Citation: Xinmei Ding, Yanli Liang, Hailong Zhang, Ming Zhao, Jianli Wang, Yaoqiang Chen. Preparation of Reduced Pt-Based Catalysts with High Dispersion and Their Catalytic Performances for NO Oxidation[J]. Acta Physico-Chimica Sinica, ;2022, 38(4): 200500. doi: 10.3866/PKU.WHXB202005009 shu

Preparation of Reduced Pt-Based Catalysts with High Dispersion and Their Catalytic Performances for NO Oxidation

  • Corresponding author: Ming Zhao, zhaoming@scu.edu.cn Jianli Wang, wangjianli@scu.edu.cn
  • Received Date: 5 May 2020
    Revised Date: 3 June 2020
    Accepted Date: 16 June 2020
    Available Online: 19 June 2020

    Fund Project: the National Natural Science Foundation of China 21972098

  • Pt-based catalysts are widely used in diesel oxidation catalyst (DOC) units, primarily to oxidize the harmful HC, CO, and NO emissions. Notably, NO2 produced from NO oxidation is beneficial for low-temperature activity in NH3-SCR and promotes soot oxidation in diesel particulate filters (DPF). Thus, the conversion of NO is an important parameter for determining the performance of DOCs. Considering the increasingly stringent emission regulations and the economic effectiveness, preparation of low-cost and highly active Pt-based catalysts is indispensable. Generally, the Pt0 content is crucial as it is an active component of DOCs. Small Pt size is beneficial for improving the catalytic activity. In this study, we applied a modified alcohol reduction-impregnation (MARI) method to synthesize highly active 1% (w, mass fraction) Pt/SiO2-Al2O3 (denoted as MA-Pt/SA) catalyst. Meanwhile, using the conventional impregnation method, we prepared the Pt/SiO2-Al2O3 catalyst with the same Pt loading (denoted as C-Pt/SA) as a reference sample. X-ray photoelectron spectroscopy (XPS) and hydrogen temperature program reduction (H2-TPR) analyses proved that the MARI method could produce Pt catalysts with higher Pt0 content. Pt0 content in MA-Pt/SA was ~60.3% while that in C-Pt/SA was only ~23.1%. X-ray diffraction (XRD), CO-diffuse reflectance infrared Fourier transform spectroscopy (CO-DRIFTS), and transmission electron microscopy (TEM) characterization confirmed that the Pt particle size is much smaller over MA-Pt/SA as compared to that over C-Pt/SA. Performance evaluation of MA-Pt/SA and C-Pt/SA was conducted in a simulated diesel atmosphere. The results showed that the maximum NO conversion into NO2 over MA-Pt/SA is 74% and 68% in the absence and presence of H2O, respectively, which were much higher than those over C-Pt/SA (42% and 51% NO conversion with and without H2O, respectively). Furthermore, the temperature for 30% NO conversion over MA-Pt/SA (218 ℃) markedly decreased as compared to that over C-Pt/SA (248 ℃), indicating the excellent low temperature activity. After the aging treatment with reaction gas at high temperatures, aged MA-Pt/SA maintained 69% NO conversion while aged C-Pt/SA showed only 41% NO conversion. In addition, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of NO + O2 co-adsorption suggested that higher Pt dispersion and higher Pt0 content over MA-Pt/SA could facilitate the formation of bridging nitrates as intermediate species in NO oxidation at lower temperatures and could also facilitate their rapid decomposition (or desorption) at higher temperatures, thus imparting a high catalytic activity. Furthermore, a decrease in the Pt loading to 0.5% (w) resulted in a maximum NO conversion of 64% via the MARI method, suggesting a higher catalytic activity compared to that of C-Pt/SA with 1% (w) Pt loading. This work provides a method to prepare highly active Pt-based catalysts with low noble loading.
  • 加载中
    1. [1]

      Russell, A.; Epling, W. S. Catal. Rev. 2011, 53, 337. doi: 10.1080/01614940.2011.596429  doi: 10.1080/01614940.2011.596429

    2. [2]

      Johnson, T.; Joshi, A. SAE Int. Eng. 2018, 11, 1307. doi: 10.4271/2018-01-0329  doi: 10.4271/2018-01-0329

