi, R.; Waterhouse, G. I. N.; Zhang, T. Solar RRL 2017, 1 (11), 1700126. doi: 10.1002/solr.201700126  doi: 10.1002/solr.201700126

    56. [56]

      Yi, H.; Qin, L.; Huang, D.; Zeng, G.; Lai, C.; Liu, X.; Li, B.; Wang, H.; Zhou, C.; Huang, F.; et al. Chem. Eng. J. 2019, 358, 480. doi: 10.1016/j.cej.2018.10.036  doi: 10.1016/j.cej.2018.10.036

    57. [57]

      Silva Ribeiro, C.; Azário Lansarin, M. React. Kinet. Mech. Catal. 2019, 127 (2), 1059. doi: 10.1007/s11144-019-01591-z  doi: 10.1007/s11144-019-01591-z

    58. [58]

      Jeyalakshmi, V.; Mahalakshmy, R.; Ramesh, K.; Rao, P. V. C.; Choudary, N. V.; Sri Ganesh, G.; Thirunavukkarasu, K.; Krishnamurthy, K. R.; Viswanathan, B. RSC Adv. 2015, 5 (8), 5958. doi: 10.1039/C4RA11985A  doi: 10.1039/C4RA11985A

    59. [59]

      Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133 (51), 20863. doi: 10.1021/ja207586e  doi: 10.1021/ja207586e

    60. [60]

      Yang, Y.; Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Cheng, M.; Wang, J.; Chen, F.; Zhou, C.; Xiong, W. Adv. Colloid Interface Sci. 2018, 254, 76. doi: 10.1016/j.cis.2018.03.004  doi: 10.1016/j.cis.2018.03.004

    61. [61]

      Wang, Z.; Chen, M.; Huang, D.; Zeng, G.; Xu, P.; Zhou, C.; Lai, C.; Wang, H.; Cheng, M.; Wang, W. Chem. Eng. J. 2019, 374, 1025. doi: 10.1016/j.cej.2019.06.018  doi: 10.1016/j.cej.2019.06.018

    62. [62]

      Zhou, C.; Lai, C.; Xu, P.; Zeng, G.; Huang, D.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; Liu, Y.; et al. ACS Sustain. Chem. Eng. 2018, 6 (3), 4174. doi: 10.1021/acssuschemeng.7b04584  doi: 10.1021/acssuschemeng.7b04584

    63. [63]

      Zhao, L.; Zhang, X.; Fan, C.; Liang, Z.; Han, P. Physica B 2012, 407 (17), 3364. doi: 10.1016/j.physb.2012.04.039  doi: 10.1016/j.physb.2012.04.039

    64. [64]

      Zhang, L.; Wang, W.; Jiang, D.; Gao, E.; Sun, S. Nano Res. 2015, 8 (3), 821. doi: 10.1007/s12274-014-0564-2  doi: 10.1007/s12274-014-0564-2

    65. [65]

      Wu, D.; Ye, L.; Yip, H. Y.; Wong, P. K. Catal. Sci. Technol. 2017, 7 (1), 265. doi: 10.1039/C6CY02040B  doi: 10.1039/C6CY02040B

    66. [66]

      Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Chem. Eng. J. 2016, 291, 39. doi: 10.1016/j.cej.2016.01.032  doi: 10.1016/j.cej.2016.01.032

    67. [67]

      Kong, X. Y.; Lee, W. P. C.; Ong, W. -J.; Chai, S. -P.; Mohamed, A. R. ChemCatChem 2016, 8 (19), 3074. doi: 10.1002/cctc.201600782  doi: 10.1002/cctc.201600782

    68. [68]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5 (4), 263. doi: 10.1038/nchem.1589  doi: 10.1038/nchem.1589

    69. [69]

      Zheng, Y.; Yin, X.; Jiang, Y.; Bai, J.; Tang, Y.; Shen, Y.; Zhang, M. Energy Technol. 2019, 7 (11), 1900582. doi: 10.1002/ente.201900582  doi: 10.1002/ente.201900582

