Citation: Ning Feng, Hongguang Li, Jingcheng Hao. Toward the Neutralization of Carbon Dots Prepared by Mixed Acid Reflux[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200500. doi: 10.3866/PKU.WHXB202005004 shu

Toward the Neutralization of Carbon Dots Prepared by Mixed Acid Reflux

  • Corresponding author: Hongguang Li, hgli@sdu.edu.cn Jingcheng Hao, jhao@sdu.edu.cn
  • Received Date: 5 May 2020
    Revised Date: 5 June 2020
    Accepted Date: 5 June 2020
    Available Online: 11 June 2020

    Fund Project: the National Natural Science Foundation of China 21875129

  • Carbon dots (C dots) are relatively novel carbon nanomaterials that have attracted significant interest due to their unique photoluminescence, good biocompatibility, and stability. The preparation methods of C dots was usually summarized into "top-down" and "bottom-up", and mixed acid reflux is a top-down strategy that can be used to synthesize C dots, during which neutralization is a necessary step that can significantly influence the properties and potential applications of the final product. Previously, this research area mainly focused on tuning the properties of C dots by changing the starting materials and/or varying the reaction conditions; the influence of the reagents used during neutralization has been largely ignored. As the previously reported C dots prepared by mixed acid reflux were obtained from different starting materials under varied conditions, a meaningful comparison is difficult. Herein, yellow-emitting C dots were prepared by mixed acid-refluxing a carbon-rich material derived from fullerene carbon soot. For the same batch of as-prepared C dots, the influences of four reagents, i.e., NaOH, Na2CO3, K2CO3, and NH3·H2O, during neutralization on the structures and photoluminescence of the resulting C dots were investigated in detail. The results of thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy clearly showed that the reagent used during neutralization can affect the degree of dissociation of the acidic functional groups on the C dots. This is further supported by examination of the C dot/surfactant mixtures where subtle changes in the phase behavior were observed. Structural changes of the C dots cause variations in their surface states, ultimately altering the optical characteristics, including UV-vis absorption and fluorescence. Among the treated C dots, the sample prepared with Na2CO3 showed the strongest emission under the same excitation wavelength, while that prepared with NH3·H2O exhibited a distinct red shift (~8 nm) in the emission curve. The results presented herein provide clear evidence that neutralization reagent selection is important for optimizing the properties of the resulting C dots obtained by mixed acid reflux. In addition, the photoluminescence of the C dots can be influenced by their counterions, providing a novel method for tuning the properties of C dots while explaining their behavior in saline solutions. In short, the basicity of the neutralizing reagent and the type of counterions affect the structure of the C dots surface, which brings different performances. This work reminds researchers that it is necessary to use the type of neutralizing reagent as an experimental condition when preparing C dots in the future.
  • 加载中
    1. [1]

      Lim, S. Y.; Shen, W.; Gao, Z. Q. Chem. Soc. Rev. 2015, 44, 362. doi: 10.1039/c4cs00269e  doi: 10.1039/c4cs00269e

    2. [2]

      Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. Nano Res. 2015, 8 (2), 355. doi: 10.1007/s12274-014-0644-3  doi: 10.1007/s12274-014-0644-3

    3. [3]

      Shen, L. M.; Liu, J. Talanta 2016, 156-157, 245. doi: 10.1016/j.talanta.2016.05.028  doi: 10.1016/j.talanta.2016.05.028

    4. [4]

      He, P.; Yuan, F. L.; Wang, Z. F.; Tan, Z. A.; Fan, L. Z. Acta Phys. -Chim. Sin. 2018, 34 (11), 1250.  doi: 10.3866/PKU.WHXB201804041

    5. [5]

      Chen, B. B.; Liu, M. L.; Li, C. M.; Huang, C. Z. Adv. Colloid Interface Sci. 2019, 270, 165. doi: 10.1016/j.cis.2019.06.008  doi: 10.1016/j.cis.2019.06.008

    6. [6]

      Hu, C.; Mu, Y.; Li, M.; Qiu, J. Acta Phys. -Chim. Sin. 2019, 35 (6), 572.  doi: 10.3866/PKU.WHXB201806060

    7. [7]

      Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126 (40), 12736. doi: 10.1021/ja040082h  doi: 10.1021/ja040082h

    8. [8]

      Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; et al. J. Am. Chem. Soc. 2006, 128 (24), 7756. doi: 10.1021/ja062677d  doi: 10.1021/ja062677d

    9. [9]

      Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Small 2008, 4 (4), 455. doi: 10.1002/smll.200700578  doi: 10.1002/smll.200700578

    10. [10]

      Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Chem. Mater. 2008, 20 (14), 4539. doi: 10.1021/cm800506r  doi: 10.1021/cm800506r

    11. [11]

      Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Angew. Chem. Int. Ed. 2010, 49 (26), 4430. doi: 10.1002/anie.200906154  doi: 10.1002/anie.200906154

    12. [12]

      Tao, H. Q.; Yang, K.; Ma, Z.; Wan, J. M.; Zhang, Y. J.; Kang, Z. H.; Liu, Z. Small 2012, 8 (2), 281. doi: 10.1002/smll.201101706  doi: 10.1002/smll.201101706

    13. [13]

      Wu, M. B.; Wang, Y.; Wu, W. T.; Hu, C.; Wang, X. N.; Zheng, J. T.; Li, Z. T.; Jiang, B.; Qiu, J. S. Carbon 2014, 78, 480. doi: 10.1016/j.carbon.2014.07.029  doi: 10.1016/j.carbon.2014.07.029

    14. [14]

      Wang, Y.; Wu, W. T.; Wu, M. B.; Sun, H. D.; Xie, H.; Hu, C.; Wu, X. Y.; Qiu, J. S. New Carbon Mater. 2015, 30 (6), 550. doi: 10.1016/S1872-5805(15)60204-9  doi: 10.1016/S1872-5805(15)60204-9

    15. [15]

      Shao, X.; Wu, W.; Wang, R.; Zhang, J.; Li, Z.; Wang, Y.; Zheng, J.; Xia, W.; Wu, M. J. Catal. 2016, 344, 236. doi: 10.1016/j.jcat.2016.09.006  doi: 10.1016/j.jcat.2016.09.006

    16. [16]

      Ye, R. Q.; Xiang, C. S.; Lin, J.; Peng, Z. W.; Huang, K. W.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C.; Ruan, G.; et al. Nat. Commun. 2013, 4, 2943. doi: 10.1038/ncomms3943  doi: 10.1038/ncomms3943

    17. [17]

      Hu, C.; Yu, C.; Li, M. Y.; Wang, X. N.; Yang, J. Y.; Zhao, Z. B.; Eychmüller, A.; Sun, Y. P.; Qiu, J. S. Small 2014, 10 (23), 4926. doi: 10.1002/smll.201401328  doi: 10.1002/smll.201401328

    18. [18]

      Li, M. Y.; Hu, C.; Yu, C.; Wang, S.; Zhang, P.; Qiu, J. S. Carbon 2015, 91, 291. doi: 10.1016/j.carbon.2015.04.083  doi: 10.1016/j.carbon.2015.04.083

    19. [19]

      Dong, Y. Q.; Lin, J. P.; Chen, Y. M.; Fu, F. F.; Chi, Y. W.; Chen, G. N. Nanoscale 2014, 6, 7410. doi: 10.1039/c4nr01482k  doi: 10.1039/c4nr01482k

    20. [20]

      Sun, D.; Ban, R.; Zhang, P. H.; Wu, G. H.; Zhang, J. R.; Zhu, J. J. Carbon 2013, 64, 424. doi: 10.1016/j.carbon.2013.07.095  doi: 10.1016/j.carbon.2013.07.095

    21. [21]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H.; et al. Nano Lett. 2012, 12 (2), 844. doi: 10.1021/nl2038979  doi: 10.1021/nl2038979

    22. [22]

      Qiao, Z. A.; Wang, Y. F.; Gao, Y.; Li, H. W.; Dai, T. Y.; Liu, Y. L.; Huo, Q. S. Chem. Commun. 2009, 46 (46), 8812. doi: 10.1039/c0cc02724c  doi: 10.1039/c0cc02724c

    23. [23]

      Liu, H. P.; Ye, T.; Mao, C. D. Angew. Chem. Int. Ed. 2007, 46 (34), 6473. doi: 10.1002/anie.200701271  doi: 10.1002/anie.200701271

    24. [24]

      Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X. J.; Chen, S. W. Chem. Mater. 2009, 21 (13), 2803. doi: 10.1021/cm900709w  doi: 10.1021/cm900709w

    25. [25]

      Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. J. Phys. Chem. C 2009, 113 (43), 18546. doi: 10.1021/jp905912n  doi: 10.1021/jp905912n

    26. [26]

      Zhang, Q. H.; Sun, X. F.; Ruan, H.; Yin, K. Y.; Li, H. G. Sci. China Mater. 2017, 60 (2): 141. doi: 10.1007/s40843-016-5160-9  doi: 10.1007/s40843-016-5160-9

    27. [27]

      Sun, X. F.; Chen, M. J.; Zhang, Y. Q.; Yin, Y. J.; Zhang, L. W.; Li, H. G.; Hao, J. C. J. Mater. Chem. B 2018, 6 (43), 7021. doi: 10.1039/c8tb00630j  doi: 10.1039/c8tb00630j

    28. [28]

      Zhou, S. J.; Zhang, L. W.; Feng, Y. Q.; Li, H. G.; Chen, M. J.; Pan, W.; Hao, J. C. Chem. -Eur. J. 2018, 24 (62), 16609. doi: 10.1002/chem.201803612  doi: 10.1002/chem.201803612

    29. [29]

      Sun, X. F.; Zhang, Q. H.; Yin, K. Y. Zhou, S. J.; Li, H. G. Chem. Commun. 2016, 52, 12024. doi: 10.1039/c6cc05783g  doi: 10.1039/c6cc05783g

    30. [30]

      Tang, S. H.; Huang, J. B.; Dai, L. R.; Wang, C. Z.; Fu, H. L. Acta Chim. Sin. 2002, 60 (1), 1.  doi: 10.3321/j.issn:0567-7351.2002.01.001

    31. [31]

      Zhu, B. Y.; Zhang, P.; Huang, J. B.; Zhao, G. X. Acta Phys. -Chim. Sin. 1999, 15 (2): 110.  doi: 10.3866/PKU.WHXB19990204

    32. [32]

      Lu, T.; Li, Z. H.; Huang, J. B.; Fu, H. L. Langmuir 2008, 24 (19), 10723. doi: 10.1021/la801301v  doi: 10.1021/la801301v

    33. [33]

      Li, H. G.; Hao, J. C. J. Phys. Chem. B 2008, 112 (34), 10497. doi: 10.1021/jp802235g  doi: 10.1021/jp802235g

    34. [34]

      Xu, X. Y.; Bao, Z. J.; Tang, W. S.; Wu, H. Y.; Pan, J.; Hu, J. G.; Zeng, H. B. Carbon 2017, 121, 201. doi: 10.1016/j.carbon.2017.05.095  doi: 10.1016/j.carbon.2017.05.095

    35. [35]

      Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. ACS Nano 2016, 10, 484. doi: 10.1021/acsnano.5b05406  doi: 10.1021/acsnano.5b05406

    36. [36]

      Chen, D. Q.; Gao, H. B.; Chen, X.; Fang, G. L.; Yuan, S.; Yuan, Y. J. ACS Photonics 2017, 4, 2352. doi: 10.1021/acsphotonics.7b00675  doi: 10.1021/acsphotonics.7b00675

    37. [37]

      Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Adv. Mater. 2015, 27, 1663. doi: 10.1002/adma.201405070  doi: 10.1002/adma.201405070

    38. [38]

      Yuan, Y. H.; Liu, Z. X.; Li, R. S.; Zou, H. Y.; Lin, M.; Liu, H.; Huang, C. Z. Nanoscale 2016, 8, 6770. doi: 10.1039/C6NR00402D  doi: 10.1039/C6NR00402D

    39. [39]

      Han, L.; Liu, S. G.; Dong, J. X.; Liang, J. Y.; Li, L. J.; Li, N. B.; Luo, H. Q. J. Mater. Chem. C 2017, 5, 10785. doi: 10.1039/C7TC03314A  doi: 10.1039/C7TC03314A

    40. [40]

      Yuan, K.; Zhang, X. H.; Qin, R. H.; Ji, X. F.; Cheng, Y. H.; Li, L. L.; Yang, X. J.; Lu, Z. M.; Liu, H. J. Mater. Chem. C 2018, 6, 12631. doi: 10.1039/C8TC04468F  doi: 10.1039/C8TC04468F

  • 加载中
    1. [1]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    2. [2]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

Metrics
  • PDF Downloads(13)
  • Abstract views(391)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return