    3. [3]

      Koebel, M.; Elsener, M.; Kleemann, M. Catal. Today 2000, 59, 335. doi: 10.1016/S0920-5861(00)00299-6  doi: 10.1016/S0920-5861(00)00299-6

    4. [4]

      Madia, G.; Koebel, M.; Elsener, M.; Wokaun, A. Ind. Eng. Chem. Res. 2002, 41, 3512. doi: 10.1021/ie0200555  doi: 10.1021/ie0200555

    5. [5]

      Andersson, J.; Antonsson, M.; Eurenius, L.; Olsson, E. Appl. Catal. B 2007, 72, 71. doi: 10.1016/j.apcatb.2006.10.011  doi: 10.1016/j.apcatb.2006.10.011

    6. [6]

      Winkler, A.; Ferri, D.; Aguirre, M. Appl. Catal. B 2009, 93, 177. doi: 10.1016/j.apcatb.2009.09.027  doi: 10.1016/j.apcatb.2009.09.027

    7. [7]

      Liang, Y.; Ding, X.; Zhao, M.; Wang, J.; Chen, Y. Appl. Surf. Sci. 2018, 443, 336. doi: 10.1016/j.apsusc.2018.03.032  doi: 10.1016/j.apsusc.2018.03.032

    8. [8]

      Després, J.; Elsener, M.; Koebel, M.; Kröcher, O.; Schnyder, B.; Wokaun, A. Appl. Catal. B 2004, 50, 73. doi: 10.1016/j.apcatb.2003.12.020  doi: 10.1016/j.apcatb.2003.12.020

    9. [9]

      Wang, H. F.; Guo, Y. L.; Lu, G.; Hu, P. J. Phys. Chem. C 2009, 113, 18746. doi: 10.1021/jp904371f  doi: 10.1021/jp904371f

    10. [10]

      Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. J. Phys. Chem. B 1999, 103, 3818. doi: 10.1021/jp983478m  doi: 10.1021/jp983478m

    11. [11]

      Wang, X.; Sonström, P.; Arndt, D.; Stöver, J.; Zielasek, V.; Borchert, H.; Thiel, K.; Al-Shamery, K.; Bäumer, M. J. Catal. 2011, 278, 143. doi: 10.1016/j.jcat.2010.11.020  doi: 10.1016/j.jcat.2010.11.020

    12. [12]

      Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z. Y.; Xia, Y. Langmuir 2006, 22, 8563. doi: 10.1021/la061323x  doi: 10.1021/la061323x

    13. [13]

      Moon, S. Y.; Naik, B.; Jung, C. H.; Qadir, K.; Park, J. Y. Catal. Today 2016, 265, 245. doi: 10.1016/j.cattod.2015.08.036  doi: 10.1016/j.cattod.2015.08.036

    14. [14]

      Rioux, R. M.; Song, H.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. J. Phys. Chem. B 2005, 109, 2192. doi: 10.1021/jp048867x  doi: 10.1021/jp048867x

    15. [15]

      Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. J. Phys. Chem. B 2005, 109, 188. doi: 10.1021/jp0464775  doi: 10.1021/jp0464775

    16. [16]

      Yuan, W.; Ren, J.; Kai, D.; Gui, L.; Tang, Y. Chem. Mater. 2000, 12, 1622. doi: 10.1021/cm0000853  doi: 10.1021/cm0000853

    17. [17]

      Zhao, S.; Liang, H.; Zhou, Y. Catal. Commun. 2007, 8, 1305. doi: 10.1016/j.catcom.2006.11.033  doi: 10.1016/j.catcom.2006.11.033

    18. [18]

      Du, Y. K.; Yang, P.; Mou, Z. G.; Hua, N. P.; Jiang, L. Appl. Polym. Sci. 2006, 99, 23. doi: 10.1002/app.21886  doi: 10.1002/app.21886

    19. [19]

      Zawadzki, M.; Okal, J. Mater. Res. Bull. 2008, 43, 3111. doi: 10.1016/j.materresbull.2007.11.006  doi: 10.1016/j.materresbull.2007.11.006

    20. [20]