    70. [70]

      Jiao, X.; Li, X.; Jin, X.; Sun, Y.; Xu, J.; Liang, L.; Ju, H.; Zhu, J.; Pan, Y.; Yan, W.; et al. J. Am. Chem. Soc. 2017, 139 (49), 18044. doi: 10.1021/jacs.7b10287  doi: 10.1021/jacs.7b10287

    71. [71]

      Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. ACS Appl. Mater. Interfaces 2013, 5 (20), 10317. doi: 10.1021/am403327g  doi: 10.1021/am403327g

    72. [72]

      Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.; Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. ACS Appl. Energy Mater. 2019, 2 (7), 4640. doi: 10.1021/acsaem.8b02268  doi: 10.1021/acsaem.8b02268

    73. [73]

      Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.; Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11 (17), 8138. doi: 10.1039/C9NR00168A  doi: 10.1039/C9NR00168A

    74. [74]

      Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Angew. Chem. Int. Edit. 2018, 57 (26), 7610. doi: 10.1002/anie.201710509  doi: 10.1002/anie.201710509

    75. [75]

      Zhang, X.; Zhang, Z.; Li, J.; Zhao, X.; Wu, D.; Zhou, Z. J. Mater. Chem. A 2017, 5 (25), 12899. doi: 10.1039/C7TA03557H  doi: 10.1039/C7TA03557H

    76. [76]

      Zhao, Y.; Jia, X.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2016, 6 (6), 1501974. doi: 10.1002/aenm.201501974  doi: 10.1002/aenm.201501974

    77. [77]

      Liu, C.; Wang, W.; Liu, B.; Qiao, J.; Lv, L.; Gao, X.; Zhang, X.; Xu, D.; Liu, W.; Liu, J.; et al. Catalysts 2019, 9 (8), 658. doi: 10.3390/catal9080658  doi: 10.3390/catal9080658

    78. [78]

      Fu, Y.; Wu, J.; Du, R.; Guo, K.; Ma, R.; Zhang, F.; Zhu, W.; Fan, M. RSC Adv. 2019, 9 (65), 37733. doi: 10.1039/C9RA08097J  doi: 10.1039/C9RA08097J

    79. [79]

      Ye, L.; Gao, Y.; Cao, S.; Chen, H.; Yao, Y.; Hou, J.; Sun, L. Appl. Catal. B 2018, 227, 54. doi: 10.1016/j.apcatb.2018.01.028  doi: 10.1016/j.apcatb.2018.01.028

    80. [80]

      Wang, C.; Liu, X. -M.; Zhang, M.; Geng, Y.; Zhao, L.; Li, Y. -G.; Su, Z. -M. ACS Sustain. Chem. Eng. 2019, 7 (16), 14102. doi: 10.1021/acssuschemeng.9b02699  doi: 10.1021/acssuschemeng.9b02699

    81. [81]

      Wang, S.; Wang, X. Small 2015, 11 (26), 3097. doi: 10.1002/smll.201500084  doi: 10.1002/smll.201500084

    82. [82]

      Matthes, L.; Pulci, O.; Bechstedt, F. J. Phys. Condens. Matter 2013, 25 (39), 395305. doi: 10.1088/0953-8984/25/39/395305  doi: 10.1088/0953-8984/25/39/395305

    83. [83]

      Zhou, S.; Pei, W.; Zhao, J.; Du, A. Nanoscale 2019, 11 (16), 7734. doi: 10.1039/C9NR01336A  doi: 10.1039/C9NR01336A

    84. [84]

      Zhao, F.; Feng, Y.; Wang, Y.; Zhang, X.; Liang, X.; Li, Z.; Zhang, F.; Wang, T.; Gong, J.; Feng, W. Nat. Commun. 2020, 11 (1), 1443. doi: 10.1038/s41467-020-15262-4  doi: 10.1038/s41467-020-15262-4

    85. [85]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    86. [86]

      Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; et al. 2D Mater. 2014, 1 (2), 025001. doi: 10.1088/2053-1583/1/2/025001  doi: 10.1088/2053-1583/1/2/025001

    87. [87]

      Xiao, H.; Zhao, M.; Zhang, J.; Ma, X.; Zhang, J.; Hu, T.; Tang, T.; Jia, J.; Wu, H. Electrochem. Commun. 2018, 89, 10. doi: 10.1016/j.elecom.2018.02.010  doi: 10.1016/j.elecom.2018.02.010

    88. [88]

      Sun, Z.; Fan, Q.; Zhang, M.; Liu, S.; Tao, H.; Texter, J. Adv. Sci. 2019, 6 (18), 1901084. doi: 10.1002/advs.201901084  doi: 10.1002/advs.201901084

    89. [89]

      Wang, J.; Shen, Z.; Yi, M. Carbon 2019, 153, 156. doi: 10.1016/j.carbon.2019.07.008  doi: 10.1016/j.carbon.2019.07.008

    90. [90]

      Zhang, F.; Ye, C.; Cui, N.; Guo, P.; Wu, M.; Lyu, L.; Lin, C.; Zhan, Z. Surf. Technol. 2019, 48 (6), 20.  doi: 10.16490/j.cnki.issn.1001-3660.2019.06.002

    91. [91]

      Miao, J.; Xu, G.; Liu, J.; Lv, J.; Wu, Y. J. Solid State Chem. 2017, 246, 186. doi: 10.1016/j.jssc.2016.11.028  doi: 10.1016/j.jssc.2016.11.028

    92. [92]

      Fan, C.; Miao, J.; Xu, G.; Liu, J.; Lv, J.; Wu, Y. RSC Adv. 2017, 7 (59), 37185. doi: 10.1039/C7RA05732F  doi: 10.1039/C7RA05732F

    93. [93]

      Zheng, X.; Wang, G.; Huang, F.; Liu, H.; Gong, C.; Wen, S.; Hu, Y.; Zheng, G.; Chen, D. Front. Chem. 2019, 7, 544. doi: 10.3389/fchem.2019.00544  doi: 10.3389/fchem.2019.00544

    94. [94]

      Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O'Brien, P. Chem. Commun. 2014, 50 (87), 13338. doi: 10.1039/C4CC05752J  doi: 10.1039/C4CC05752J

    95. [95]

      Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. Adv. Mater. 2015, 27 (11), 1887. doi: 10.1002/adma.201405150  doi: 10.1002/adma.201405150

    96. [96]

      Di, J.; Xia, J.; Li, X.; Ji, M.; Xu, H.; Chen, Z.; Li, H. Carbon 2016, 107, 1. doi: 10.1016/j.carbon.2016.05.028  doi: 10.1016/j.carbon.2016.05.028

    97. [97]

      Peng, J.; Chen, X.; Ong, W. -J.; Zhao, X.; Li, N. Chem 2019, 5 (1), 18. doi: 10.1016/j.chempr.2018.08.037  doi: 10.1016/j.chempr.2018.08.037

    98. [98]

      She, X.; Wu, J.; Zhong, J.; Xu, H.; Yang, Y.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D.; Li, H.; et al. Nano Energy 2016, 27, 138. doi: 10.1016/j.nanoen.2016.06.042  doi: 10.1016/j.nanoen.2016.06.042

    99. [99]

      He, M.; Lei, J.; Zhou, C.; Shi, H.; Sun, X.; Gao, B. Mater. Res. Express 2019, 6 (11), 1150. doi: 10.1088/2053-1591/ab4d70  doi: 10.1088/2053-1591/ab4d70

    100. [100]

      Srivastava, S.; Kashyap, P. K.; Singh, V.; Senguttuvan, T. D.; Gupta, B. K. New J. Chem. 2018, 42 (12), 9550. doi: 10.1039/C8NJ00885J  doi: 10.1039/C8NJ00885J

    101. [101]

      Khalifa, Z. S.; Mahmoud, S. A. Phys. E 2017, 91, 60. doi: 10.1016/j.physe.2017.03.010  doi: 10.1016/j.physe.2017.03.010

    102. [102]

      Meier, A. J.; Garg, A.; Sutter, B.; Kuhn, J. N.; Bhethanabotla, V. R. ACS Sustain. Chem. Eng. 2019, 7 (1), 265. doi: 10.1021/acssuschemeng.8b03168  doi: 10.1021/acssuschemeng.8b03168

    103. [103]

      Zhou, C.; Zhao, Y.; Shang, L.; Shi, R.; Wu, L. -Z.; Tung, C. -H.; Zhang, T. Chem. Commun. 2016, 52 (53), 8239. doi: 10.1039/C6CC03739A  doi: 10.1039/C6CC03739A

    104. [104]

      Cheng, W.; He, J.; Yao, T.; Sun, Z.; Jiang, Y.; Liu, Q.; Jiang, S.; Hu, F.; Xie, Z.; He, B.; et al. J. Am. Chem. Soc. 2014, 136 (29), 10393. doi: 10.1021/ja504088n  doi: 10.1021/ja504088n

    105. [105]

      Zhou, Y.; Zhang, Y.; Lin, M.; Long, J.; Zhang, Z.; Lin, H.; Wu, J. C. S.; Wang, X. Nat. Commun. 2015, 6 (1), 8340. doi: 10.1038/ncomms9340  doi: 10.1038/ncomms9340

    106. [106]

      Liang, L.; Lei, F.; Gao, S.; Sun, Y.; Jiao, X.; Wu, J.; Qamar, S.; Xie, Y. Angew. Chem. Int. Edit. 2015, 54 (47), 13971. doi: 10.1002/anie.201506966  doi: 10.1002/anie.201506966

    107. [107]

      Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2014, 136 (19), 6826. doi: 10.1021/ja501866r  doi: 10.1021/ja501866r

    108. [108]

      Gao, S.; Sun, Y.; Lei, F.; Liu, J.; Liang, L.; Li, T.; Pan, B.; Zhou, J.; Xie, Y. Nano Energy 2014, 8, 205. doi: 10.1016/j.nanoen.2014.05.017  doi: 10.1016/j.nanoen.2014.05.017

    109. [109]

      Lopez-Bezanilla, A. Phys. Rev. B 2016, 93 (3), 035433. doi: 10.1103/PhysRevB.93.035433  doi: 10.1103/PhysRevB.93.035433

    110. [110]

      Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H.; Zhou, Y.; Ye, L. Chem. Eng. J. 2019, 360, 473. doi: 10.1016/j.cej.2018.12.008  doi: 10.1016/j.cej.2018.12.008

    111. [111]

      Ahsaine, H. A.; Slassi, A.; Naciri, Y.; Chennah, A.; Jaramillo-Páez, C.; Anfar, Z.; Zbair, M.; Benlhachemi, A.; Navío, J. A. ChemistrySelect 2018, 3 (27), 7778. doi: 10.1002/slct.201801729  doi: 10.1002/slct.201801729

    112. [112]

      Wang, K.; Zhang, L.; Su, Y.; Sun, S.; Wang, Q.; Wang, H.; Wang, W. Catal. Sci. Technol. 2018, 8 (12), 3115. doi: 10.1039/C8CY00513C  doi: 10.1039/C8CY00513C

    113. [113]

      Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.; Cheng, H. -M. J. Am. Chem. Soc. 2010, 132 (33), 11642. doi: 10.1021/ja103798k  doi: 10.1021/ja103798k

    114. [114]

      Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Appl. Catal. B 2015, 176, 44. doi: 10.1016/j.apcatb.2015.03.045  doi: 10.1016/j.apcatb.2015.03.045

    115. [115]

      Di, J.; Zhao, X.; Lian, C.; Ji, M.; Xia, J.; Xiong, J.; Zhou, W.; Cao, X.; She, Y.; Liu, H.; et al. Nano Energy 2019, 61, 54. doi: 10.1016/j.nanoen.2019.04.029  doi: 10.1016/j.nanoen.2019.04.029