      Krier, J. M.; Michalak, W. D.; Cai, X.; Carl, L.; Komvopoulos, K.; Somorjai, G. A. Nano Lett. 2015, 15, 39. doi: 10.1021/nl502566b  doi: 10.1021/nl502566b

    21. [21]

      Susut, C.; Chen, D. J.; Sun, S. G.; Tong, Y. Phys. Chem. Chem. Phys. 2011, 13, 7467. doi: 10.1039/C1CP20164F  doi: 10.1039/C1CP20164F

    22. [22]

      Koo, I. G.; Lee, M. S.; Shim, J. H.; Ahn, J. H.; Lee, W. M. J. Mater. Chem. 2005, 15, 4125. doi: 10.1039/B508420B  doi: 10.1039/B508420B

    23. [23]

      Tu, W.; Liu, H. J. Mater. Chem. 2000, 10, 2207. doi: 10.1039/B002232M  doi: 10.1039/B002232M

    24. [24]

      Tian, Z. Q.; Jiang, S. P.; Liu, Z.; Li, L. Electrochem. Commun. 2007, 9, 1613. doi: 10.1016/j.elecom.2007.03.006  doi: 10.1016/j.elecom.2007.03.006

    25. [25]

      Lemus, J.; Bedia, J.; Calvo, L.; Simakova, I. L.; Murzin, D. Y.; Etzold, B. J. M.; Rodriguez, J. J.; Gilarranz, M. A. Catal. Sci. Technol. 2016, 6, 5196. doi: 10.1039/C6CY00403B  doi: 10.1039/C6CY00403B

    26. [26]

      Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Dalton Trans. 2015, 44, 17883. doi: 10.1039/C5DT02964C  doi: 10.1039/C5DT02964C

    27. [27]

      Luo, M.; Hong, Y.; Yao, W.; Huang, C.; Xu, Q.; Wu, Q. J. Mater. Chem. A 2015, 3, 2770. doi: 10.1039/C4TA05250A  doi: 10.1039/C4TA05250A

    28. [28]

      Ruiz-García, C.; Heras, F.; Calvo, L.; Alonso-Morales, N.; Rodriguez, J. J.; Gilarranz, M. A. Appl. Catal. B 2018, 238, 609. doi: 10.1016/j.apcatb.2018.07.054  doi: 10.1016/j.apcatb.2018.07.054

    29. [29]

      Ma, J.; Sun, H.; Su, F.; Chen, Y.; Tang, Y.; Lu, T.; Zheng, J. Int. J. Hydrog. Energy 2011, 36, 7265. doi: 10.1016/j.ijhydene.2011.02.142  doi: 10.1016/j.ijhydene.2011.02.142

    30. [30]

      Wang, Y.; Ren, J.; Deng, K.; Gui, L.; Tang, Y. Chem. Mater. 2000, 12, 1622. doi: 10.1021/cm0000853  doi: 10.1021/cm0000853

    31. [31]

      Peng, R.; Li, S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Appl. Catal. B 2018, 220, 462. doi: 10.1016/j.apcatb.2017.07.048  doi: 10.1016/j.apcatb.2017.07.048

    32. [32]

      Olsson, L.; Persson, H.; Fridell, E.; Skoglundh, M.; Andersson, B. J. Phys. Chem. B 2001, 105, 6895. doi: 10.1021/jp010324p  doi: 10.1021/jp010324p

    33. [33]

      Hauff, K.; Tuttlies, U.; Eigenberger, G.; Nieken, U. Appl. Catal. B 2012, 123-124, 107. doi: 10.1016/j.apcatb.2012.04.008  doi: 10.1016/j.apcatb.2012.04.008

    34. [34]

      Yu, Q.; Richter, M.; Kong, F.; Li, L.; Wu, G.; Guan, N. Catal. Today 2010, 158, 452. doi: 10.1016/j.cattod.2010.06.031  doi: 10.1016/j.cattod.2010.06.031

    35. [35]

      Hatanaka, M.; Takahashi, N.; Takahashi, N.; Tanabe, T.; Nagai, Y.; Suda, A.; Shinjoh, H. J. Catal. 2009, 266, 182. doi: 10.1016/j.jcat.2009.06.005  doi: 10.1016/j.jcat.2009.06.005

    36. [36]

      Belopukhov, E. A.; Paukshtis, E. A.; Shkurenok, V. A.; Smolikov, M. D.; Belyi, A. S. Procedia Eng. 2015, 113, 19. doi: 10.1016/j.proeng.2015.07.281  doi: 10.1016/j.proeng.2015.07.281

    37. [37]

      Wu, Y.; Wang, D.; Li, Y. Chem. Soc. Rev. 2014, 43, 2112. doi: 10.1039/C3CS60221D  doi: 10.1039/C3CS60221D

    38. [38]

      Erdemir, D.; Lee, A. Y.; Myerson, A. S. Acc. Chem. Res. 2009, 42, 621. doi: 10.1021/ar800217x  doi: 10.1021/ar800217x

    39. [39]

      Susut, C.; Nguyen, T. D.; Chapman, G. B.; Tong, Y. Electrochim. Acta 2008, 53, 6135. doi: 10.1016/j.electacta.2007.12.016  doi: 10.1016/j.electacta.2007.12.016

    40. [40]

      Borodko, Y.; Humphrey, S. M.; Tilley, T. D.; Frei, H.; Somorjai, G. A. J. Phys. Chem. C 2007, 111, 6288. doi: 10.1021/jp068742n  doi: 10.1021/jp068742n

    41. [41]

      Hansen, T. W.; Delariva, A. T.; Challa, S. R.; Datye, A. K. Acc. Chem. Res. 2013, 46, 1720. doi: 10.1021/ar3002427  doi: 10.1021/ar3002427

    42. [42]

      Yang, Z.; Li, J.; Zhang, H.; Yang, Y.; Gong, M.; Chen, Y. Catal. Sci. Technol. 2015, 5, 2358. doi: 10.1039/C4CY01384K  doi: 10.1039/C4CY01384K

    43. [43]

      Liang, Y.; Ou, C.; Hao, Z.; Ding, X.; Ming, Z.; Wang, J.; Chen, Y. Ind. Eng. Chem. Res. 2018, 57, 3887. doi: 10.1021/acs.iecr.7b05316  doi: 10.1021/acs.iecr.7b05316

    44. [44]

      Ji, Y.; Bai, S.; Crocker, M. Appl. Catal. B 2015, 170-171, 283. doi: 10.1016/j.apcatb.2015.01.025  doi: 10.1016/j.apcatb.2015.01.025

    45. [45]

      Fridell, E.; Persson, H.; Westerberg, B.; Olsson, L.; Skoglundh, M. Catal. Lett. 2000, 66, 71. doi: 10.1023/A:1019074901578  doi: 10.1023/A:1019074901578

    46. [46]

      Ji, Y.; Toops, T. J.; Graham, U. M.; Jacobs, G.; Crocker, M. Catal. Lett. 2006, 110, 29. doi: 10.1007/s10562-006-0100-4  doi: 10.1007/s10562-006-0100-4

    47. [47]

      Castoldi, L.; Lietti, L.; Forzatti, P.; Morandi, S.; Ghiotti, G.; Vindigni, F. J. Catal. 2010, 276, 335. doi: 10.1016/j.jcat.2010.09.026  doi: 10.1016/j.jcat.2010.09.026

    48. [48]

      Li, L.; Shen, Q.; Cheng, J.; Hao, Z. Catal. Today 2010, 158, 361. doi: 10.1016/j.cattod.2010.04.038  doi: 10.1016/j.cattod.2010.04.038

    49. [49]

      Zhang, T.; Li, H.; Yang, Z.; Cao, F.; Li, L.; Chen, H.; Liu, H.; Xiong, K.; Wu, J.; Hong, Z.; et al. Appl. Catal. B 2019, 247, 133. doi: 10.1016/j.apcatb.2019.02.005  doi: 10.1016/j.apcatb.2019.02.005

  • 加载中
    1. [1]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    2. [2]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    3. [3]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    4. [4]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    5. [5]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    6. [6]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    7. [7]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    8. [8]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    9. [9]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    10. [10]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    11. [11]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    13. [13]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    14. [14]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    15. [15]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    16. [16]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    17. [17]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    18. [18]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

Metrics
  • PDF Downloads(12)
  • Abstract views(702)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return