    116. [116]

      Yang, X.; Wang, S.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H.; et al. Appl. Catal. B 2019, 259, 118088. doi: 10.1016/j.apcatb.2019.118088  doi: 10.1016/j.apcatb.2019.118088

    117. [117]

      Du, P.; Su, T.; Luo, X.; Zhou, X.; Qin, Z.; Ji, H.; Chen, J. Chin. J. Chem. 2018, 36 (6), 538. doi: 10.1002/cjoc.201700761  doi: 10.1002/cjoc.201700761

    118. [118]

      Tang, J. -Y.; Kong, X. Y.; Ng, B. -J.; Chew, Y. -H.; Mohamed, A. R.; Chai, S. -P. Catal. Sci. Technol. 2019, 9 (9), 2335. doi: 10.1039/C9CY00449A  doi: 10.1039/C9CY00449A

    119. [119]

      Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Appl. Catal. B 2019, 248, 193. doi: 10.1016/j.apcatb.2019.02.027  doi: 10.1016/j.apcatb.2019.02.027

    120. [120]

      Gao, S.; Gu, B.; Jiao, X.; Sun, Y.; Zu, X.; Yang, F.; Zhu, W.; Wang, C.; Feng, Z.; Ye, B.; et al. J. Am. Chem. Soc. 2017, 139 (9), 3438. doi: 10.1021/jacs.6b11263  doi: 10.1021/jacs.6b11263

    121. [121]

      Xiao, S.; Weiyue, X.; Xiaohong, Y. Beilstein J. Nanotechnol. 2017, 8, 2264. doi: 10.3762/bjnano.8.226  doi: 10.3762/bjnano.8.226

    122. [122]

      Shi, H.; Long, S.; Hu, S.; Hou, J.; Ni, W.; Song, C.; Li, K.; Gurzadyan, G. G.; Guo, X. Appl. Catal. B 2019, 245, 760. doi: 10.1016/j.apcatb.2019.01.036  doi: 10.1016/j.apcatb.2019.01.036

    123. [123]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3 (8), 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    124. [124]

      Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Chem. Soc. Rev. 2019, 48 (21), 5310. doi: 10.1039/C9CS00163H  doi: 10.1039/C9CS00163H

    125. [125]

      Jiang, Z.; Sun, W.; Miao, W.; Yuan, Z.; Yang, G.; Kong, F.; Yan, T.; Chen, J.; Huang, B.; An, C.; et al. Adv. Sci. 2019, 6 (15), 1900289. doi: 10.1002/advs.201900289  doi: 10.1002/advs.201900289

    126. [126]

      Su, T.; Qin, Z.; Ji, H.; Wu, Z. Nanotechnology 2019, 30 (50), 502002. doi: 10.1088/1361-6528/ab3f15  doi: 10.1088/1361-6528/ab3f15

    127. [127]

      Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. ACS Catal. 2018, 8 (3), 2253. doi: 10.1021/acscatal.7b03437  doi: 10.1021/acscatal.7b03437

    128. [128]

      Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. ACS Appl. Mater. Interfaces 2018, 10 (3), 2667. doi: 10.1021/acsami.7b18835  doi: 10.1021/acsami.7b18835

    129. [129]

      Han, C.; Lei, Y.; Wang, B.; Wang, Y. ChemSusChem 2018, 11 (24), 4237. doi: 10.1002/cssc.201802088  doi: 10.1002/cssc.201802088

    130. [130]

      She, H.; Zhou, H.; Li, L.; Zhao, Z.; Jiang, M.; Huang, J.; Wang, L.; Wang, Q. ACS Sustain. Chem. Eng. 2019, 7 (1), 650. doi: 10.1021/acssuschemeng.8b04250  doi: 10.1021/acssuschemeng.8b04250

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(23)
  • Abstract views(3738)
  • HTML views(294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return